Deep Learning and its application to CV and NLP

Fei Yan
University of Surrey
June 29, 2016
Edinburgh

Overview

- Machine learning
- Motivation: why go deep
- Feed-forward networks: CNN
- Recurrent networks: LSTM
- An example: geo-location prediction
- Conclusions

Machine learning

- Learn without explicitly programmed
- Humans are learning machines
- Supervised, unsupervised, reinforcement, transfer, multitask ...

ML for CV: image classification

ML for NLP: sentiment analysis

- "Damon has never seemed more at home than he does here, millions of miles adrift. Would any other actor have shouldered the weight of the role with such diligent grace?"
- "The warehouse deal TV we bought was faulty so had to return. However we liked the TV itself so bought elsewhere."

ML for NLP: Co-reference resolution

 "John said he would attend the meeting."

 "Barack Obama visited Flint Mich. on Wednesday since findings about the city's lead-contaminated water came to light. ... The president said that ..."

Overview

- Machine learning
- Motivation: why go deep
- Feed-forward networks: CNN
- Recurrent networks: LSTM
- An example: geo-location prediction
- Conclusions

Motivation: why go deep

- A shallow cat/dog recogniser:
 - Convolve with fixed filters
 - Aggregate over image
 - Apply more filters
 - SVM

$$\begin{pmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} \qquad \begin{pmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{pmatrix}$$

Motivation: why go deep

- A shallow sentiment analyser:
 - Bag of words
 - Part-of-speech tagging
 - Named entity recognition
 - ...
 - SVM

Motivation: why go deep

- Shallow learner eg SVM
 - Convexity -> global optimum
 - Good performance
 - Small training sets
- But features manually engineered
 - Domain knowledge required
 - Representation and learning decoupled ie not end-to-end learning

Overview

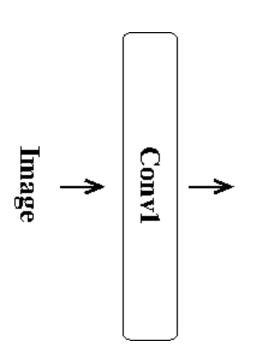
- Machine learning
- Motivation: why go deep
- Feed-forward networks: CNN
- Recurrent networks: LSTM
- An example: geo-location prediction
- Conclusions

$$\begin{pmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix}$$

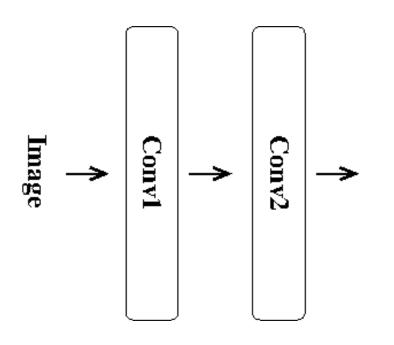
$$\begin{pmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{pmatrix}$$

$$W^{1,1} = \begin{pmatrix} w_{11}^{1,1} & w_{12}^{1,1} & w_{13}^{1,1} \\ w_{21}^{1,1} & w_{22}^{1,1} & w_{23}^{1,1} \\ w_{31}^{1,1} & w_{32}^{1,1} & w_{33}^{1,1} \end{pmatrix}$$

$$W^{1,2} = \begin{pmatrix} w_{11}^{1,2} & w_{12}^{1,2} & w_{13}^{1,2} \\ w_{21}^{1,2} & w_{22}^{1,2} & w_{23}^{1,2} \\ w_{31}^{1,2} & w_{32}^{1,2} & w_{33}^{1,2} \end{pmatrix}$$



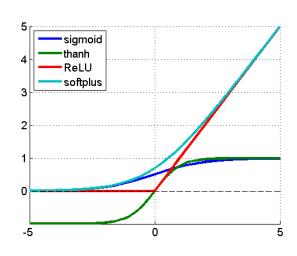
- 100x100x1 input
- 10 3x3x1 filters
- # of params:
 - -10x3x3x1=90
- Size of output:
 - 100x100x10 with padding and stride=1



