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Linear array 

Acoustic Array System 
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Application 

Non-destructive test Underwater detection Target tracking 

Direction of Arrival (DoA) estimation 

Full array Spatial sparsity optimisation 

Constraints 

• Computation resources 

• Communication bandwidth 

• Energy consumption 

 

Useful information collected by sensors 

 Sparse array 



Research Aim 
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Sparse array Spatial sparsity Joint approach 

Narrowband DoA estimation 

Wideband DoA estimation 

Fisher information matrix (FIM)  

constrained 

Motivated by the problems mentioned before, we are interested in using as few sensorsfew sensors as 

possible at each sampling time to implement spatial sparsity optimisationspatial sparsity optimisation for DoA estimation. 

Sensor selection 

16 May 2017 



Signal Model 
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Source signal 

kkk nAxy 

),,,(:
21 Nkkkk yyyy  at each time step where k N is the number of sensors. 

),,,(:
21 Mkkkk xxxx  where M is the number of potential source directions. 

contains vectors from -90 to +90 degrees with size of                .  A MN 

 is the noise signal. kn

Desired beam response 

)],(,),,(),,([ 21 Mpppp   

where 
MCp  1

is the vector holding the desired beam response (        ) at the sampled angular  

points m for the frequency of interest      . 

AyH
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Compressed Sensing Based Sparse Array 
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The idea behind Compressed Sensing (CS) is to break through the limitationlimitation  ofof  samplingsampling  

raterate (twice the frequency of interest) at the same time to recoverrecover  thethe  signalsignal.  

It is ideal to find the minimumminimum  numbernumber  ofof  sensorssensors which still achieve an exact match to a 

desired beam response.  

min 
1

w

subject to 
2

Awp H

are respectively the is a Hermitian operator, 

where 
MCp is the desired beam response, 

NCw is the coefficient vector of the array, 

 is a threshold measuring the similarity between the designed response and the  desired 

response, 
H)( and 2


11

 and 2 norm 

of their arguments. 

(1) 
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Spatial Sparsity based DoA Estimation 
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Different from the sparse array problem, in spatial sparsity based DoA estimation, the 

aim is to find the weightweight  thatthat  correspondscorresponds  toto  thethe  sourcesource  directiondirection based on a fullfull  arrayarray. 

This can be achieved by a sequential Bayesian technique based on thethe  leastleast  absoluteabsolute  

shrinkageshrinkage  andand  selectionselection  operatoroperator (LASSO). 

at time step and source activation vector       , 

min 

where for the signal 

 is a regularization parameter. minimised is given. 

the cost function to be 

1

2

2
kkk xAxy 

ky k kx

(2) 
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A Sequential Sparse Bayesian Method 
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• Extends sparse reconstruction methods to sequential data 
 

• Extends the classic Bayesian approach to a sequential MAP estimation 
of the signal over time. 
 

• Sparsity constraint is enforced with a Laplacian like prior at each time 
step. 
 

• An adaptive LASSO cost function  is minimised at each time step 
 

 
 
 

  
C. Mecklenbruker, P. Gerstoft, A. Panahi, M. Viberg, “Sequential Bayesian Sparse Signal Reconstruction 
using Array Data,” IEEE Transactions on Signal Processing, vol. 61, no. 24, pp. 6344 - 6354, 2013. 
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Portland03 Dataset 
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• Collected  in 2003 in Portland harbour 
• One moving target  on nine different trajectories at a constant speed 
• Two 32 element  linear hydrophone arrays 
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Portland03 Dataset – DoA Estimation Results 
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Portland03 Dataset – Demo 1 
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Portland03 Dataset – Demo 2 
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JASSO for Narrowband DoA estimation 

Compressed sensing (CS) based sparse array 
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Minimisation of the  1 norm of  vector weight coefficients, i.e.  iwww IR 

min 
11 IR ww 

subject to 
2

)( Aiwwp H

IR

is the vector holding the desired beam response, p is a constraint. 

(3) 

where 

... 

M

p



... 

... 

A

... 

... 

M

N... 

... 

... 

... 

... 

... 

... 

... 

... 
H

N

Hw
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JASSO for Narrowband DoA estimation 

Spatial sparsity optimisation using LASSO 

14 

The LASSO function promoting spatial sparsity is defined by 

(4) min  
1

2

2
|)(| kkk DxAxywdiag 

where     is to control sparsity,    is the matrix holding the coefficients to the source 
activity in the source space. Both cost functions (1) and (2) are optimised by the CVX 
toolbox in Matlab. 

 D

... 

... 

... 

... 

N

N

|)(|wdiag

... 

N

ky


... 

... 

A

... 

... 

M

N ... 

M

kx
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JASSO for Narrowband DoA estimation 
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Input: observed signal 
Output: weight coefficient for sensors: 
    spatial sparsity:      and estimated DoA: 
Initialisation: generate                   at random degrees 
Run: 
    for 
     for 
       optimise (3) to obtain       and 
 
       optimise (4) to obtain 
       reconstruct 
 
     end 
    end 
               

kx p
MCp  1

2,1k

Rw Iw
iwww IR 

kx

pp treconstruc 

AAxp H

ktreconstruc )(

3,2,1k

ky

w

Implementation and experiment results1 

Figure 1. Narrowband DoA estimations for stationary 
source (SNR=20dB), 37/100 active sensors 

Figure 2. Narrowband DoA estimations for moving  
source (SNR=20dB), 22/100 active sensors 

M. Chen, M. Barnard, and W. Wang. "Joint Array and Spatial 
Sparsity Based Optimisation for DoA Estimation." in Sensor 
Signal Processing for Defence (SSPD), IEEE, 2016. 
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JASSO for Wideband DoA estimation 
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Source signal 

)()()()( jnjxjAjy kkk 

                                                 at each time step     where     is the number of sensors and                 
                        is the index of the frequency band        . 

