

INTRODUCTION TO RADAR SIGNAL PROCESSING

Christos Ilioudis University of Strathclyde

CeSIP Centre for Signal & Image Processing

Overview

- History of Radar
- Basic Principles
- Principles of Measurements
- Coherent and Doppler Processing
- Waveforms Design and Pulse Compression
- Closing Remarks
- Reading Material

History – Before Radar

- Between the World Wars, parabolic sound mirrors, were used to provide early warming;
- Acoustic mirrors had a limited effectiveness, and the increasing speed of aircraft in the 1930s meant that they would already be too close to deal with by the time they had been detected.
- Radio transmitters had already been in use for over a decade for communications.

Top: (L) Bombing during the WW1, (R) "Whisper Dishes" **Bottom:** (L) WW2 Bombers, (R) Four-horn acoustic locator,1930s

History – Radio Detection

- Radar was first patented and demonstrated in 1904 by the German engineer Christian Hulsmeyer;
- Watson Watt is generally credited with initiating what would later be called radar;
- In June 17, 1935, a radio-based detection and ranging was first demonstrated in Great Britain;
- The first Radar system used by the British comprised 21 stations placed along the country's eastern coast.

Left: (T) Christian Hulsmeyer, (B) Watson Watt, Right: Chain Home coverage map

Today – Radar

- Modern Radar are very **diverse**;
 - Military Radars;
 - Imaging Radars;
 - Radar Gun;
 - Automotive Radars;
 - Civil Aviation Radars;
 - Weather Radars;
 - Ground Penetrating Radars;

Basic Principles

- Radar is an acronym for RAdio Detection And Ranging;
- An object detection system that transmits electromagnetic (EM) waves and analyses the echoes coming from the objects;
- Why use radar?
 - Radar can operate in any weather conditions (e.g. darkness, fog, rain);
 - Radar can perform its function at long and short ranges;
 - Radar can provide measurements in high accuracy.

Radar vs. optical image, penetration of clouding, ©Cassidian radar, ©Eurimage, optical.

Radar Categorisation

Operation:

- **Primary**: Target monitoring;
- Secondary: Transponder on the target (Fig.);
- Illuminator:
 - Active: Uses its transmitter to illuminate the target;
 - Passive: Exploit illuminators of opportunity (Fig.);
- Transmission rate:
 - **Pulsed:** Emit separated pulses;
 - Continuous Wave (CW): Constant transmission (Fig.);
- Geometry:
 - Monostatic: Transmitter and receiver in the same location (Fig. Left);
 - Bistatic: Transmitter and receiver in separate locations (Fig. Right).

- 1. The radar is transmitting an EM pulse;
- 2. The radar switches to listening mode;
- 3. The pulse is reflected by a target;
- 4. The radar receives the echoes from the transmitted pulse.
- Using various properties of the received echo, the radar can extract parameters such as the range and velocity of the target

- 1. The radar is transmitting an EM pulse;
- 2. The radar switches to listening mode;
- 3. The pulse is reflected by a target;
- 4. The radar receives the echoes from the transmitted pulse.
- Using various properties of the received echo, the radar can extract parameters such as the range and velocity of the target

- 1. The radar is transmitting an EM pulse;
- 2. The radar switches to listening mode;
- 3. The pulse is reflected by a target;
- 4. The radar receives the echoes from the transmitted pulse.
- Using various properties of the received echo, the radar can extract parameters such as the range and velocity of the target

- 1. The radar is transmitting an EM pulse;
- 2. The radar switches to listening mode;
- 3. The pulse is reflected by a target;
- 4. The radar receives the echoes from the transmitted pulse.
- Using various properties of the received echo, the radar can extract parameters such as the range and velocity of the target

- 1. The radar is transmitting an EM pulse;
- 2. The radar switches to listening mode;
- 3. The pulse is reflected by a target;
- 4. The radar receives the echoes from the transmitted pulse.
- Using various properties of the received echo, the radar can extract parameters such as the range and velocity of the target

Principles of Measurements

- Radar Equation
- Distance Determination
- Range Resolution
- Direction Determination
- Pulse Repetition Interval
- Maximum Unambiguous Ranges
- Data Matrix and Data Cube

Radar Equation

The radar equation is referring to the power of the echo returning to the radar;

$$P_r = \frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 R^4 L} \to R = \sqrt[4]{\frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 L P_r}}$$

- P_t : Transmit power;
- *G* : Antenna gain;
- λ : Radar operating wavelength;
- σ : Target radar cross section (**RCS**);
- *R* : Range from the radar to the target;
- *L* : Other losses (system, propagation).
- Low frequencies are preferable for long-range radar;
- Low RCS targets are harder to detect.