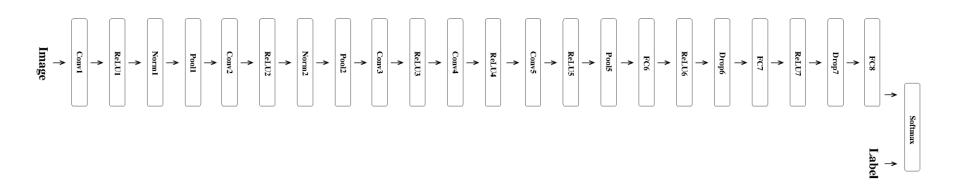
- 100x100x10 input
- 8 3x3x10 filters
- # of params:
 - -8x3x3x10=720
- Size of output:
 - 100x100x8 with padding and stride=1

Other layers

- Rectified linear unit (ReLU)
- Max pooling
 - Location invariance
- Dropout
 - Effective regularisation
- Fully-connected (FC)



Complete network



Loss:

- Softmax loss for problem
- How wrong current prediction is
- How to change FC8 output to reduce error

Chain rule

 If y if a function of u, and u is a function of x

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

- DNNs are nested functions
 - Output of one layer is input of next

Back-propagation

- If a layer has parameters
 - Convolution, FC
 - O is function of Input I and parameters W

$$\frac{\partial L}{\partial W} = \frac{dL}{dO} \cdot \frac{\partial O}{\partial W} \quad \frac{\partial L}{\partial I} = \frac{dL}{dO} \cdot \frac{\partial O}{\partial I}$$

- If a layer doesn't have parameters
 - Pooling, ReLU, Dropout
 - O is a function of input I only

$$\frac{dL}{dI} = \frac{dL}{dO} \cdot \frac{dO}{dI}$$

Stochastic gradient descent (SGD)

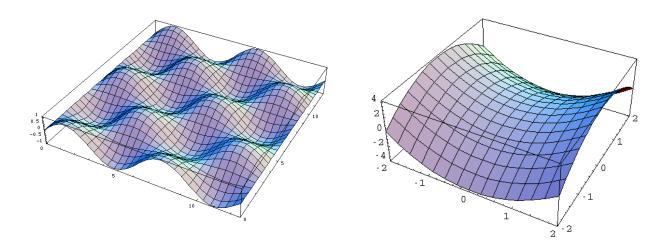
- Stochastic: random mini-batch
- Weight update: linear combination of
 - Negative gradient of current batch
 - Previous weight update

$$V_{t+1} = \mu V_t - \alpha \nabla L(W_t), \quad W_{t+1} = W_t + V_{t+1}$$

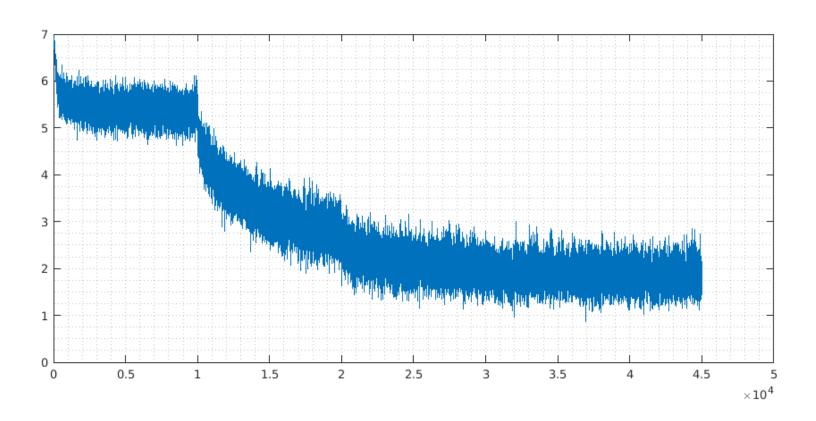
- α : learning rate; μ : momentum
- Other variants
 - Adadelta, AdaGrad, etc.

