UDRC Phase 2 Challenge Workshops

A retrospective

Jordi Barr UDRC exploitation lead Dstl, Cyber and Information Systems

29 November 2017 © Crown copyright 2017 Dstl

DSTL/PUB105892

Purpose

- No challenge workshop today
- An opportunity to look back at the challenges of the • past 5 years
 - What worked
 - What didn't
- Pats on the back
- And one prize winner to be announced... •

© Crown copyright

Challenge Workshop

- Run during themed meetings
- 1-2 per meeting
- Addresses current signal processing challenge
- Well-constrained
- Comes with data
- Short horizon
- Prize

dst

'Spare time' activity

29 November 2017 © Crown copyright 2017 Dstl

Challenge workshops

Challenge	Meeting	Start	End	Data	Source
Spectral Deconvolution	Source separation	October 2013	May 2014	Mixtures of chemicals	Explosive Substances Detection and Identification
Cyber Situational Awareness		October 2013	May 2014	Cyber time series	Cyber Situation Awareness
WAMI anomaly detection	Anomaly detection	May 2014	April 2015	Wide-area motion imagery	Applied Imagery Processing
GPR anomaly detection		May 2014	October 2014	Ground-penetrating radar	Countering Terrorist Weapons
Underwater Automatic Target Recognition	Autonomous systems	November 2014	January 2015	Underwater mine classification	Maritime Freedom of Manoeuvre
Temporal Anomaly Detection		November 2014	March 2015	Time series of unidentified provenance	Identify project
SAR Processing	MIMO and SAR	May 2015	October 2015	Synthetic aperture radar	Selex ES (now Leonardo)
Golden Dongle		May 2015	September 2015	Multi-source Wifi	Electronic surveillance
Raspberry Pi Challenge	Implementation	November 2015	April 2017	Electronic surveillance from space platforms	Satellite
Occlusion detection	Image and video processing	May 2016	November 2016	Wide-area motion imagery	Roke
Orbital object tracking	Space	November 2016	August 2017	Night-time electro-optic imagery	Space Situation Awareness

dstl

29 November 2017

© Crown copyright 2017 Dstl

Gross statistics

- 11 challenges
- ~100 data sets distributed
- ~20 entries
- 7 winners
- 3 entries attracted further funding from MOD
- 1 ended up in a commercial product
- at least 6 entries have ended up making their way into Dstl research projects

Still29 November 2017© Crown copyright 2017

Winners

Spectral Deconvolution

Underwater ATR

Raspberry Pi

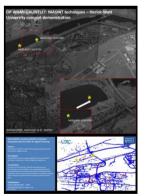
WAMI Anomaly Detection

All images from mod-udrc.org

29 November 2017 © Crown copyright 2017 Dstl

Temporal Anomaly Detection

Golden Dongle



Prizes

- Raman spectrometer/1950's ray gun ullet
- Land mine (most likely inert)
- Personalised imagery intelligence report
- Autonomous underwater vehicle (not water resistant)
- A framed time series
- An actual golden dongle
- And one yet to be awarded...

Highlight: fast Raman spectral deconvolution

- Challenge
 - Enabling agreement
 - baseline correction
 - complexity reduction
 - Enabling agreement 2
 - prototyping
 - Industry involvement
 - Enabling agreement 3
 - technical refinement
 - Contract with industrial supplier
 - Licensing agreement

< 3yrs

Fast Sparse Raman Spectral Unmixing for Chemical Fingerprinting and Quantification Mehrdad Yaghoobi*, Di Wu*, Rhea J. Clewes^b, and Mike E. Davies* astitute for Digital Communications (IDCOM), Edinburgh University, Kings Buildings

Mayfield Road, Edinburgh EH9 3JL, UK ^bCBR Devision, Dstl, SP4 0JQ, UK


ABSTRACT

anone is a null outshished substances in mathed for the detection of conduct spectroscopy is a well-document spectroscopic matrixed in the detection of containing page data sed on scattered light from exposure of a target material to a narrowband laser beam. The inform of enables presumptive identification from measuring correlation with library spectra. Whilst thi

e algorithm is in the order of one second, using a single core of a desktop computer Keywords: Raman Spectroscopy, Spectral Decomposition, Spectral Quantification and Fingerpr

1. INTRODUCTION

ods are based on recording the interaction of light with the ns through absorption, traumnission, reflection or scattering can provide fundamental, and in some instances aracterinitic, information from the material under study. Raman spectroecyp, in contrast to other spectro-jet techniques, is based on measuring the scattered light from a very narrow band libunisated light, t.c. a r information: (Send-Varture Annue metadom (construction) and an explosite an explosite and an explosite an explosite and an explosite and an explosite and an e

29 November 2017 © Crown copyright 2017 Dstl

What we learned

- Collaborative workshop session
- No open-ended questions
- A clear marking scheme
- A held-in data set
- Small data
 - which requires minimal wrangling
- Relevant

dst

• Pass mark/minimum bar to entry

29 November 2017 © Crown copyright 2017 Dstl

Implementation challenge

- The 'Raspberry Pi' challenge from the Implementation Theme Meeting
- Commendation from David Nethercott, chairman of the judging panel
- And the winner is...

29 November 2017 © Crown copyright 2017 I

Implementation challenge

- The 'Raspberry Pi' challenge from the Implementation Theme Meeting
- Commendation from David Nethercott, chairman of the judging panel
- And the winner is...

Ministry of Defence

29 November 2017 © Crown copyright 2017

GS

Summary

- Competitions centred on small, self-contained data sets and an relevant problem has led to exploitation success
 - make the challenge relevant
 - make the data manageable
 - engage after the event
- Pyramid effect
 - Some just take the data
 - N_data >> N_entries > N_winners ~= N_exploited

29 November 2017 © Crown copyright

