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Application

Non-destructive test Underwater detection Target tracking
\ J

|

Useful information collected by sensors

e

Direction of Arrival (DoA) estimation

! /J@

Full array TTTYY

v v v —> | Spatial sparsity optimisation

. Linear array
Constraints

« Computation resources

« Communication bandwidth

* Energy consumption
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Research Aim

Motivated by the problems mentioned before, we are interested in using as|few sensors|as

possible at each sampling time to implement| spatial sparsity optimisatior{ for;DoA estimation.

l v

Joint approach — Spatial sparsity + Sparse array

. Sensor selection
Narrowband DoA estimation constrained

\ Fisher information matrix (FIM)

Wideband DoA estimation /
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Source signal

v, =Ax, +n,
Vi ( Vs Vi ykN) at each time step & where NN is the number of sensors.
X, ()Ck1 2 Xp, 0t X ) where M is the number of potential source directions.

A contains vectors from -90 to +90 degrees with size of N X M.

n, is the noise signal.

Desired beam response

p =[p(,0), p(€2,0,),:--, p(€,6,,)]

where p € C "M is the vector holding the desired beam response ( yH 4 ) at the sampled angular

points 6 for the frequency of interest ().
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The idea behind Compressed Sensing (CS) is to break through the limitation of sampling
rate (twice the frequency of interest) at the same time to recover the signal.
It is ideal to find the minimum number of sensors which still achieve an exact match to a

desired beam response.

min ||w||

subject to Hp — WHAH2 <a (1)

where we C" is the coefficient vector of the array, p € C M is the desired beam response,

a € R is a threshold measuring the similarity between the designed response and thedesired

||1 and ||||2 are respectively the ¢ , and Y4 , norm

response, ()H is a Hermitian operator,

of their arguments.
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Different from the sparse array problem, in spatial sparsity based DoA estimation, the
aim is to find the weight that corresponds to the source direction based on a full array.

This can be achieved by a sequential Bayesian technique based on the least absolute

shrinkage and selection operator (LASSO).

min |y, —Akaj x| (2)

where for the signal y; at time step %k and source activation vector X, , the cost function to be

minimised is given. // is a regularization parameter.
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« Extends sparse reconstruction methods to sequential data

« Extends the classic Bayesian approach to a sequential MAP estimation
of the signal over time.

« Sparsity constraint is enforced with a Laplacian like prior at each time
step.

* An adaptive LASSO cost function is minimised at each time step

C. Mecklenbruker, P. Gerstoft, A. Panahi, M. Viberg, “Sequential Bayesian Sparse Signal Reconstruction
using Array Data,” IEEE Transactions on Signal Processing, vol. 61, no. 24, pp. 6344 - 6354, 2013.
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« Collected in 2003 in Portland harbour
« One moving target on nine different trajectories at a constant speed
« Two 32 element linear hydrophone arrays
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Broadband response from 125 Hz to 185 Hz

Direction of Arrival (degrees)

500 1000 1500 2000 2500
Time from start (s)
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Portlando3 Dataset — Demo 1
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Latitude

50.588
50.586
50.584
50.582

50.58
50.578
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50.574

50.572

Target likelihood
o
Ln

Source separation on Portland03 dataset

2.45 -2.445 -2.44 -2.435 -2.43 -2.425 -2.42 -2.415 -2.41

Longitude

Sparse array values
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Portlando3 Dataset — Demo 2
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Latitude

50.588
50.586
50.584
50.582

50.58
50.578
50.576
50.574

50.572

Target likelihood
[ ]
Ln

Broadband tracking on Portland03 dataset

2.45 -2.445 -2.44 -2.435 -2.43 -2.425 -2.42 -2.415 -2.41

Longitude

Sparse array values

B0 60

_A_#l_uﬁz.o S

0 -20 -40 -60 -80
DOA (degrees)



UNIVERSITY OF

JASSO for Narrowband DoA estimation 3 SURREY

Compressed sensing (CS) based sparse array

Minimisation of the £, norm of vector weight coefficients, i.e. W= w, + w,i
min [ W], +[w],
: ~H
subject to Hp —(w, +w;i) AH2 <a (3)

where p is the vector holding the desired beam response, ¢ is a constraint.
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Spatial sparsity optimisation using LASSO

The LASSO function promoting spatial sparsity is defined by

min HPiagﬂ w)y, —Akaj + ,uHkaHl (4)

where M is to control sparsity,D is the matrix holding the coefficients to the source
activity in the source space. Both cost functions (1) and (2) are optimised by the CVX
toolbox in Matlab.

diag (| ) Ji A X,

N— [ ~N - N H

mnl ol e
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Implementation and experiment results!

Input: observed signal y,

%)
=)
| I
i

Output: weight coefficient for sensors: w >
spatial sparsity: X; and estimated DoA: p s 5
Initialisation: generate p « C"* at random degrees g
Run: D .5
for k=123---
for k=12 15
optimise (3) to obtain w, and w, Time steps
W=Ww, + Wli Figure 1. Narrowband DoA estimations for stationary

optimi se ( 4) to obtain X, source (SNR=20dB), 37/100 active sensors

H
reconstruct 2, eonsmme = (Ax,)" A

Proconsirue = P 0.8
end S
end S 0.6
5 04
=)
- 0.2
M. Chen, M. Barnard, and W. Wang. "Joint Array and Spatial
Sparsity Based Optimisation for DoA Estimation." in Sensor 20 40 60 80 100
Signal Processing for Defence (SSPD), IEEE, 2016. Time steps

Figure 2. Narrowband DoA estimations for moving
source (SNR=20dB), 22/100 active sensors
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Source signal
() =A)x. () +n.())
(DN Gy, )y, () at each time step & where N is the number of sensors and

j=1,2,---J is the index of the frequency band Qj .