Why SGD works

- Deep NNs are non-convex
- Most critical points in high dimensional functions are saddle points
- SGD can escape from saddle points



Loss vs. iteration



ImageNet and ILSVRC

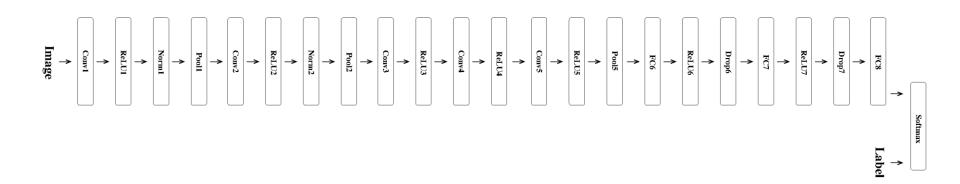
ImageNet

- # of images: 14,197,122, labelled
- # of classes: 21,841

ILSVRC 2012

- # of classes: 1,000
- # of train image: ~1,200,000, labelled
- # of test image: 50,000

AlexNet

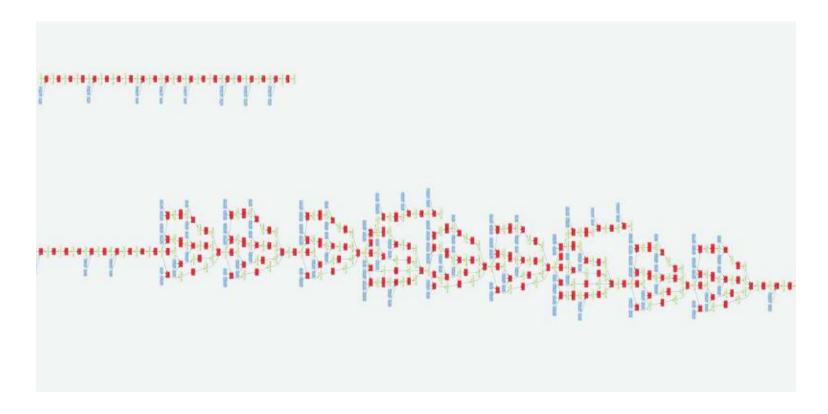


- [Krizhevsky et al. 2012]
- Conv1: 96 11x11x3 filters, stride=4
- Conv3: 384 3x3x256 filters, stride=1
- FC7: 4096 channels
- FC8: 1000 channels

AlexNet

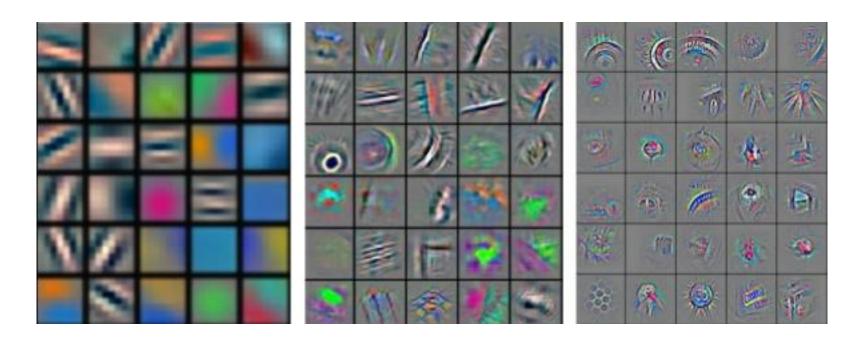
- Total # of params: ~60,000,000
- Data augmentation
 - Translation, reflections, RGB shifting
- 5 days, 2 x Nvidia GTX 580 GPUs
- Significantly improves state-of-theart
- Breakthrough in computer vision

More recent nets



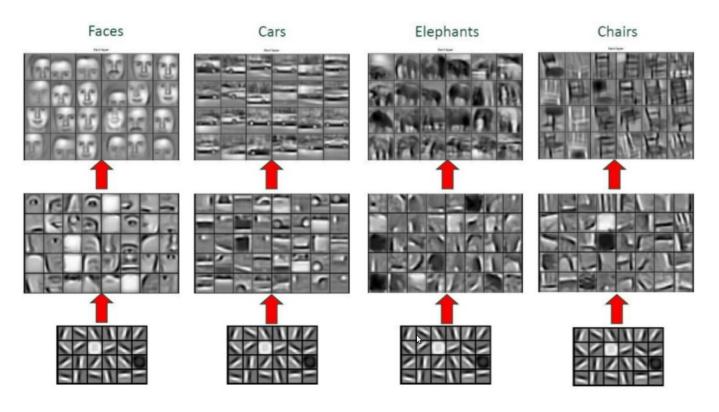
AlexNet 2012 vs GoogleNet 2014

Hierarchical representation



Visualisation of learnt filters. [Zeiler & Fergus 2013]

