Guard-free OFDM transmission for Underwater Acoustic Communications

Yuriy Zakharov

yury.zakharov@york.ac.uk

Overview

Data transmission

Sea trials / channel model

Receiver design:

- ✓ Single-hydrophone receiver
- ✓ Multiple-antenna receiver
- ✓ Doppler estimation

Conclusions

Transmitted signal

Guard-free OFDM symbols

$$\cdots \xrightarrow{s_{p-1}(t)} \xrightarrow{s_p(t)} \xrightarrow{s_p(t)} \xrightarrow{s_{p+1}(t)} \cdots$$

$$s_p(t) = \Re\left\{e^{j2\pi f_c t} \sum_{k=-\frac{N_s}{2}}^{\frac{N_s}{2}} [M(k) + jD_p(k)]e^{\frac{j2\pi kt}{T_s}}\right\} = d(t) + p(t)$$

- $f_c = 3072 \text{ Hz}$
- $N_s = 1024$: number of sub-carriers
- F = 1024 Hz: frequency bandwidth
- $M(k) \in [-1, +1]$: pilot sequence
- $D_p(k) \in [-1, +1]$: information data (coded across sub-carriers)
- p = 1, ..., L: index of an OFDM symbol

Y. Zakharov and V. Kodanev, in Acoustical Physics, (1994,1995, 1996, 2000).

Superimposed data and pilot signals

Structure of single-hydrophone receiver

Y. Zakharov and A. Morozov, "OFDM transmission without guard interval in fast-varying underwater acoustic channels." *IEEE Journal of Oceanic Engineering* (2015).

Comparison with an *ideal* receiver

Ideal receiver:

- 1. The channel is perfectly known.
- 2. The same multipath delay spread as in the sea experiment.
- 3. There is a cyclic prefix longer than the channel delay spread, no ISI.
- 4. No Doppler spread, no ICI.
- 5. No superimposed pilot, thus no interference from the pilot.
- 6. The SNR time-variation is the same as in the sea experiment

Space-time clustering

J. Li and Y. Zakharov, "Efficient use of space-time clustering for underwater acoustic communications", *IEEE Journal of Oceanic Engineering*, (2017 to appear).

Receiver with space-time processing

Spatial filter:

BER performance (105 km)

Receiver	BER(code 1/3)	Complexity (MACs) †
Single hydrophone	0.45	83×10^{6}
All 14 hydrophones	2.7×10^{-3}	1160×10^{6}
Single angle 8.4 ^o	9.1×10^{-2}	100×10^{6}
Two angles with max powers	8.9×10^{-2}	185×10^{6}
Clusters (angles 8.4^o and -9^o)	0	185×10^{6}

code rate : 1/3 [225 331 367]

Single-hydrophone SNR:

†: multiply-accumulate operations

Reducing the delay and Doppler spread (105 km)

Hydrophone 1:

Waymark model: Virtual signal transmission

C. Liu, Y. Zakharov, and T. Chen, "Doubly selective underwater acoustic channel model for a moving transmitter/receiver." *IEEE Transactions on Vehicular Technology* (2012).

Multi-branch autocorrelation (MBA) Doppler estimator

$$\begin{array}{c} \underline{x(t)} \\ \hline \overline{h}(t,\tau) \end{array} \xrightarrow{s_0(t)} \delta(\tau - \tau_d(t)) \end{array} \xrightarrow{s_0(t - \tau_d(t))}$$

BER PERFORMANCE OF THE RECEIVER WITH THE THREE DOPPLER ESTIMATORS; DATA RATE: 1/2 BPS/HZ.

Doppler estimator	Code [3 7]	Code [23 35]	Code [561 753]
CAF	$4.5 \cdot 10^{-3}$	$8.5 \cdot 10^{-4}$	$2.0 \cdot 10^{-5}$
SBA	0.30	0.34	0.37
MBA	$4.8 \cdot 10^{-3}$	$9.2 \cdot 10^{-4}$	0

CAF: cross-ambiguity function SBA: single-branch autocorrelation MBA: multi-branch autocorrelation

Comparing to the CAF method, the reduction in complexity is about 10 times.

J. Li, Y. Zakharov, and B. Henson, "Multi-branch autocorrelation method for Doppler estimation in UWA channels", *IEEE Journal of Oceanic Engineering*, (2017, under review).

Summary

- ***** Guard-free OFDM transmission makes sense in UWA channels
- Superimposed pilot signals are very useful in dynamic UWA channels.
- Space-time processing significantly improves the detection performance; the cluster combining takes into account the specific UWA propagation and also very useful.
- Waymark model allows the virtual signal transmission. It is useful to make complicated "sea experiments".
- MBA Doppler estimator has performance close to that of the ambiguity function Doppler estimator, but with significantly reduced complexity.