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Pattern Recognition

➢Pattern recognition architecture (first decade of 2000s)
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Learning representation 
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Linear classifier, 
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The “One Learning Algorithm” hypothesis



Somatosensory cortex learns to see

Somatosensory Cortex

[Metin & Frost, 1989] [Curtesy of Andrew Ng]

The “one learning algorithm” hypothesis



[Roe et al., 1992]

Auditory cortex learns to see

Auditory Cortex

The “one learning algorithm” hypothesis

[Roe et al., 1992] [Curtesy of Andrew Ng]



Seeing with your tongue Human echolocation (sonar)

Haptic belt: Direction sense Implanting a 3rd eye

[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009] [Curtesy of Andrew Ng]

The “one learning algorithm” hypothesis



Learning representation 
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Learning Feature Hierarchy 

➢Deep learning is all about learning feature hierarchies
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Going Deeper

➢Deep learning architecture
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Deep Neural Network 

➢Deep learning architecture
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Deep Neural Network 

➢Deep learning architecture

Trainable Classifier
Supervised

Linear classifier, 
linear regression, 

softmax, SVM, FDA, 
etc
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Will go in details for each one of them



Supervised Learning with Neural Networks

➢Neural Network training supervised learning
○Dataset is given in term of input out pairs (x, y)
○Define a loss/cost function for each example

■Cost function depends upon the type of problem
○Compute an overall cost function J(W, b)

■average over the training set
■Add regularization term with trade off 

○Use Stochastic Gradient Descent to update the weights of network
■Use backpropagation to compute the gradients (just application of 
chain rule)



Supervised Learning with Neural Networks

➢Neural Network training supervised learning
○Dataset is given in term of input out pairs (x, y)
○Define a loss/cost function for each example

■Cost function depends upon the type of problem
○Compute an overall cost function J(W, b)

■average over the training set
■Add regularization term with trade off 

○Use Stochastic Gradient Descent to update the weights of network
■Use backpropagation to compute the gradients (just application of 
chain rule)

Loss function



Loss Functions



SVM Maximum Margin Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2
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SVM Maximum Margin Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
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Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

= max(0, 5.1 - 3.2 + 1) 
   +max(0, -1.7 - 3.2 + 1)
= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.92.9Losses:



SVM Maximum Margin Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

= max(0, 1.3 - 4.9 + 1) 
   +max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 00Losses: 2.9



SVM Maximum Margin Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

= max(0, 2.2 - (-3.1) + 1) 
   +max(0, 2.5 - (-3.1) + 1)
= max(0, 5.3) + max(0, 5.6)
= 5.3 + 5.6
= 10.90Losses: 2.9 10.9



SVM Maximum Margin Hinge loss

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 10.9

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

and the full training loss is the mean 
over all examples in the training data:

L = (2.9 + 0 + 10.9)/3 
   = 4.6



Softmax Classifier (Multinomial Logistic Regression)
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Softmax Classifier (Multinomial Logistic Regression)
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

where

cat

frog

car

3.2
5.1
-1.7

Softmax function



Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

Want to maximize the log likelihood, or (for a loss function) 
to minimize the negative log likelihood of the correct class:

where

cat

frog

car

3.2
5.1
-1.7



Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

Want to maximize the log likelihood, or (for a loss function) 
to minimize the negative log likelihood of the correct class:

in summary:

where

cat

frog

car

3.2
5.1
-1.7



Loss function recap

- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss



Supervised Learning with Neural Networks

➢Neural Network training supervised learning
○Dataset is given in term of input out pairs (x, y)
○Define a loss/cost function for each example

■Cost function depends upon the type of problem
○Compute an overall cost function J(W, b)

■average over the training set
■Add regularization term with trade off 

○Use Stochastic Gradient Descent to update the weights of network
■Use backpropagation to compute the gradients (just application of 
chain rule)

Optimization 
(SGD, 

Momentum,...)



Optimization

(image credits 
to Alec Radford)



Optimization

(image credits 
to Alec Radford)

All of them need 
derivative of loss 
with respect of 

parameters



Optimization

Two ways to compute gradient:
Numerical gradient

Analytic gradient by using calculus

Numerical gradient: slow (unsuitable for large # of 
parameters), approximate but easy to code
Analytic gradient: fast (suitable for large # of parameters), 
exact but  error-prone

In practice: Derive analytic gradient, check implementation 
for smaller problems with numerical gradient
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parameters), approximate but easy to code
Analytic gradient: fast (suitable for large # of parameters), 
exact but  error-prone
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Optimization

Computational Graph

x

W

* hinge 
loss
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+ L
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Optimization

Computational Graph

x

W

* hinge 
loss

R

+ L
s (scores)

An example of 
f(x) is DCNN



Optimization

Convolutional Network
(AlexNet)

input image
weights

loss



Optimization

Computational Graph

x

W

* hinge 
loss

R

+ L
s (scores)