. T . . . .
X (X, X%, ) where M is the number of potential source directions.

n,(J) is a random noise vector at the j-# frequency band.

Desired beam response
preshape=[p(QI’QI)3”'ap(legM)ap(stel)sn'>p(QzagM)a'"ap(Qjael)a"'ap(QJaQM)]

p) p(2) p(J)
Preshape
\ ] | J \ l
Y Y Y
M M M
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Compressed sensing (CS) based sparse array

For the CS-based sparse wideband array optimisation, the cost function (1) with complex
vector weight coefficients, i.e. w=w, + w;i , is modified as

min HWRH1 T HW1H1

: N H
Sllb]eCt to Hpreshape_ (WR + WIZ) Aarray ) sa (5)
where  is a constraint.
p) P(2) ()
O O O0Om Ooom oM
1 Y J v ' J . 1 ' [
i A(1) A(2) A(J)
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Spatial sparsity optimisation using LASSO

After obtaining the suitable w, the LASSO function (2) is then modified as

2
min ‘Vr/reshapeyk—reshape_ Aspatialxk H2 + ILlHka Hl (6)

reshape yk—reshape Aspatial xk

B B

i

||
1
BB
1k
Bl
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Implementation

Input: observed signal ),
Output: weight coefficients for sensors: 14and estimated DoA: P
Initialisation: generate 2,...,.€C™"" at 0 degrees,
form A €€
form 4., € C7M
Run:
for k=1,2,3,---
for kk=1,2
optimise (5) to obtain W and W,
W=W, +W,i
optimise (6) to obtain X;
calculate X,y =¥ 5%, ]
reconstruct p =(4,,,. X repear) Aarray
Presnape = P
end
end

16 May 2017




UNIVERSITY OF

JASSO for Wideband DoA estimation SURREY

Experment setup

Implement wideband DoA estimations of stationary source and moving source.

The first input beam response is initialised at 0 degrees based on a Chebyshev window
function. The wideband frequency of the sources is divided into bands at 1000 Hz, 1100
Hz, 1200 Hz, 1300 Hz, and 1400 Hz. A linear array with 300 sensors is used and the
inter-sensor spacing is 0.05,1 . The maximum running time-step is K = 20.

The Mean Square Errors (MSEs) for sparse array optimisation and spatial sparsity based
optimisation are used as the performance index, which are defined according to functions
as

—WHA 2 HA— 2
MSE — 2010g10(|| preshape v array”Z)dB, MSE _ 2010g10(|| yk 7 P ||2)dB

array spatial -

M. Chen, W. Wang, M. Barnard, and J.A. Chambers, "Wideband DoA Estimation Based on Joint Optimisation of
Array and Spatial Sparsity", in Proc. European Signal Processing Conference (EUSIPCO 2017), Kos Island, Greece,
August 28- September 2, 2017. (accepted)
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Experiment results

10.4

0.2

400

-50

Scanning frequency (Hz) 1X0" #10 theta 5 10 15 20

Time steps

0

Figure 3. Wideband DoA estimations for the moving source, the 3D graph illustrates the
simulation result at the 20-th time step and the spectrogram is the DoA estimation for the
last frequency band, 69/300 active sensors.

16 May 2017




UNIVERSITY OF

JASSO for Wideband DoA estimation SURREY

Experiment results

We also compare the joint approach with a baseline which only considers the spatial
sparsity-based optimisation using a full array. Only noiseless signals at frequency bands of
1000 Hz and 1100 Hz were processed and the total running time K =100,

0
A M amr
AP arAIN Full f
—0f *"J" £ U HETRR I
= Pl ]
= | LT R
~— -100 Ul [
7 1 F
|
= —150 || ——joint approach E
~—only spatial sparsity
—200 :
0 50 100 20 40 60 80 100
Time steps Time steps
Figure 4. MSE,,;;, for the moving source Figure 5. DoA estimated for the moving source
without noise. without noise at the frequency band of 1100 Hz,

59/300 active sensors
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Co-Prime Sampling Arrays

Detecting more sources than Origi/?gl co-prime arrays:
N
the number of sensors <>
@ © ¢ ¢ © ¢ @ o M =8
/ \ MA/2
O (@) O @ O N=5
Nested array Enhancing the degrees-
‘l’ of freedom (DoFs) Difference co-array: Mn—Nm,0<n<N-1,0<m<M -1

Causing mutual T Correlations
coupling Co-Prime g
sampling arrrays DoA estimation
Liﬂ’ Improvef/ Improved co-prime arrays?:
NA/2
Less mutual coupling, @ © ¢ ¢ ¢ ¢ ¢ o
using more sensors <L
O O (@) O O O O o O
‘l’ Difference co-array: => More DoFs

Sensor reduction strategy Mn—Nm1<n<2N-1,0<m<M -1 but more sensors

P. Vaidyanathan and P. Pal. "Sparse Sensing With Co-Prime Samplers and Arrays," IEEE TSP, vol. 59, no. 2, Feb 2011.
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Conclusions and Future Works

Conclusions

- A sparse Bayesian algorithm has been presented and tested on the Portlando3 dataset

and shows good performance for source localisation for this challenging dataset.

- A two-step iterative algorithm is proposed for narrowband and wideband DoA
estimation based on joint optimisation of array and spatial sparsity. The results
evaluated for both stationary sources and moving sources show that the proposed
algorithm can maintain performance while using a reduced number of sensor for
source localisation. This can be useful for joint source localisation and sensor

selection.

- Sparse co-prime array based on Chinese remainder theorem is an interesting and

emerging direction for the next stage of work.
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