Hierarchical representation



Visualisation of learnt filters. [Lee et al. 2012]

CNN as generic feature extractor

- Given:
 - CNN trained with eg ImageNet
 - A new recognition task/dataset
- Simply:
 - Forward pass, take FC7/ReLU7 output
 - SVM
- Often outperform hand crafted features

CNN as generic feature extractor

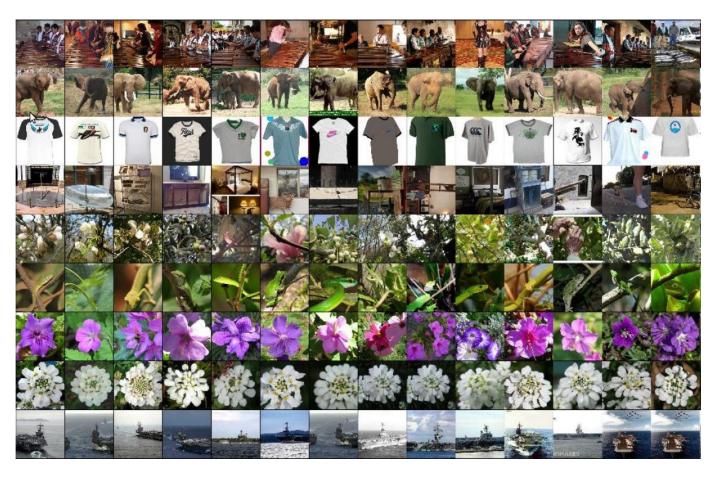
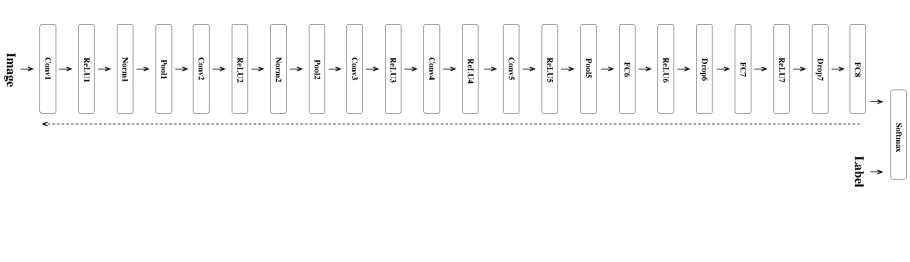
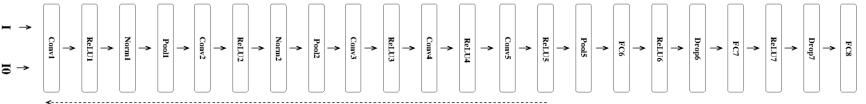


Image retrieval with trained CNN. [Krizhevsky et al. 2012]

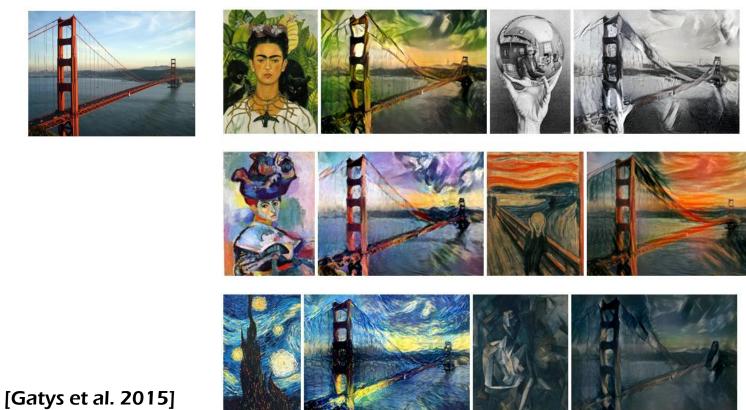




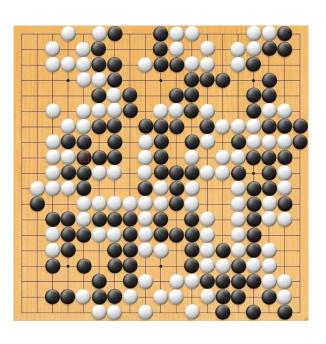
- Key idea
 - Hierarchical representation
 - => content and style are separable
 - Content: filter responses
 - Style: correlations of filter responses