Top: Expected atmospheric path loss as a function of frequency;

Bottom: Mazda 6 RCS, Image courtesy of Hasch et al.

Distance Determination

- To determine the distance between the radar and a target, the delay of the echoed pulse id utilised;
 - Given that EM waves travel at $c = 3 \times 10^8 m/s$
 - If the echo delay is τ , the **range** of the target is:

$$\mathbf{R} = \frac{\pi c}{2}$$

Range Resolution

- The resolution of radar is its ability to distinguish between targets that are in very close proximity.
- The range resolution ρ of a radar is:

$$\rho \ge \frac{cT}{2} \approx \frac{c}{2B}$$

T: Duration of pulse

- **B**: Bandwidth of signal
- Sorter pulses will have higher bandwidth, leading to better resolution.

Range resolution issue between targets in close proximity with each other (T) Two resolved targets; (B) One resolved target. Red part denoted the overlap between the two echoes

D > cT/2

Direction Determination

- The target's direction is determined by the directivity of the antenna, which represents the ability of the antenna to transmit the energy in a particular direction.
- Both the target's azimuth and elevation angles can be determined by measuring the direction in which the antenna is pointing when the echo signal is received.

Left: Radiation pattern of a Helical Antenna Right: Illumination in different azimuth and elevation angles using a directional antenna.

Direction Determination (cont.)

■ The antenna can be steered in the desired direction mechanically or electronically.

Example of radar scanning between two azimuth sectors, Left: Top view; Right: Radar indicator;

Direction Determination (cont.)

■ The antenna can be steered in the desired direction mechanically or electronically.

Example of radar scanning between two azimuth sectors, Left: Top view; Right: Radar indicator;

Direction Determination (cont.)

■ The antenna can be steered in the desired direction mechanically or electronically.

Example of radar scanning between two azimuth sectors, Left: Top view; Right: Radar indicator;

Pulse repetition Interval

- Pulse Repetition Interval (PRI) is defined as the time interval between consequent pulses;
- Pulse Repetition Frequency (PRF) is given as: PRF = 1/PRI
- Duty cycle is defined as the time proportion of PRI in which the transmission takes place: Duty Cycle = T/PRI
- If the same antenna is used for transition and reception, the duty cycle gives a measure of how long the radar is "blind".

Maximum Unambiguous Range

The maximum unambiguous range defines the maximum distance to locate a target.

$$R_{\max} = \frac{cPRI}{2} = \frac{c}{2PRF}$$

 Radar is not able to discriminate between echoes from an older and the current transmission.

Left: Radar and two real targets (dark), one in (T1) and one out (T2) of unambiguous range, second target (T2) appears in closer range (light).

Right: Transmitted (dark) and received pulses (light) at the radar in time, radar confuses the echo from fist pulse to second target (P1,T2) to an echo from second pulse (P2) and a target at a closer range ($R_{\text{max}} - R_2$).

Maximum Unambiguous Range

The maximum unambiguous range defines the maximum distance to locate a target.

$$R_{\max} = \frac{cPRI}{2} = \frac{c}{2PRF}$$

 Radar is not able to discriminate between echoes from an older and the current transmission.

Left: Radar and two real targets (dark), one in (T1) and one out (T2) of unambiguous range, second target (T2) appears in closer range (light).

Right: Transmitted (dark) and received pulses (light) at the radar in time, radar confuses the echo from fist pulse to second target (P1,T2) to an echo from second pulse (P2) and a target at a closer range ($R_{\text{max}} - R_2$).

- Radar returns from each PRI are stored in memory for further processing;
- **Fast Time** refers to the different time slots composing a PRI, sampling rate dependent;
- **Slow Time** updates every PRI;

Sampling Interval $\approx 1/B$

- Radar returns from each PRI are stored in memory for further processing;
- **Fast Time** refers to the different time slots composing a PRI, sampling rate dependent;
- Slow Time updates every PRI;

Sampling Interval $\approx 1/B$

- Radar returns from each PRI are stored in memory for further processing;
- **Fast Time** refers to the different time slots composing a PRI, sampling rate dependent;
- Slow Time updates every PRI;

Sampling Interval $\approx 1/B$

- Radar returns from each PRI are stored in memory for further processing;
- **Fast Time** refers to the different time slots composing a PRI, sampling rate dependent;
- Slow Time updates every PRI;

Sampling Interval $\approx 1/B$

- Radar returns from each PRI are stored in memory for further processing;
- **Fast Time** refers to the different time slots composing a PRI, sampling rate dependent;
- Slow Time updates every PRI;

Sampling Interval $\approx 1/B$

Data Cube

- Data Cube is an extension to Data Matrix including spatial sampling;
- In cases that the radar uses multiple receiving channels, the data matrices from each receiver are stacked to form a data cube;

Illustration of a data cube for *L* time samples in each PRI and *M* PRI in a system composed of *N* receiver channels.