Need analytic 
gradient to 

learn W 



Analytic gradient 

e.g. x = -2, y = 5, z = -4
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Analytic gradient 
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Chain rule:
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Analytic gradient 

e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:



Analytic gradient in deep learning libraries 

f

activations



Analytic gradient in deep learning libraries 

f

activations

“local gradient”



Analytic gradient in deep learning libraries 

f

activations

gradients

“local gradient”
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Analytic gradient in deep learning libraries 

f

activations

gradients

“local gradient”



Analytic gradient in deep learning libraries 

Gradients for vectorized code

f

“local gradient”

This is now the 
Jacobian matrix 
(derivative of each 
element of z w.r.t. each 
element of x)

(x,y,z are now 
vectors)

gradients



Analytic gradient in deep learning libraries 

Gradients add at branches

+



Modules Implementation in Deep Learning Libraries 

Implementation:   forward/backward API

Graph (or Net) object. (Rough psuedo code)

*

x

y

z



Modules Implementation in Deep Learning Libraries 

Implementation:   forward/backward API

(x,y,z are scalars)

*

x

y

z

[local gradient] x [gradient from top] 



Modules Implementation in Deep Learning Libraries 

Example: Torch Layers



Modules Implementation in Deep Learning Libraries 

Example: Torch MulConstant

initialization

forward()

backward()



Modules Implementation in Deep Learning Libraries 

Example: Caffe Layers



Modules Implementation in Deep Learning Libraries 

Caffe Sigmoid Layer

*top_diff   (chain rule)



Neuron Model 

Simple Neuron model

Ʃ

1

x1

xn

x2

b (=w0i
l
 )

w1i
l

w2i
l

wni
l

W
T

X
hW,b(x)=f(WTX)

neuron i 
in layer l 

sigmoid 

tanh

ReLU

softPlus

Activation 

function

Transfer  

function



Activation Functions

Sigmoid

tanh    tanh(x)

ReLU    max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout
ELU



Multi-Layer Neural Networks 

11

x1

xn

x2

Layer 1
(Input Layer)

Layer 3
(Hidden Layer)

Layer 4
(Output Layer)

1

Layer 2
(Hidden Layer)

hW,b(x)

W1XX W2W1X W3W2W1X



Multi-Layer Neural Networks with ReLU 

11

x1

xn

x2

Layer 1
(Input Layer)

Layer 3
(Hidden Layer)

Layer 4
(Output Layer)

1

Layer 2
(Hidden Layer)

hW,b(x)

max(0, W1X)X
max(0, W2 max( 

0,W1X))
W3 max(0, W2 
max( 0,W1X))



Convolutional Neural Networks 

[LeNet-5, LeCun 1980]



Convolutional Neural Networks 

[LeNet-5, LeCun 1980]

“AlexNet” [Krizhevsky, Sutskever, Hinton, 2012]



Convolutional Neural Networks 

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

8

7x7 input (spatially)
assume 3x3 filter

Image 
Convolved feature



Convolutional Neural Networks 
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0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2
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7x7 input (spatially)
assume 3x3 filter
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Convolved feature



Convolutional Neural Networks 

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter
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Convolved feature



Convolutional Neural Networks 

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter

8 10 10 7 5

5

Image 
Convolved feature



Convolutional Neural Networks 

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1
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7x7 input (spatially)
assume 3x3 filter
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Convolved feature



Convolutional Neural Networks 

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter => 5x5 output

8 10 10 7 5

5 5 7 5 6

5 2 5 6 9

7 4 5 5 9

12 8 6 5 9

Image 
Convolved feature



Convolutional Neural Networks 

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter 
applied with stride 2

8 10 5

5 5 9

12 6 9

Image 
Convolved feature



Convolutional Neural Networks 
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Convolutional Neural Networks 
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Convolutional Neural Networks 
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Convolutional Neural Networks 

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter 
applied with stride 2

=> 3x3 output

8 10 5

5 5 9

12 6 9



Convolutional Neural Networks 

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

N

N

F

F



Convolutional Neural Networks 

0 0 0 0 0 0

0 1 2 1 2 1 0 0

0 0 1 2 1 1 0 1

0 0 0 1 0 1 1 0

0 1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

In practice: Common to zero 
pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => 



Convolutional Neural Networks 

0 0 0 0 0 0

0 1 2 1 2 1 0 0

0 0 1 2 1 1 0 1

0 0 0 1 0 1 1 0

0 1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

4 7 9 8 5 3 1

4 8 10 10 7 5 2

2 5 5 7 5 6 3

3 5 2 5 6 9 6

5 7 4 5 5 9 6

8 12 8 6 5 9 7

6 9 7 4 2 4 3

=> 7x7 output



Convolutional Neural Networks 

0 0 0 0 0 0

0 1 2 1 2 1 0 0

0 0 1 2 1 1 0 1

0 0 0 1 0 1 1 0

0 1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

In practice: Common to zero 
pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => 
7x7 output!
in general, common to see CONV layers 
with stride 1, filters of size FxF, and 
zero-padding with (F-1)/2. (will preserve 
size spatially)
e.g. F = 3 => zero pad with 1
       F = 5 => zero pad with 2
       F = 7 => zero pad with 3