- Input
 - Natural image: content
 - Image of artwork: style
 - Random noise image
- Define content loss and style loss
- Update a random image with BP to minimise:

$$\mathcal{L}_{total}(\vec{p}, \vec{a}, \vec{x}) = \alpha \mathcal{L}_{content}(\vec{p}, \vec{x}) + \beta \mathcal{L}_{style}(\vec{a}, \vec{x})$$



Go game



CNN for Go game

- Treated as 19x19 image
- Convolution with zero-padding
- ReLU nonlinearity
- Softmax loss of size 361 (19x19)
- SGD as solver
- No Pooling

AlphaGo

- Policy CNN
 - Configuration -> choice of professional players
 - Trained with 30K+ professional games
- Simulate till end to get binary labels
- Value CNN
 - Configuration -> win/loss
 - Trained with 30M+ simulated games
- Reinforcement learning, Monte-Carlo tree search
- 1202 CPUs + 176 GPUs
- Beating 18 times world champion

Why it didn't work

- Ingredients available in 80s
 - (Deep) Neural networks
 - Convolutional filters
 - Back-propagation
- But
 - Dataset thousands times smaller
 - Computers millions times slower
- Recent techniques/heuristics help
 - Dropout, ReLU

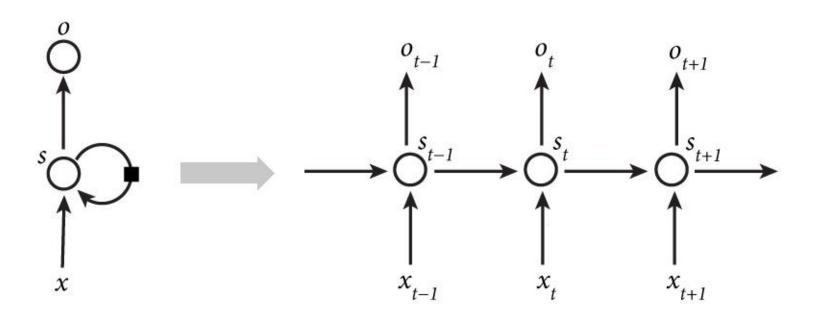
Overview

- Machine learning
- Motivation: why go deep
- Feed-forward networks: CNN
- Recurrent networks: LSTM
- An example: geo-location prediction
- Conclusions

Why recurrent nets

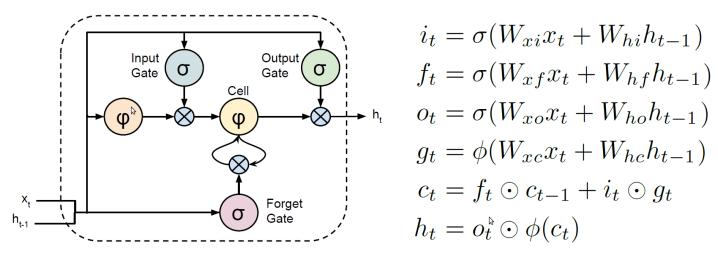
- Feed-forward nets
 - Process independent vectors
 - Optimise over functions
- Recurrent nets
 - Process sequences of vectors
 - Internal state, or "memory"
 - Dynamic behaviour
 - Optimise over programs, much more powerful

Unfolding recurrent nets in time



LSTM

- LSTM
 - Input, forget and output gates: i, f, o
 - Internal state: c



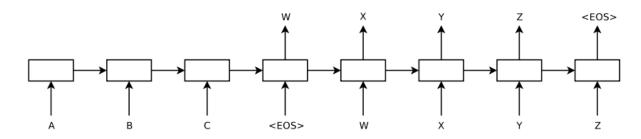
[Donahue et al. 2014]

