

## Building a More Discriminative Deep Feature Space for Person Re-Identification

(submitted to IEEE TIP)

Alessandro Borgia – HWU & UoE Prof Neil Robertson – QUB



#### Highlights

- Person Re-ID: context and motivation
- State-of-the-art results in the field
- Our proposed approach: revisiting metric learning technique
- Performance
- Advantages and limitations



## Motivation and investigated context



#### Motivation

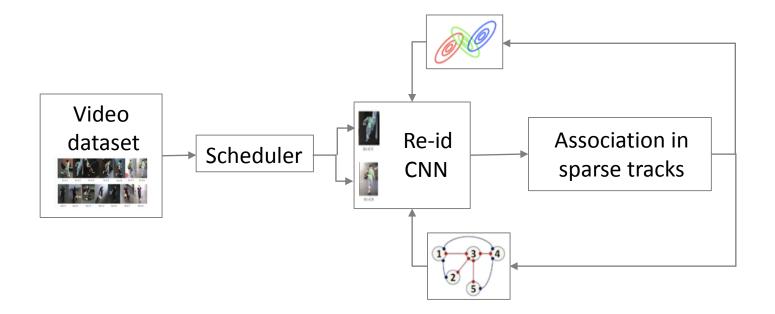
- 245 million surveillance cameras active and operational globally (HIS, 2014)
- CCTV cameras on Britain's roads capture 26 million images every day (The Guardian, Jan 23, 2014)
- London's subway attacks on July 7, 2005: It took investigators thousands hours to parse the city's CCTV footage (CNN, April 27, 2013)





#### Motivation

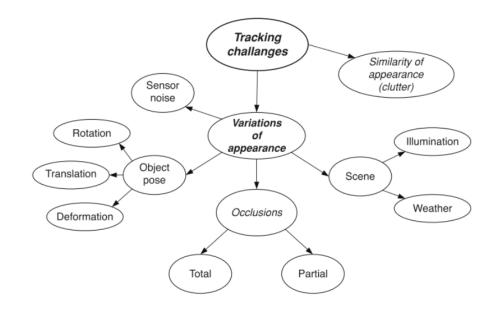
- Re-id capability critical when tracking across cameras
- Changing viewpoint: severe problem for re-id in multi-camera networks
- Deep learning pradigm
- Re-id evaluation following a ranking approach





#### **Investigated context**

- Investigated context
  - outdoor wide area surveillance network
  - non-calibrated, non overlapping CCTV cameras
  - unknown, unconstrained topology
- Factors affecting re-identification
  - lightings
  - viewpoints
  - poses
  - misalignments due to imperfect detections
  - long occlusions





## **Viewpoint problem**

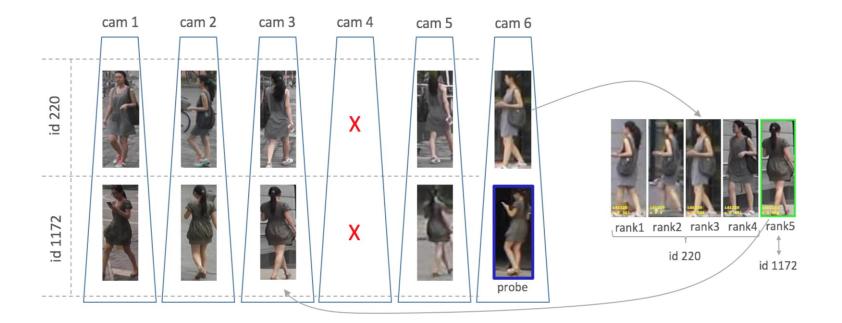
#### **Viewpoint problem**

Discriminative Deep Feature Spaces for Person Re-Id

• Viewpoint variability effect:

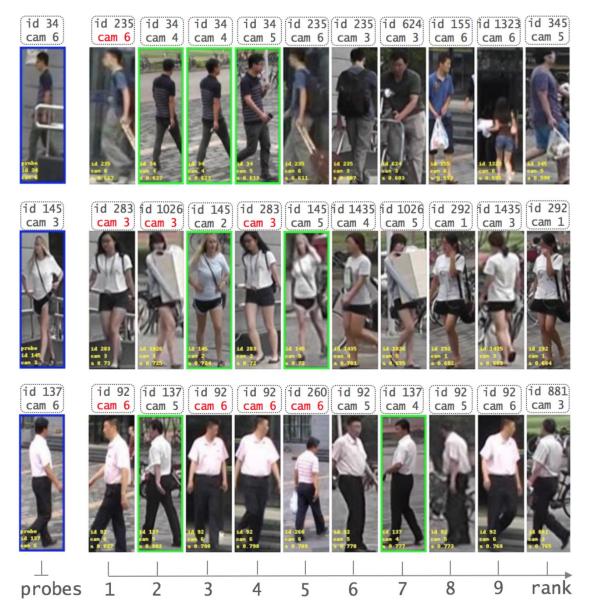
 $\begin{array}{ll} \text{id}_{1}\{I_{1A}, I_{1B}, \ldots\} & \rightarrow & \text{net}(I_{1A}) = F_{1A}, & \text{net}(I_{1B}) = F_{1B} \\ \text{id}_{2}\{I_{2A}, \ldots\} & \rightarrow & \text{net}(I_{C}) = F_{2A} \\ \text{dist}(F_{1A}, F_{2A}) < \text{dist}(F_{1A}, F_{1B}) & \rightarrow & \text{wrong ranking event} \end{array}$ 

• Quite recurrent when only softmax supervision is used





#### More examples of the viewpoint problem





## What to do?

Options from the literature:

- 1. Feature design (net structure)
- 2. Side information (target allignment, pose estimation,...)
- 3. Metric learning (over the learned space)
  - Advantages: flexible applicability, network structure independent
     better exploitation of available row data
  - Limitation: operates on networks with fixed weights

Our approach:

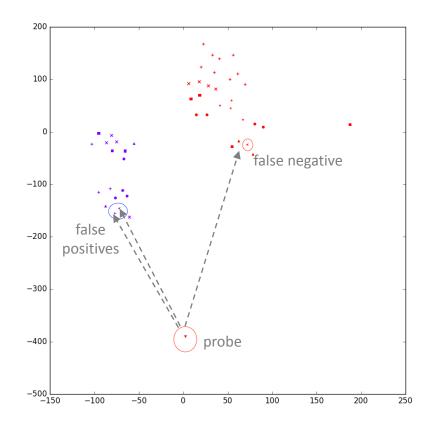
- Extending ML to the CNN training stage making it contextual with feature learning
- Influencing the construction itself of the featues space according to a metric, instead of just learning the metric afterwards disjointly, aiming to get:
  - increased inter-class separability
  - more discriminative features  $\rightarrow$  intra-class compactness

Improving the training objective



#### Negative Euclidean distance match

- T-sne visualization tool [6]
- Red points → identity #1 Blue points → identity #2 (different markers correspond to different cameras)
- The probe and the false positives share the same camera view





## **Datasets and CNN structure**



#### Datasets

#### CUHK03 [7]

- 1360 identities (1160 for training, 100 for validation)
- Up to 10 imgs/id
- Each id seen under 1 pair of cameras (max 5 shots/cam)
- 3 camera pairs overall
- Reproduced setting/results in [7]: 20 test-sets, 100 imgs/testset



#### MARKET-1501 [5]

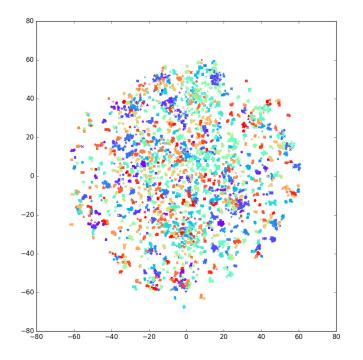
- Reproduced setting/results in [5]
- 1501 identities (751 for training)
- Up to 70 imgs/id
- Each id seen under up to 6 views
- Training set: 12936 imgs
- Test set: 13115 (including 2798 distractors)
- Query set: 3365 imgs belonging to 750 test ids (1shot/cam)