T

kkkk jyjyjyjy
N
))(,),(),((:)(

21
 k N

Jj ,2,1
T

kkkk M
xxxx ),,,(:

21
 where      is the number of potential source directions. M

 is a random noise vector at the          frequency band. )( jnk thj 

Desired beam response 

)],(,),,(,),,(,),,(),,(,),,([ 1212111 MJJMMreshape ppppppp   
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M

)1(p

... 

M

)2(p

... ... 

M

)(Jp

:reshapep

j
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JASSO for Wideband DoA estimation 
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Compressed sensing (CS) based sparse array 

iwww IR 

min 
11 IR ww 

subject to 
2

)( array

H

IRreshape Aiwwp

 is a constraint. 

(5) 

where 

For the CS-based sparse wideband array optimisation, the cost function (1) with complex 
vector weight coefficients, i.e.                            , is modified as 

.
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JASSO for Wideband DoA estimation 

Spatial sparsity optimisation using LASSO 
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After obtaining the suitable     , the LASSO function (2) is then modified as w

min 
1

2

2
kkspatialreshapekreshape DxxAyW 



... 

N

reshapeW
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N

N
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(6) 
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JASSO for Wideband DoA estimation 
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Implementation 

Input: observed signal  
Output: weight coefficients for sensors:       and estimated DoA: 
Initialisation: generate                            at 0 degrees, 
                 form                           
                 form                          
Run: 
       for  
            for  
       optimise (5) to obtain        and  
    
    optimise (6) to obtain  
    calculate                
    reconstruct       
     
            end 
       end   

ky

w p
)(1 MJ

reshape Cp 
)(MJN

array CA 

MNJ

spatial CA  )(

,3,2,1k
2,1kk

Rw Iw
iwww IR 

kx

ppreshape

T

kkrepeatk xxx ],,[ 

array

H

repeatkarray AxAp )( 
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JASSO for Wideband DoA estimation 

Experment setup 
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Implement wideband DoA estimations of stationary source and moving source.  

 

The first input beam response is initialised at 0 degrees based on a Chebyshev window 

function. The wideband frequency of the sources is divided into bands at 10001000  Hz,Hz,  11001100  

Hz,Hz,  12001200  Hz,Hz,  13001300  Hz,Hz,  andand  14001400  HzHz. A linear array with 300300  sensorssensors is used and the 

inter-sensor spacing is 0.05   . The maximum running time-step is             .  

 

The Mean Square Errors (MSEs) for sparse array optimisation and spatial sparsity based 

optimisation are used as the performance index, which are defined according to functions 

as 

 

 

 

 20K

,)
||||

(log20

2

2

10 dB
M

Awp
MSE

array

H

reshape

array


 dB

M

pAy
MSE
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k
spatial )
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(log20

2

2
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M. Chen, W. Wang, M. Barnard, and J.A. Chambers, "Wideband DoA Estimation Based on Joint Optimisation of 
Array and Spatial Sparsity", in Proc. European Signal Processing Conference (EUSIPCO 2017), Kos Island, Greece, 
August 28- September 2, 2017. (accepted) 



JASSO for Wideband DoA estimation 

Experiment results 

21 

Figure 3. Wideband DoA estimations for the moving source, the 3D graph illustrates the 
simulation result at the 20-th time step and the spectrogram is the DoA estimation for the 
last frequency band, 69/300 active sensors. 

16 May 2017 



JASSO for Wideband DoA estimation 
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Experiment results 

We also compare the joint approach with a baseline which only considers the spatial a baseline which only considers the spatial 
sparsitysparsity--based optimisation using a full arraybased optimisation using a full array. Only noiselessnoiseless signals at frequency bands of 
1000 Hz and 1100 Hz1000 Hz and 1100 Hz were processed and the total running time              . 

Figure 4. MSEspatial for the moving source 
without noise. 

Figure 5. DoA estimated for the moving source  
without noise at the frequency band of 1100 Hz, 
59/300 active sensors 

100K
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Co-Prime Sampling Arrays 

Enhancing the degrees-
of freedom (DoFs) 

Original co-prime arrays: 
2/N

8M

5N

2/M

DoA estimation 

Correlations 

Difference co-array: 10,10,  MmNnNmMn

Improved co-prime arrays2: 

P. Vaidyanathan and P. Pal. "Sparse Sensing With Co-Prime Samplers and Arrays," IEEE TSP, vol. 59, no. 2, Feb 2011. 

2/N

Detecting more sources than  

the number of sensors 

Nested array 

Causing mutual 
coupling   Co-Prime 

sampling arrrays   

Less mutual coupling, 
using more sensors   

Sensor reduction strategySensor reduction strategy  

Improved 

2/M

Difference co-array: 

10,121,  MmNnNmMn
More DoFs 

but more sensors 
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Conclusions and Future Works 
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• A sparse Bayesian algorithm has been presented and tested on the Portland03 dataset 

and shows good performance for source localisation for this challenging dataset. 

 

• A twotwo--stepstep  iterativeiterative  algorithmalgorithm is proposed for narrowbandnarrowband and widebandwideband DoA 

estimation based on joint optimisation of array and spatial sparsity. The results 

evaluated for both stationarystationary  sourcessources  andand  movingmoving  sourcessources show that the proposed 

algorithm can maintain performance while using a reduced number of sensor for 

source localisation. This can be useful for joint source localisation and sensor 

selection. 

 

• Sparse co-prime array based on Chinese remainder theorem is an interesting and 

emerging direction for the next stage of work. 

 

Conclusions 
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