Machine translation

- Sequence to sequence mapping
 - ABC<E> => W/XYZ<E>
- Traditional MT:
 - Hand-crafted intermediate semantic space
 - Hand-crafted features

Machine translation

- LSTM based MT:
 - Maximise prob. of output given input
 - Update weights in LSTM by BP in time
 - End-to-end, no feature-engineering
 - Semantic information in LSTM cell



[Sutskever et al. 2014]

Image captioning

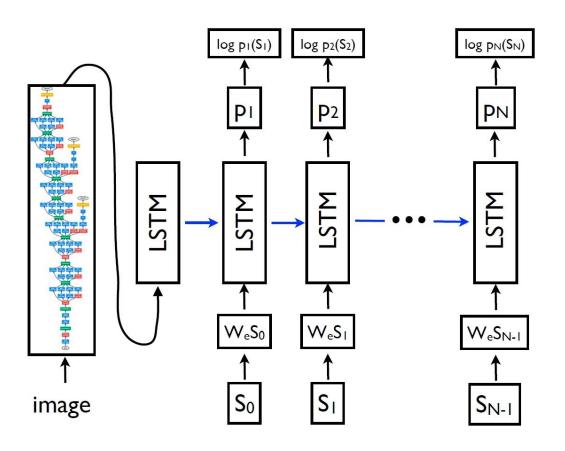
- Image classification
 - Girl/child, tree, grass, flower

- Image captioning
 - Girl in pink dress is jumping in the air
 - A girl jumps on the grass

Image captioning

- Traditional methods
 - Object detector
 - Surface realiser: objects => sentence
- LSTM
 - Inspired by neural machine translation
 - Translate image into sentence

Image captioning



[Vinyals et al. 2014]

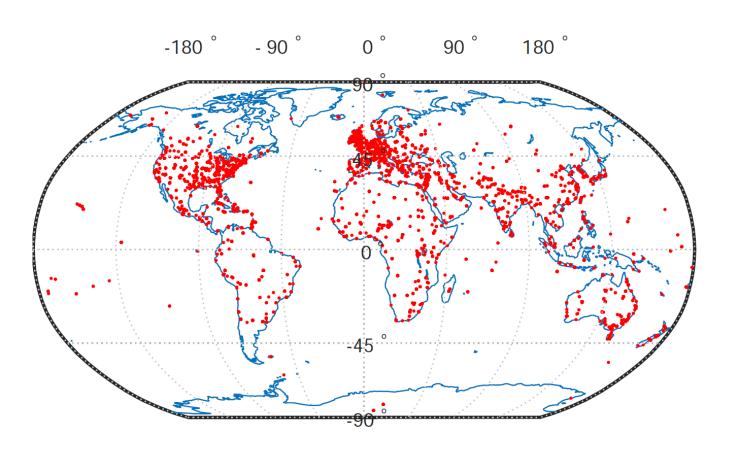
Overview

- Machine learning
- Motivation: why go deep
- Feed-forward networks: CNN
- Recurrent networks: LSTM
- An example: geo-location prediction
- Conclusions

News article analysis

- BreakingNews dataset
 - 100k+ news articles
 - 7 sources: BBC, Yahoo, WP, Guardian, ...
 - Image + caption
 - Metadata: comments, geo-location, ...
- Tasks
 - Article illustration
 - Caption generation
 - Popularity prediction
 - Source prediction
 - Geo-location prediction

