
Deep Learning Tutorial

UDRC Summer School

Muhammad Awais

Outline

➢ Conventional Pattern recognition
➢ Learning Feature Representations
➢ Supervised Learning with Neural Network
➢ Loss Function
➢ Optimization
➢ Backpropagation in practice
➢ Backpropagation in deep learning libraries
➢ Introduction to CNN
➢ Latest development in CNN
➢ Application of CNN

Pattern Recognition

➢Pattern recognition architecture (first decade of 2000s)

pooling

Low-level Feature
Fixed

MFCC,
Gabor, SIFT,

SURF, GLOH,
LBP, etc.

Mid-Level Features
Unsupervised
k-mean, Visual
Phrases, GMM,
Sparse Coding,

Fisher Vector etc

Trainable Classifier
Supervised

Linear classifier, linear
regression, sofmax
SVM, FDA, decision

tree etc

Learning representation

Trainable Classifier
Supervised

Linear classifier,
linear regression,

softmax, SVM, FDA,
etc

Trainable
Feature

Transform

Learning representation

Trainable Classifier
Supervised

Linear classifier,
linear regression,

softmax, SVM, FDA,
etc

Trainable
Feature

Transform

The “One Learning Algorithm” hypothesis

Somatosensory cortex learns to see

Somatosensory Cortex

[Metin & Frost, 1989] [Curtesy of Andrew Ng]

The “one learning algorithm” hypothesis

[Roe et al., 1992]

Auditory cortex learns to see

Auditory Cortex

The “one learning algorithm” hypothesis

[Roe et al., 1992] [Curtesy of Andrew Ng]

Seeing with your tongue Human echolocation (sonar)

Haptic belt: Direction sense Implanting a 3rd eye

[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009] [Curtesy of Andrew Ng]

The “one learning algorithm” hypothesis

Learning representation

Trainable Classifier
Supervised

Linear classifier,
linear regression,

softmax, SVM, FDA,
etc

Trainable
Feature

Transform

Learning Feature Hierarchy

➢Deep learning is all about learning feature hierarchies

Trainable Classifier
Supervised

Linear classifier,
linear regression,

softmax, SVM, FDA,
etc

Trainable
Feature

Transform

Trainable
Feature

Transform

Trainable
Feature

Transform

Going Deeper

➢Deep learning architecture

Trainable Classifier
Supervised

Linear classifier,
linear regression,

softmax, SVM, FDA,
etc

Trainable
Feature

Transform

Trainable
Feature

Transform

Trainable
Feature

Transform
Trainable
Feature

Transform
Trainable
Feature

Transform

Deep Neural Network

➢Deep learning architecture

Trainable Classifier
Supervised

Linear classifier,
linear regression,

softmax, SVM, FDA,
etc

Trainable
Feature

Transform

Trainable
Feature

Transform

Trainable
Feature

Transform
Trainable
Feature

Transform
Trainable
Feature

Transform

Trainable Feature Representation

Normaliz
ation

Filter
Bank

Nonlinea
rity

Feature
Pooling

Deep Neural Network

➢Deep learning architecture

Trainable Classifier
Supervised

Linear classifier,
linear regression,

softmax, SVM, FDA,
etc

Trainable
Feature

Transform

Trainable
Feature

Transform

Trainable
Feature

Transform
Trainable
Feature

Transform
Trainable
Feature

Transform

Trainable Feature Representation

Normaliz
ation

Filter
Bank

Nonlinea
rity

Feature
Pooling

Will go in details for each one of them

Supervised Learning with Neural Networks

➢Neural Network training supervised learning
○Dataset is given in term of input out pairs (x, y)
○Define a loss/cost function for each example

■Cost function depends upon the type of problem
○Compute an overall cost function J(W, b)

■average over the training set
■Add regularization term with trade off

○Use Stochastic Gradient Descent to update the weights of network
■Use backpropagation to compute the gradients (just application of
chain rule)

Supervised Learning with Neural Networks

➢Neural Network training supervised learning
○Dataset is given in term of input out pairs (x, y)
○Define a loss/cost function for each example

■Cost function depends upon the type of problem
○Compute an overall cost function J(W, b)

■average over the training set
■Add regularization term with trade off

○Use Stochastic Gradient Descent to update the weights of network
■Use backpropagation to compute the gradients (just application of
chain rule)

Loss function

Loss Functions

SVM Maximum Margin Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

SVM Maximum Margin Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example
where is the image and
where is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

SVM Maximum Margin Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example
where is the image and
where is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