#### How it looks like

- Training set of Market-1501 dataset: 751 ids
- T-sne: visualization tool technique for the visualization of similarity data
  - Retains local structure of data
  - Reveals some important global structure (clusters at multiple scales)



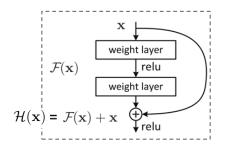


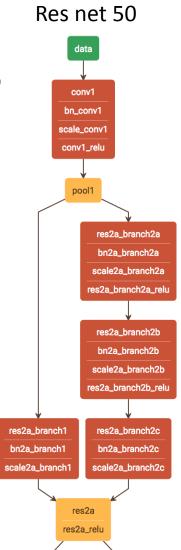
#### **CNN structure**

- ResNet50
- Addresses the performance degradation problem due to CNN depth
- Forces layers to fit a residual mapping  $\mathcal{H}(\mathbf{x})$
- Dim. softmax output: CUHK03 → 1160

Market-1501 →751

• Features size = (1, 2048, 1, 1)







# One solution from face verification: center loss



• In face verification [1]...  

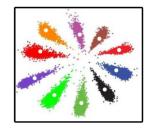
$$\mathcal{L} = \mathcal{L}_{S} + \lambda \mathcal{L}_{C} \longrightarrow \mathcal{L}_{C} = \frac{1}{2} \sum_{i=1}^{m} ||\mathbf{x}_{i} - \mathbf{c}_{y_{i}}||_{2}^{2}$$

$$(center loss)$$

$$\int \mathcal{L}_{S} = -\sum_{i=1}^{m} \log \frac{e^{W_{y_{i}}^{T} \mathbf{x}_{i} + b_{y_{i}}}}{\sum_{j=1}^{n} e^{W_{j}^{T} \mathbf{x}_{i} + b_{j}}} (softmax)$$

• Increased features intra-class compactness under the joint supervision

Softmax supervision



Softmax + center loss





#### State-of-the-art

- Our baseline: net  $\rightarrow$  ResNet50
  - training supervision  $\rightarrow$  <u>softmax loss</u>
  - re-id features  $\rightarrow$  from pooling layer 5 output

|                       | Marke | t-1501 |                       | CUHK03 |
|-----------------------|-------|--------|-----------------------|--------|
| Method                | rank1 | mAP    | Method                | rank1  |
| PersonNet [44]        | 37.21 | 18.57  | CDM [16]              | 40.91  |
| DADM [51]             | 39.40 | 19.60  | Basel.(R, pool5) [14] | 51.60  |
| Multiregion CNN [43]  | 45.58 | 26.11  | SI-CI [13]            | 52.17  |
| Bow + HS [23]         | 47.25 | 21.88  | DCNN [25]             | 54.74  |
| Fisher Network [24]   | 48.15 | 29.94  | DARI [38]             | 55.4   |
| SL [40]               | 51.90 | 26.35  | LSTM Siam. [8]        | 57.3   |
| DNS [46]              | 61.02 | 35.68  | PIE(A, FC8) [14]      | 62.4   |
| LSTM Siam. [8]        | 61.6  | 35.3   | DeepDiff [52]         | 62.43  |
| Gated S-CNN [10]      | 65.88 | 39.55  | DNS [46]              | 62.55  |
| P2S [36]              | 70.72 | 44.27  | Fisher Network [24]   | 63.23  |
| Basel.(R, Pool5) [14] | 73.02 | 47.62  | Multiregion CNN [43]  | 63.87  |
| CADL [45]             | 73.84 | 47.11  | PersonNet [44]        | 64.80  |
| PIE(R, Pool5) [14]    | 78.65 | 53.87  | Gated S-CNN [10]      | 68.10  |