Geo-location prediction



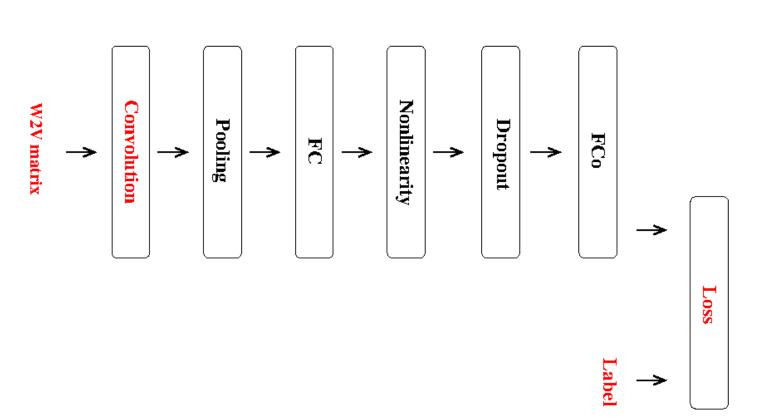
Word2Vec embedding

- Word embedding
 - Words to vectors
 - Low dim. compared to vocabulary size
- Word2Vec
 - Unsupervised, neural networks [Mikolov et al. 2015]
 - Trained on large corpus eg 100+ billion words
 - Vectors close if similar context

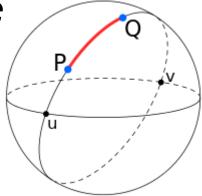
Word2Vec embedding

- W2V arithmetic
 - King Queen ~= man woman
 - knee leg ~= elbow arm
 - China Beijing ~= France Paris
 - human animal ~= ethics
 - library book ~= hall
 - president power ~= prime minister

Network



- Great circle
 - Circle on sphere with same centre as the sphere
- Great circle distance (GCD)
 - Distance along great circle
 - Shortest distance on sphere



Given two (lat, long) pairs

$$\mathbf{y} = [y_1, y_2]^{\top} \quad \mathbf{z} = [z_1, z_2]^{\top}$$

A good approximation to GCD

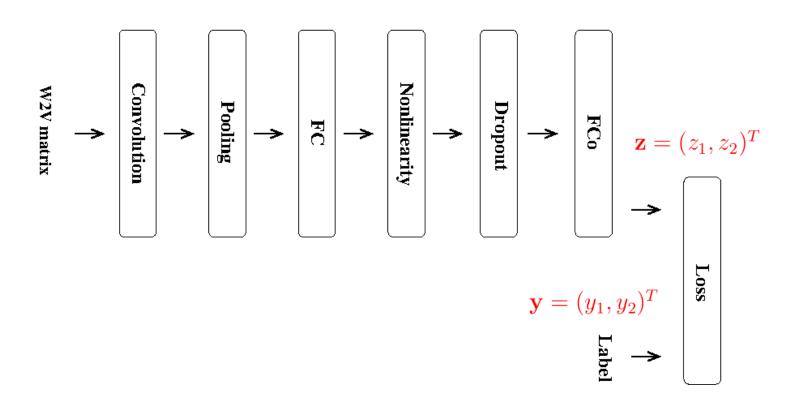
$$GCD = R \cdot \arccos(\sin y_1 \sin z_1 + \cos y_1 \cos z_1 \cos \delta)$$

where R is radius of Earth, and

$$\delta = z_2 - y_2$$

Geoloc loss

 $L = \arccos(\sin y_1 \sin z_1 + \cos y_1 \cos z_1 \cos \delta)$



Gradient w.r.t. z

$$\frac{\partial L}{\partial \mathbf{z}} = \begin{pmatrix} -\frac{1}{\sqrt{1-\phi^2}} (\sin y_1 \cos z_1 - \cos y_1 \sin z_1 \cos \delta) \\ -\frac{1}{\sqrt{1-\phi^2}} (-\cos y_1 \cos z_1 \sin \delta) \end{pmatrix}$$

where

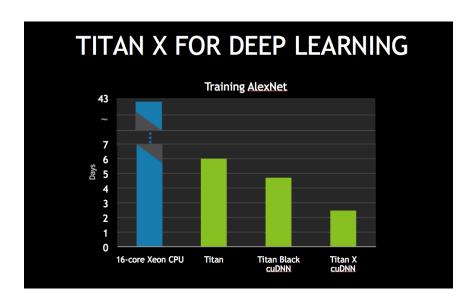
$$\phi = \sin y_1 \sin z_1 + \cos y_1 \cos z_1 \cos \delta$$

- All other layers are standard
- Chain rule, back-propagation, etc.