= max(0, 5.1 - 3.2 + 1)
 +max(0, -1.7 - 3.2 + 1)
= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.92.9Losses:

SVM Maximum Margin Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example
where is the image and
where is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

= max(0, 1.3 - 4.9 + 1)
 +max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 00Losses: 2.9

SVM Maximum Margin Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example
where is the image and
where is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

= max(0, 2.2 - (-3.1) + 1)
 +max(0, 2.5 - (-3.1) + 1)
= max(0, 5.3) + max(0, 5.6)
= 5.3 + 5.6
= 10.90Losses: 2.9 10.9

SVM Maximum Margin Hinge loss

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 10.9

Suppose: 3 training examples, 3 classes.
With some W the scores are:

Multiclass SVM loss:

Given an example
where is the image and
where is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

and the full training loss is the mean
over all examples in the training data:

L = (2.9 + 0 + 10.9)/3
 = 4.6

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

cat

frog

car

3.2
5.1
-1.7

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

where

cat

frog

car

3.2
5.1
-1.7

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

where

cat

frog

car

3.2
5.1
-1.7

Softmax function

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

Want to maximize the log likelihood, or (for a loss function)
to minimize the negative log likelihood of the correct class:

where

cat

frog

car

3.2
5.1
-1.7

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

Want to maximize the log likelihood, or (for a loss function)
to minimize the negative log likelihood of the correct class:

in summary:

where

cat

frog

car

3.2
5.1
-1.7

Loss function recap

- We have some dataset of (x,y)
- We have a score function:
- We have a loss function:

e.g.

Softmax

SVM

Full loss

Supervised Learning with Neural Networks

➢Neural Network training supervised learning
○Dataset is given in term of input out pairs (x, y)
○Define a loss/cost function for each example

■Cost function depends upon the type of problem
○Compute an overall cost function J(W, b)

■average over the training set
■Add regularization term with trade off

○Use Stochastic Gradient Descent to update the weights of network
■Use backpropagation to compute the gradients (just application of
chain rule)

Optimization
(SGD,

Momentum,...)

Optimization

(image credits
to Alec Radford)

Optimization

(image credits
to Alec Radford)

All of them need
derivative of loss
with respect of

parameters

Optimization

Two ways to compute gradient:
Numerical gradient

Analytic gradient by using calculus

Numerical gradient: slow (unsuitable for large # of
parameters), approximate but easy to code
Analytic gradient: fast (suitable for large # of parameters),
exact but error-prone

In practice: Derive analytic gradient, check implementation
for smaller problems with numerical gradient

Optimization

Two ways to compute gradient:
Numerical gradient

Analytic gradient by using calculus

Numerical gradient: slow (unsuitable for large # of
parameters), approximate but easy to code
Analytic gradient: fast (suitable for large # of parameters),
exact but error-prone

In practice: Derive analytic gradient, check implementation
for smaller problems with numerical gradient

Optimization

Computational Graph

x

W

* hinge
loss

R

+ L
s (scores)

Optimization

Computational Graph

x

W

* hinge
loss

R

+ L
s (scores)

An example of
f(x) is DCNN

Optimization

Convolutional Network
(AlexNet)

input image
weights

loss

Optimization

Computational Graph

x

W

* hinge
loss

R

+ L
s (scores)

Need analytic
gradient to

learn W

Analytic gradient

e.g. x = -2, y = 5, z = -4

Analytic gradient

e.g. x = -2, y = 5, z = -4

Want:

Analytic gradient

e.g. x = -2, y = 5, z = -4

Want:

Analytic gradient

e.g. x = -2, y = 5, z = -4

Want:

Analytic gradient

e.g. x = -2, y = 5, z = -4

Want:

Analytic gradient

e.g. x = -2, y = 5, z = -4

Want:

Analytic gradient

e.g. x = -2, y = 5, z = -4

Want:

Analytic gradient

e.g. x = -2, y = 5, z = -4

Want:

Analytic gradient

e.g. x = -2, y = 5, z = -4

Want:

Analytic gradient

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Analytic gradient

e.g. x = -2, y = 5, z = -4

Want:

Analytic gradient

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Analytic gradient in deep learning libraries

f

activations

Analytic gradient in deep learning libraries

f

activations

“local gradient”

Analytic gradient in deep learning libraries

f

activations

gradients

“local gradient”

Analytic gradient in deep learning libraries

f

activations

gradients

“local gradient”

Analytic gradient in deep learning libraries

f

activations

gradients

“local gradient”

Analytic gradient in deep learning libraries

f

activations

gradients

“local gradient”

Analytic gradient in deep learning libraries

Gradients for vectorized code

f

“local gradient”