## Our approach

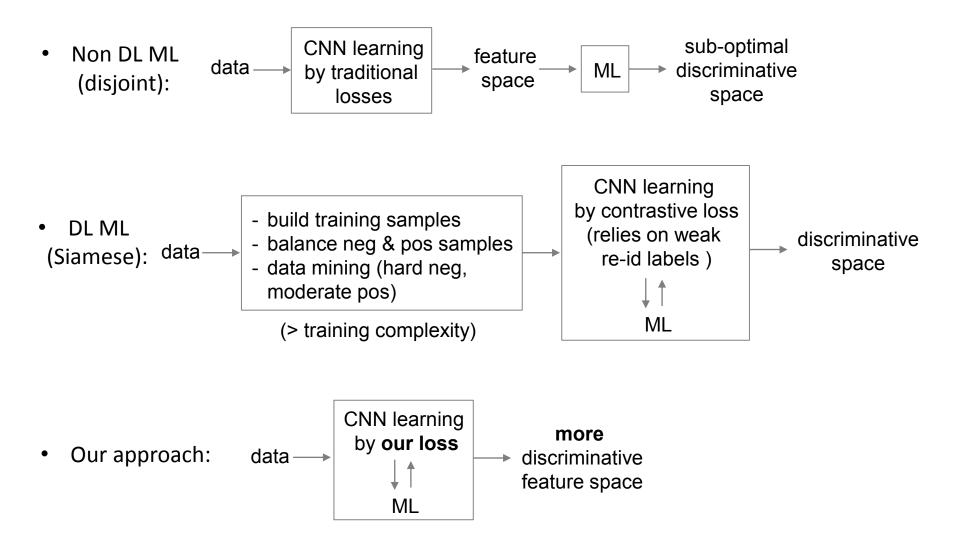


#### Enabling considerations

- Our starting point:
  - 1. Person re-id is affected by more severe viewpoint variability than face recognition
    - Center loss does not exploit camera information at all
  - 2. Learning inter-camera relationships critical for enabling the viewpoint invariance.
    - Center loss only addresses intra-class compactness → no intercamera relationships learned → no ML addressed
  - 3. Non-DL ML techniques perform feature-metric learning sequentially → sub-optimal solution
  - 4. There are some DL ML techniques performing feature-metric learning jointly: Siamese networks but... several drawbacks



#### Our approach vs traditional ML





#### Our discriminative model

Our new loss:

- 1. Additive with regards to the softmax loss
- 2. Trainable by gradient descent
- 3. Keeps the training complexity low (1 training sample  $\rightarrow$  1 input image): suitable to be easily integrated in a simple one branch shaped CNN
- 4. Scales well to large datasets  $\rightarrow$  Suitable for fast search requirements
- 5. Produces embeddings discriminative enough that simple metrics (normalized Euclidean distance) can be applied for features points comparison

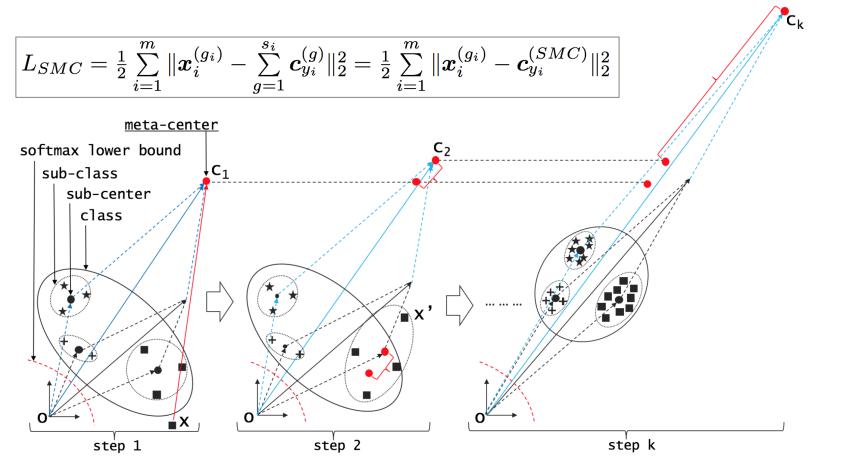
$$L = L_{softmax} + \lambda_{SMC} \cdot L_{SMC} + \lambda_{ECD} \cdot L_{ECD}$$
Steering Meta-Center loss term

Enhancing Certers Dispersion loss term



#### Steering Meta-Center (SMC) loss

- Addresses intra-class compactness AND inter-class dispersion
- Maps all the sub-centers of an identity to a unique "meta-center"
- Exploits the camera information