Practical issues

- Hardware
 - Get a powerful GPU
- Software
 - Choose a library
- What code do I need to write?
 - Solver def. and net def.
 - Optionally: your own layer(s)

GPU



Libraries

Software \$	Written in ♦	Interface \$	OpenMP support \$	OpenCL support \$	CUDA support \$	Has pretrained ♦ models	Recurrent Nets \$	Convolutional Nets	RBM/DBNs ♦
Caffe	C++, Python ^[5]	C++, command line, Python, MATLAB ^[6]	No	Branch, ^[7] pull request, ^[8] third party implementation ^[9]	Yes	Yes ^[10]	Yes	Yes	No ^[11]
CNTK	C++	Command line; ^[14] C++, Python and .NET interfaces coming ^[15]	Yes ^[16]	No	Yes	No	Yes ^[17]	Yes ^[17]	? ^[18]
Deeplearning4j	Java, Scala, C	Java, Scala, Clojure	?	No ^[19]	Yes ^[20]	Yes ^[21]	Yes	Yes	Yes
MXNet &	C++, Python, Julia, Matlab, Go, R, Scala	C++, Python, Julia, Matlab, JavaScript, Go, R, Scala	Yes	On roadmap ^[26]	Yes	Yes ^[27]	Yes	Yes	Yes
Neural Designer	C++	Graphical user interface	Yes	No	No	?	No	No	No
OpenNN	C++	C++	Yes	No	No	?	No	No	No
SINGA ^[28]	C++, Python	Python, C++	No	No	Yes	No	Yes	Yes	Yes
SystemML ^[29]	Java, R	?	?	?	?	?	?	?	?
TensorFlow	C++, Python	Python, C/C++	No	On roadmap ^{[31][33]}	Yes	No	Yes	Yes	Yes
Theano	Python	Python	Yes	Under development ^[34]	Yes	Through Lasagne's model zoo ^[35]	Yes	Yes	Yes
Torch	C, Lua	Torch, C, utility library for C++/OpenCL ^[37]	Yes	Third party implementations ^[38]	Third party implementations ^[39]	Yes ^[40]	Yes	Yes	Yes

Wikipedia: comparison of deep learning software

What you need to code

- solver.prototxt
 - Solver hyper-params
- train.prototxt
 - Network architecture
 - Layer hyper-params
- Layer implementation C++/CUDA
 - Forward pass
 - Backward propagation
 - Efficient GPU programming, CUDA kernel

solver.prototxt & train.prototxt

```
net: "train.prototxt"
    solver mode: GPU
    device id: 0
    type: "SGD"
    momentum: 0.9
    weight decay: 0.0005
10
    base lr: 0.1
    lr policy: "step"
12
    gamma: 0.1
13
    stepsize: 1000
14
15
    max iter: 1000000
16
17
    display: 20
    test iter: 1000
19
    test interval: 500
20
21
    snapshot: 500
    snapshot prefix: "geolo"
23,
```

```
145
146
     layer {
       name: "FCo"
147
148
        type: "InnerProduct"
149
       bottom: "DO"
150
       top: "FCo"
151
        param {
152
          1r mult: 1
153
          decay mult: 1
154
155
       param {
156
          lr mult: 2
157
          decay mult: 0
158
159
       inner product param {
160
          num output: 2
161
          weight filler {
162
            type: "xavier"
163
164
          bias filler {
165
            type: "constant"
166
167
168
169
170 layer {[
171
       name: "Geo loss"
172
        type: "GeoLoss"
173
       bottom: "FCo"
174
       bottom: "Geolo"
175
        top: "Geo loss"
176
       loss weight: 1
177
       qeo loss param {
178
          verbosity: 0
179
180
181
```

Overview

- Machine learning
- Motivation: why go deep
- Feed-forward networks: CNN
- Recurrent networks: LSTM
- An example: geo-location prediction
- Conclusions

Conclusions

- Why go deep
- CNN and LSTM
- Example: geo-location prediction
- Apply DL to my problem:
 - CNN or LSTM?
 - Network architecture, loss
 - Library and GPU
 - (Little) Coding

What's not covered

- Unsupervised learning
 - Auto-encoder, restricted Boltzmann machine (RBM)
- Reinforcement learning
 - Actions in an environment that maximise cumulative reward
- Transfer learning, Multitask learning
- Application to audio signal processing