This is now the
Jacobian matrix
(derivative of each
element of z w.r.t. each
element of x)

(x,y,z are now
vectors)

gradients

Analytic gradient in deep learning libraries

Gradients add at branches

+

Modules Implementation in Deep Learning Libraries

Implementation: forward/backward API

Graph (or Net) object. (Rough psuedo code)

*

x

y

z

Modules Implementation in Deep Learning Libraries

Implementation: forward/backward API

(x,y,z are scalars)

*

x

y

z

[local gradient] x [gradient from top]

Modules Implementation in Deep Learning Libraries

Example: Torch Layers

Modules Implementation in Deep Learning Libraries

Example: Torch MulConstant

initialization

forward()

backward()

Modules Implementation in Deep Learning Libraries

Example: Caffe Layers

Modules Implementation in Deep Learning Libraries

Caffe Sigmoid Layer

*top_diff (chain rule)

Neuron Model

Simple Neuron model

Ʃ

1

x1

xn

x2

b (=w0i
l
)

w1i
l

w2i
l

wni
l

W
T

X
hW,b(x)=f(WTX)

neuron i
in layer l

sigmoid

tanh

ReLU

softPlus

Activation

function

Transfer

function

Activation Functions

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout
ELU

Multi-Layer Neural Networks

11

x1

xn

x2

Layer 1
(Input Layer)

Layer 3
(Hidden Layer)

Layer 4
(Output Layer)

1

Layer 2
(Hidden Layer)

hW,b(x)

W1XX W2W1X W3W2W1X

Multi-Layer Neural Networks with ReLU

11

x1

xn

x2

Layer 1
(Input Layer)

Layer 3
(Hidden Layer)

Layer 4
(Output Layer)

1

Layer 2
(Hidden Layer)

hW,b(x)

max(0, W1X)X
max(0, W2 max(

0,W1X))
W3 max(0, W2
max(0,W1X))

Convolutional Neural Networks

[LeNet-5, LeCun 1980]

Convolutional Neural Networks

[LeNet-5, LeCun 1980]

“AlexNet” [Krizhevsky, Sutskever, Hinton, 2012]

Convolutional Neural Networks

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

8

7x7 input (spatially)
assume 3x3 filter

Image
Convolved feature

Convolutional Neural Networks

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter

8 10

Image
Convolved feature

Convolutional Neural Networks

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter

8 10 10

Image
Convolved feature

Convolutional Neural Networks

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter

8 10 10 7 5

5

Image
Convolved feature

Convolutional Neural Networks

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter

8 10 10 7 5

5 5 7 5 6

5 2 5 6 9

7 4 5 5 9

12 8 6 5 9

Image
Convolved feature

Convolutional Neural Networks

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter => 5x5 output

8 10 10 7 5

5 5 7 5 6

5 2 5 6 9

7 4 5 5 9

12 8 6 5 9

Image
Convolved feature

Convolutional Neural Networks

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

8 10 5

5 5 9

12 6 9

Image
Convolved feature

Convolutional Neural Networks

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

8 10 5

5 5 9

12 6 9

Image
Convolved feature

Convolutional Neural Networks

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

8 10 5

5 5 9

12 6 9

Image
Convolved feature

Convolutional Neural Networks

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

8 10 5

5 5 9

12 6 9

Image
Convolved feature

Convolutional Neural Networks

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

=> 3x3 output

8 10 5

5 5 9

12 6 9

Convolutional Neural Networks

1 2 1 2 1 0 0

0 1 2 1 1 0 1

0 0 1 0 1 1 0

1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

N

N

F

F

Convolutional Neural Networks

0 0 0 0 0 0

0 1 2 1 2 1 0 0

0 0 1 2 1 1 0 1

0 0 0 1 0 1 1 0

0 1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

In practice: Common to zero
pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border =>

Convolutional Neural Networks

0 0 0 0 0 0

0 1 2 1 2 1 0 0

0 0 1 2 1 1 0 1

0 0 0 1 0 1 1 0

0 1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

4 7 9 8 5 3 1

4 8 10 10 7 5 2

2 5 5 7 5 6 3

3 5 2 5 6 9 6

5 7 4 5 5 9 6

8 12 8 6 5 9 7

6 9 7 4 2 4 3

=> 7x7 output

Convolutional Neural Networks

0 0 0 0 0 0

0 1 2 1 2 1 0 0

0 0 1 2 1 1 0 1

0 0 0 1 0 1 1 0

0 1 0 0 0 1 0 1

2 0 1 0 1 2 2

0 2 1 0 1 0 1

2 2 2 0 0 1 1

In practice: Common to zero
pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border =>
7x7 output!
in general, common to see CONV layers
with stride 1, filters of size FxF, and
zero-padding with (F-1)/2. (will preserve
size spatially)
e.g. F = 3 => zero pad with 1
 F = 5 => zero pad with 2
 F = 7 => zero pad with 3