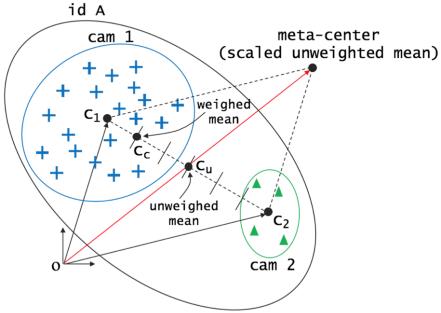


#### SMC loss vs center loss: geometrical meaning

- Meta-Center: scaled version of the unweighted mean of the sub-centers
- Unweighted mean of sub-centers accounts equally all sub-classes → viewpoint invriance property

$$m{c_c} = rac{1}{N}\sum_{i=1}^N m{x}_i = rac{1}{N}\sum_{g=1}^s \sum_{i=1}^{N_g} m{x}_i^{(g)} = rac{1}{N}\sum_{g=1}^s N_g m{c}_g$$

+  $N_1=20 \rightarrow \#$  images camera view 1 ▲  $N_2=4 \rightarrow \#$  images camera view 2  $N=N_1+N_2 \rightarrow \#$  images of id A  $c_1$ : center sub-class 1 (cam 1)  $c_2$ : center sub-class 2 (cam 2)  $c_c$ : center defined by center loss dist( $c_c, c_2$ ) = (N2/N1)\*dist( $c_1, c_c$ )



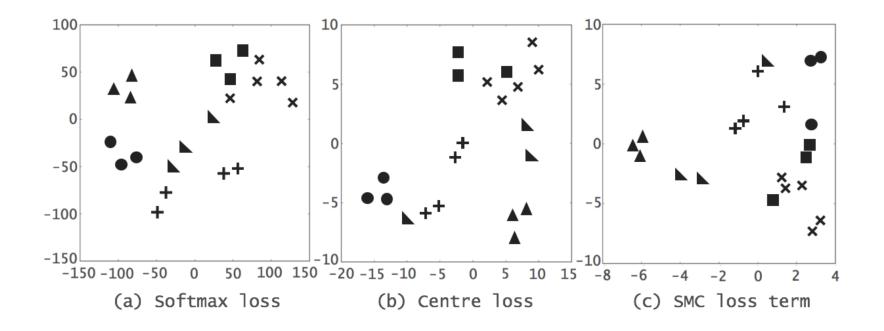


#### **SMC loss effect**

- 2D visualization of id 1322 with T-sne
- Enhanced compactness (~10 times):

softmax  $\rightarrow$  (range X, range Y) ~ (300, 250)

- softmax + SMC  $\rightarrow$  (range X, range Y) ~ (35, 20)
- Less sub-clustered structure in (c) than in (a)  $\rightarrow$  better invariance to viewpoint





#### **Enhancing Centers Dispersion (ECD) loss**

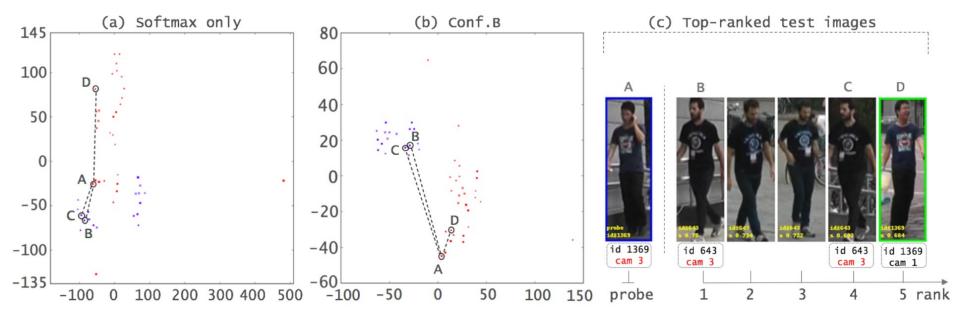
- Relative constraint between intra-class and inter-class scope distances
- Penalizes the distances of x<sub>i</sub> from each single sub-centre of the sub-classes belonging to the current training minibatch.
- The larger the number of sub-classes, the stronger the effect of this constraint