Coherent and Doppler processing.

- Spectrum of Continuous Wave Signal;
- Spectrum of Pulsed Signal;
- Range-Doppler Maps;

- Consider a continuous wave (CW) radar with operating frequency f_0 ;
- In the presence of a target moving with radial velocity u_r, due to the Doppler phenomenon, the echoed signal will be shifted in frequency by:

$$f_D = \frac{u_r}{c} f_0$$

• **Positive** Doppler shifts $(f_D > 0)$ indicate that the target is moving **towards** the radar, while **negative** $(f_D < 0)$ **away** from it;

- Consider a continuous wave (CW) radar with operating frequency f_0 ;
- In the presence of a target moving with radial velocity u_r, due to the Doppler phenomenon, the echoed signal will be shifted in frequency by:

$$f_D = \frac{u_r}{c} f_0$$

• **Positive** Doppler shifts $(f_D > 0)$ indicate that the target is moving **towards** the radar, while **negative** $(f_D < 0)$ **away** from it;

- Consider a continuous wave (CW) radar with operating frequency f_0 ;
- In the presence of a target moving with radial velocity u_r, due to the Doppler phenomenon, the echoed signal will be shifted in frequency by:

$$f_D = \frac{u_r}{c} f_0$$

• **Positive** Doppler shifts $(f_D > 0)$ indicate that the target is moving **towards** the radar, while **negative** $(f_D < 0)$ **away** from it;

- Consider a continuous wave (CW) radar with operating frequency f_0 ;
- In the presence of a target moving with radial velocity u_r, due to the Doppler phenomenon, the echoed signal will be shifted in frequency by:

$$f_D = \frac{u_r}{c} f_0$$

• **Positive** Doppler shifts $(f_D > 0)$ indicate that the target is moving **towards** the radar, while **negative** $(f_D < 0)$ **away** from it;

Spectrum of Pulsed Signal

In most radar systems, the bandwidth of a single pulse may be a few orders of magnitude greater than the expected Doppler frequency shift:

 $\frac{1}{T} \gg f_D$

- Echoes from moving targets cannot be discriminated from stationary clatter in spectrum;
- Using consequent pulsed over a coherent pulse interval (CPI), the single pulse bandwidth is divided into spectral line of approximate bandwidth 1/CPI.

Spectrum of Pulsed Signal

In most radar systems, the bandwidth of a single pulse may be a few orders of magnitude greater than the expected Doppler frequency shift:

 $\frac{1}{T} \gg f_D$

- Echoes from moving targets cannot be discriminated from stationary clatter in spectrum;
- Using consequent pulsed over a coherent pulse interval (CPI), the single pulse bandwidth is divided into spectral line of approximate bandwidth 1/CPI.

Spectrum of Pulsed Signal

In most radar systems, the bandwidth of a single pulse may be a few orders of magnitude greater than the expected Doppler frequency shift:

 $\frac{1}{T} \gg f_D$

- Echoes from moving targets cannot be discriminated from stationary clatter in spectrum;
- Using consequent pulsed over a coherent pulse interval (CPI), the single pulse bandwidth is divided into spectral line of approximate bandwidth 1/CPI.

2/T

PRF

Range-Doppler Maps

- In a moving target the **phase information** appears in each received pulse.
- Different returns can be **separated** in the Doppler domain.
- Range-Doppler map is contracting by converting Fast time to Range and Slow time to Doppler by applying Fourier Transform.

Scenario of 3 targets: two in the same range bin and different velocity (green and orange) and one in different range (blue), (L) In Data matrix two targets can be separated, (R) In Range-Doppler map all 3 targets can be separated.