Convolutional Neural Networks 

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume

width

height

depth



Convolutional Neural Networks 

32

32

3

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)



Convolutional Neural Networks 

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28



Convolutional Neural Networks 

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter



Convolutional Neural Networks 

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

one filter => 
one activation map



Convolutional Neural Networks 

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6



Convolutional Neural Networks 

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24



Convolutional Neural Networks 



Convolutional Neural Networks 



Convolutional Neural Networks 



Convolutional Neural Networks 



Convolutional Neural Networks 
Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0



Convolutional Neural Networks 
Convolutional 
layer in Torch



Convolutional Neural Networks 
Convolutional 
layer in Torch



Convolutional Neural Networks 

Pooling layer



Convolutional Neural Networks 

Pooling layer
- makes the representations smaller and more manageable 
- operates over each activation map independently:



Convolutional Neural Networks 

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

Pooling layer



Convolutional Neural Networks 

Pooling layer



Convolutional Neural Networks 

Pooling layer
Common settings:

F = 2, S = 2
F = 3, S = 2



Convolutional Neural Networks 

Fully Connected Layer (FC layer)

11

x1

xn

x2

Layer 1
(Input Layer)

Layer 3
(Hidden Layer)

Layer 4
(Output Layer)

1

Layer 2
(Hidden Layer)

hW,b(x)

W1XX W2W1X W3W2W1X



Famous CNN architectures (LeNet)

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]



Famous CNN architectures (AlexNet)
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)



Famous CNN architectures (AlexNet)
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives: 
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%



Famous CNN architectures (ZFNet)

[Zeiler and Fergus, 2013]

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 15.4% -> 14.8%



Famous CNN architectures (VGGNet)

[Simonyan and Zisserman, 2014]

best model

Only 3x3 CONV stride 1, pad 1
and  2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013
->
7.3% top 5 error



Famous CNN architectures (VGGNet)
INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters



Famous CNN architectures (VGGNet)
INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Note:

Most memory is in 
early CONV

Most params are
in late FC



Famous CNN architectures (GoogLeNet)
[Szegedy et al., 2014]

Neural Network Architecture

Inception modules



Famous CNN architectures (GoogLeNet)

ILSVRC 2014 winner (6.7% top 5 error)



Famous CNN architectures (GoogLeNet)

Fun features:

- Only 5 million params!
(Removes FC layers 
completely)

Compared to AlexNet:
- 12X less params
- 2x more compute
- 6.67% (vs. 16.4%)



Famous CNN architectures (ResNet)
[He et al., 2015]



Famous CNN architectures (ResNet)



Famous CNN architectures (ResNet)

ILSVRC 2015 winner (3.6% top 5 error)

2-3 weeks of training 
on 8 GPU machine

at runtime: faster 
than a VGGNet! 
(even though it has 
8x more layers)

[He et al., 2015]



Famous CNN architectures (ResNet)

224x224x3

spatial dimension 
only 56x56!



Famous CNN architectures (ResNet)
[He et al., 2015]



Famous CNN architectures (ResNet)

➢ Batch Normalization after every CONV layer
➢ Xavier/2 initialization from He et al.
➢ SGD + Momentum (0.9) 
➢ Learning rate: 0.1, divided by 10 when validation error plateaus
➢ Mini-batch size 256
➢ Weight decay of 1e-5
➢ No dropout used



Famous CNN architectures (ResNet)



Deep Learning Applications



Deep Learning Applications

➢DCNN architecture used for CBMIR task



Deep Learning Applications

➢Example image from each class (interclass variation)



Deep Learning Applications

➢Confusion matrix for 24 classes using DCNN
○99.82% accuracy (human accuracy is around 85%)



Deep Learning Applications



Deep Learning Applications



Deep Learning Applications

[Krizhevsky 2012]

Classification Retrieval



Deep Learning Applications

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection Segmentation

[Farabet et al., 2012]



Deep Learning Applications

self-driving cars



Deep Learning Applications

[Simonyan et al. 2014] [Goodfellow 2014]



Deep Learning Applications

[Toshev, Szegedy 2014]

[Mnih 2013]



Deep Learning Applications



Deep Learning Applications

[Ciresan et al. 2013] [Sermanet et al. 2011]
[Ciresan et al.]



Deep Learning Applications

Whale recognition, Kaggle Challenge Mnih and Hinton, 2010



Deep Learning Applications

[Vinyals et al., 2015]

Image 
Captioning



Any Question???
Thanks