$$L_{ECD} = \frac{1}{2} \sum_{i=1}^{m} \left[ \sum_{g=1}^{s_i} \| \boldsymbol{x}_i^{(g_i)} - \boldsymbol{c}_{y_i}^{(g)} \|_2^2 \cdot \sum_{\substack{t=1\\t\neq i}}^{m} \sum_{g=1}^{s_i} \frac{1}{\| \boldsymbol{x}_i^{(g_i)} - \boldsymbol{c}_{y_t}^{(g)} \|_2^2} \right]$$
For each sub-center of the training minibatch:
$$ECD = \frac{\sum(solid \ line \ centers \ distances)}{d(C_1^{(1)}, C_k^{(cam_k)})}$$



#### ECS loss effect

- Learns a similarity/distance relation between inter-class pairs
- Reproduces at training time what non-DL ML methods do on top of a CNN already learned
- Under the softmax loss supervision (a) bboxes B and C represent occurrences of the viewpoint problem
- Under SMC+ECD loss supervision (b) the true positive bbox D is ranked 1<sup>st</sup>





## Performance



#### Performance

|                       | Marke   | t-1501  |                       | CUHK03 |
|-----------------------|---------|---------|-----------------------|--------|
| Method                | rank1   | mAP     | Method                | rank1  |
| PersonNet [44]        | 37.21   | 18.57   | CDM [16]              | 40.91  |
| DADM [51]             | 39.40   | 19.60   | Basel.(R, pool5) [14] | 51.60  |
| Multiregion CNN [43]  | 45.58   | 26.11   | SI-CI [13]            | 52.17  |
| Bow + HS [23]         | 47.25   | 21.88   | DCNN [25]             | 54.74  |
| Fisher Network [24]   | 48.15   | 29.94   | DARI [38]             | 55.4   |
| SL [40]               | 51.90   | 26.35   | LSTM Siam. [8]        | 57.3   |
| DNS [46]              | 61.02   | 35.68   | PIE(A, FC8) [14]      | 62.4   |
| LSTM Siam. [8]        | 61.6    | 35.3    | DeepDiff [52]         | 62.43  |
| Gated S-CNN [10]      | 65.88   | 39.55   | DNS [46]              | 62.55  |
| P2S [36]              | 70.72   | 44.27   | Fisher Network [24]   | 63.23  |
| Basel.(R, Pool5) [14] | 73.02   | 47.62   | Multiregion CNN [43]  | 63.87  |
| CADL [45]             | 73.84   | 47.11   | PersonNet [44]        | 64.80  |
| PIE(R, Pool5) [14]    | 78.65   | 53.87   | Gated S-CNN [10]      | 68.10  |
| ours (single query)   | 80.31   | 59.68   | ours                  | 69.55  |
| (multiple query)      | (85.63) | (67.28) |                       |        |

SMC+ECD on Market-1501:

- Rank1 +9.9% baseline
- mAP +25.3% baseline

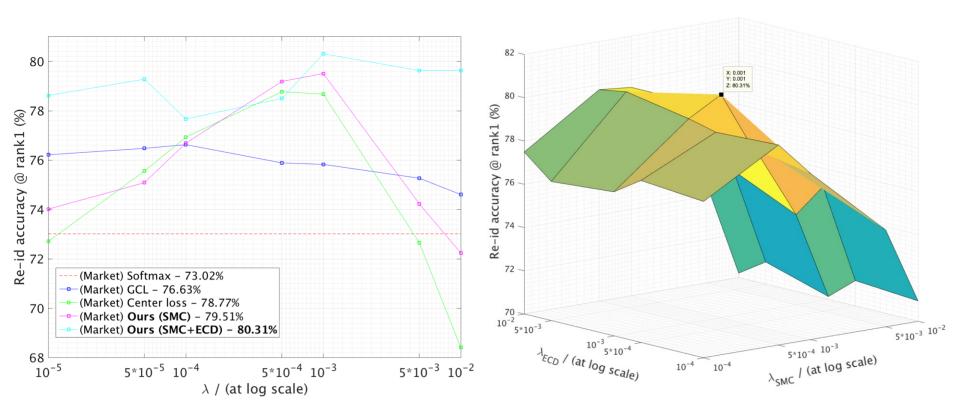
SMC+ECD on CUHK03:

• Rank1 +34.8% baseline



#### **Parametric performance**

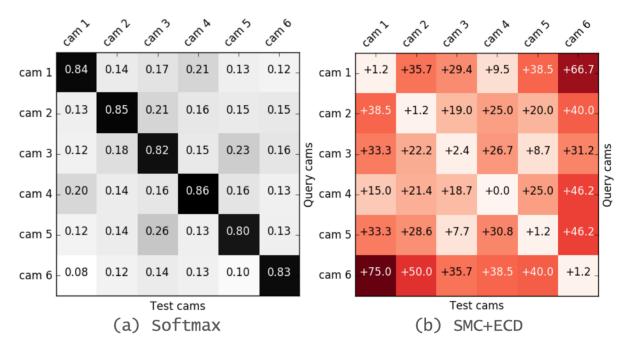
|         | <b>Market-1501</b> [23] |       |       |       | <b>CUHK03</b> [7] |       |       |       |       |
|---------|-------------------------|-------|-------|-------|-------------------|-------|-------|-------|-------|
| A D     |                         | rank  |       |       |                   | rank  |       |       |       |
|         | mAP                     | 1     | 5     | 10    | 20                | 1     | 5     | 10    | 20    |
| Softmax | 47.62                   | 73.02 | 85.84 | 90.35 | 93.32             | 51.60 | 79.60 | 87.70 | 95.00 |
| GCL     | 54.25                   | 76.63 | 88.78 | 92.25 | 95.19             | 63.66 | 88.58 | 94.20 | 98.03 |
| Center  | 57.76                   | 78.77 | 90.14 | 93.62 | 95.72             | 66.19 | 90.65 | 96.06 | 98.73 |
| SMC     | 58.28                   | 79.51 | 90.59 | 93.74 | 95.90             | 69.59 | 92.62 | 96.86 | 98.91 |
| SMC+ECD | 59.68                   | 80.31 | 91.27 | 94.09 | 96.02             | 69.55 | 90.96 | 95.07 | 97.54 |





#### **Ablation study**

• Re-id performance between camera pairs: mAP confusion matrix



• Fraction of the performance improvement which translates in tmprovement of the viewpoint problem, determined by negatives analysis: "Figure of merit"

|             | GCL  | Center | SMC  | SMC+ECD |
|-------------|------|--------|------|---------|
| $F_{rank1}$ | 15.5 | 23.4   | 24.3 | 26.3    |
| $F_{mAP}$   | 33.4 | 35.7   | 47.6 | 50.7    |



#### Our approach vs Joint Bayesian

- perf(our approach) > perf(baseline + Joint-Bayesian)
- perf(our approach + Joint-Bayesian) > perf(our approach)

|             |        | Softmax | SMC    | SMC+ECD |
|-------------|--------|---------|--------|---------|
|             | rank 1 | 77.06   | 79.93  | 80.38   |
| Market-1501 | гапк 1 | (+5.5)  | (+0.5) | (+0.1)  |
|             | A D    | 53.76   | 58.40  | 59.73   |
|             | mAP    | (+12.9) | (+0.2) | (+0.1)  |
| CUHK03      | rank 1 | 65.03   | 72.04  | 71.76   |
|             |        | (+26.0) | (+3.5) | (+3.2)  |



## **Final remarks**



#### Advantages

- 1. More effective in learning in mitigating the changing viewpoint problem
- 2. Replicating the capability of Siamese networks to carry out a joint features-metric learning process
- 3. Not increasing training complexity (1 input image  $\rightarrow$  1 training sample)
- 4. Not employing extra training data or side information.
- 5. More effective than both DL ML techniques and non-DL ML techniques
- 6. Flexibility: our loss can be easily integrated in any architecture

#### Disadvantage

• Increased training time (for Market: baseline time +1h)



#### Novelty

- We re-interpret in person re-id the center loss introduced in face verification.
- We adapt the ML approach to the CNN training stage avoiding traditional ML drawbacks but retaining their capability to learn an inter-class similarity function.





## Thank you!

**Questions?**