Waveforms Design and Pulse Compression

- Noise and Interference
- Matched Filter
- Pulse compression
- Linear Frequency Modulation
- Ambiguity Function

Noise and Interference

- Noise is a random, unwanted signal characterised by statistical properties;
- Sources of interference can be internal (equipment imperfections) or external (other RF transmissions), passive (clutter) or active (jammers);
- The power ratio between the useful and unwanted signal is defined as signal-to interfered-plus-noise ratio (SINR):

Matched Filter

- The knowledge of the transmitted signal is utilised to design a linear filter that maximises the SNR;
- In the presence of additive Gaussian noise, the optimum filter is a time reversed version of the transmitted signal ("matched");

$$h(t) = x^*(\tau_{\max} - t)$$

- h(t) : Matched filter of x(t);
- $\{\cdot\}^*$: Complex conjugate;
- $\tau_{max}~$: Time instant in which the SNR is maximised;
- For noise given by $\mathcal{CN}(0, \sigma^2)$, the maximum SNR is:

$$SNR_{max} = \frac{E}{\sigma^2}$$

E: Energy of the pulse.

The output of the matched filter is the auto-correlation of the pulse.

Range profile with a target at the red line (T) before and (B) after matched filter.

Pulse Compression

- Sort pulses provide good resolution but not enough energy for long distances;
- The resolution is (almost) proportional to the bandwidth;
- Using pulse compression long waveforms (high energy) can achieve the resolution of a short pulse by increasing their bandwidth through internal modulation;
- A side effect of pulse compression is the rise of undesired sidelobes;

Matched filter output of (T) an unmodulated square pulse and (B) a linear frequency modulated pulse.

Linear Frequency Modulation

- Pulse compression can be achieved using frequency modulation (FM);
- Linear FM (LFM) is a very popular choice;
- LFM achieve high resolution while keeping the H/W implementation relative simple;

 $x(t) = e^{j\pi(B/T)t^2}, \quad 0 \le t \le T$

 $f = \frac{B}{2T}t$: Instantaneous frequency;

- LFM suffer from high sidelobe levels (SLL);
- Using non-linear FM (NLFM) the SLL can be reduced but are more complex to generate.

Top: Real part of (L) an unmodulated pulse and (R) a LFM pulse;

Bottom: Time-Frequency profile of a LFM pulse.

Ambiguity Function – Definition

The ambiguity function (AF) is a 2-D function describing the response of a matched filter when the signal is received with a **delay** τ and a **Doppler shift** f_D relative to the expected:

$$A(\tau, f_D) = \left| x(t) x^*(t+\tau) e^{j2\pi f_D t} \right|$$

■ The **zero-Doppler cut** of the AF is given by the **autocorrelation** of the pulse:

 $A(\tau, 0) = |x(t)x^*(t+\tau)|$

The zero-Delay cut of the AF is given by the Fourier Transform (FT) of the squared modulus of the pulse:

 $A(0, f_D) = \left| |x(t)|^2 e^{j2\pi f_D t} \right|$

Ambiguity Function – Definition

The ambiguity function (AF) is a 2-D function describing the response of a matched filter when the signal is received with a **delay** τ and a **Doppler shift** f_D relative to the expected:

 $A(\boldsymbol{\tau}, \boldsymbol{f_D}) = \left| \boldsymbol{x}(t) \boldsymbol{x}^*(t + \boldsymbol{\tau}) e^{j2\pi \boldsymbol{f_D} t} \right|$

■ The **zero-Doppler cut** of the AF is given by the **autocorrelation** of the pulse:

 $A(\tau, 0) = |x(t)x^*(t+\tau)|$

The zero-Delay cut of the AF is given by the Fourier Transform (FT) of the squared modulus of the pulse:

 $A(0, f_D) = ||x(t)|^2 e^{j2\pi f_D t}|$

Illustration of the AF for (L) an unmodulated pulse, (R) a LFM.

Illustration of the AF for (L) an unmodulated pulse, (R) a LFM.

Resolution

Illustration of the AF for (L) an unmodulated pulse, (R) a LFM.

Side Lobe Levels

Illustration of the AF for (L) an unmodulated pulse, (R) a LFM.

Time-Frequency Response

Closing Remarks

- Basic radar principles were discussed;
- Introduction on radar acquisitions and signal processing;
- Introduction on pulse compression and waveform design tools;

Reading Material

- Principles Of Modern Radar: Basic Principles
 Mark A Richards;
- Radar Signals
 - Nadav Levanon;
- Radar System Analysis and Design Using MATLAB
 Bassem R. Mahafza.

University of **Strathclyde** Glasgow

The University of Strathclyde is a charitable body, registered in Scotland, with registration number SC015263

THANK YOU