Convolutional Neural Networks

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

width

height

depth

Convolutional Neural Networks

32

32

3

32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutional Neural Networks

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Convolutional Neural Networks

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

Convolutional Neural Networks

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

one filter =>
one activation map

Convolutional Neural Networks

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

Convolutional Neural Networks

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Convolutional Neural Networks

Convolutional Neural Networks

Convolutional Neural Networks

Convolutional Neural Networks

Convolutional Neural Networks
Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

Convolutional Neural Networks
Convolutional
layer in Torch

Convolutional Neural Networks
Convolutional
layer in Torch

Convolutional Neural Networks

Pooling layer

Convolutional Neural Networks

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

Convolutional Neural Networks

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

Pooling layer

Convolutional Neural Networks

Pooling layer

Convolutional Neural Networks

Pooling layer
Common settings:

F = 2, S = 2
F = 3, S = 2

Convolutional Neural Networks

Fully Connected Layer (FC layer)

11

x1

xn

x2

Layer 1
(Input Layer)

Layer 3
(Hidden Layer)

Layer 4
(Output Layer)

1

Layer 2
(Hidden Layer)

hW,b(x)

W1XX W2W1X W3W2W1X

Famous CNN architectures (LeNet)

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Famous CNN architectures (AlexNet)
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Famous CNN architectures (AlexNet)
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Famous CNN architectures (ZFNet)

[Zeiler and Fergus, 2013]

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 15.4% -> 14.8%

Famous CNN architectures (VGGNet)

[Simonyan and Zisserman, 2014]

best model

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013
->
7.3% top 5 error

Famous CNN architectures (VGGNet)
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Famous CNN architectures (VGGNet)
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Note:

Most memory is in
early CONV

Most params are
in late FC

Famous CNN architectures (GoogLeNet)
[Szegedy et al., 2014]

Neural Network Architecture

Inception modules

Famous CNN architectures (GoogLeNet)

ILSVRC 2014 winner (6.7% top 5 error)

Famous CNN architectures (GoogLeNet)

Fun features:

- Only 5 million params!
(Removes FC layers
completely)

Compared to AlexNet:
- 12X less params
- 2x more compute
- 6.67% (vs. 16.4%)

Famous CNN architectures (ResNet)
[He et al., 2015]

Famous CNN architectures (ResNet)

Famous CNN architectures (ResNet)

ILSVRC 2015 winner (3.6% top 5 error)

2-3 weeks of training
on 8 GPU machine

at runtime: faster
than a VGGNet!
(even though it has
8x more layers)

[He et al., 2015]

Famous CNN architectures (ResNet)

224x224x3

spatial dimension
only 56x56!

Famous CNN architectures (ResNet)
[He et al., 2015]

Famous CNN architectures (ResNet)

➢ Batch Normalization after every CONV layer
➢ Xavier/2 initialization from He et al.
➢ SGD + Momentum (0.9)
➢ Learning rate: 0.1, divided by 10 when validation error plateaus
➢ Mini-batch size 256
➢ Weight decay of 1e-5
➢ No dropout used

Famous CNN architectures (ResNet)

Deep Learning Applications

Deep Learning Applications

➢DCNN architecture used for CBMIR task

Deep Learning Applications

➢Example image from each class (interclass variation)

Deep Learning Applications

➢Confusion matrix for 24 classes using DCNN
○99.82% accuracy (human accuracy is around 85%)

Deep Learning Applications

Deep Learning Applications

Deep Learning Applications

[Krizhevsky 2012]

Classification Retrieval

Deep Learning Applications

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection Segmentation

[Farabet et al., 2012]

Deep Learning Applications

self-driving cars

Deep Learning Applications

[Simonyan et al. 2014] [Goodfellow 2014]

Deep Learning Applications

[Toshev, Szegedy 2014]

[Mnih 2013]

Deep Learning Applications

Deep Learning Applications

[Ciresan et al. 2013] [Sermanet et al. 2011]
[Ciresan et al.]

Deep Learning Applications

Whale recognition, Kaggle Challenge Mnih and Hinton, 2010

Deep Learning Applications

[Vinyals et al., 2015]

Image
Captioning

Any Question???
Thanks

