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Structure of Talk 

• Introduce the source separation problem and its application 

domains 

• Key books and literature reviews  

• Technical preliminaries 

• Concepts of ICA – independence and non-Gaussianity 

• Types of mixtures 

• Taxonomy of algorithms 

• Performance measures 

• Linear v. non linear unmixing 

• Conclusions and acknowledgements 

 

 
 



What is Source Separation? 

- An Example 

Aapo Hyvarinen and Erkki Oja, Independent component analysis: algorithms and 
applications, Neural Networks, vol. 13, pp. 411-430, 2000 

Two original signals  

(unknown sources) 

Two observed signals (known 

mixtures, recorded by sensors) 
Estimates of the original 

source signals 



Fundamental Model for ICA/Blind 

Source Separation 
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Potential Application Domains 

Biomedical signal processing 

• Electrocardiography (ECG, FECG, and MECG) 

• Electroencephalogram (EEG)  

• Electromyography (EMG) 

• Magnetoencephalography (MEG) 

• Magnetic resonance imaging (MRI) 

• Functional MRI (fMRI) 



Biomedical Signal Processing 

(a) Blind separation for the enhancement of sources, cancellation of noise, 
elimination of artefacts 

(b) Blind separation of FECG and MECG 

(c) Blind separation of multichannel EMG    [Ack. A. Cichocki] 



Audio Signal Processing 

 
Cocktail party problem 

• Speech enhancement 

• Crosstalk cancellation 

• Convolutive source separation 



Objective of Machine-based 

Source Separation 

     

Human auditory system 
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• Scene analysis;  

• Hearing aids;  

• Robot audition;  

• Human computer interaction 



 
 
 
 
 
 
 
 
 

• Room reverberation: multiple reflections of the sound on wall surfaces 
and objects in an enclosed environment 
 

• Source separation becomes more challenging as the level of 
reverberation increases!!  

 

• The mixing process is convolutive! 

A typical room impulse response 
(RIR) 

The Convolutive Source 

Separation Problem 



Communications & Defence  

Signal Processing  

• Multiuser/multi-access communications systems 

• Multi-sensor sonar/radar systems 

• Digital radio with spatial diversity 

• High speed digital subscriber lines 

 



Image Processing 

• Image restoration (removing blur, clutter, noise, 
interference etc. from the degraded images) 

 

• Image understanding (decomposing the image to basic 
independent components for scene analysis and 
recognition) 



Blind Image Restoration 
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Technical Preliminaries:- 

Temporal/Spatial Covariance Matrices  

(zero-mean WSS signals) 
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Linear Algebra 
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Linear equation: 

m=n,  exactly determined 

m>n,  over determined 

m<n,  under determined (or overcomplete)  

xHs   
where: 

unknown 

known 

known 



Linear Equation-:  

Exactly Determined Case 

When m=n: 

If H is non-singular, the solution is uniquely defined by: 

  1
xHs



If H is singular, then there may either be no solution 
(the equations are inconsistent) or many solutions. 



Linear Equation :-  

Over determined Case 

When m>n: 

If the H is full rank (or the columns of H are linearly 
independent), then we have the least squares solution: 

 )( 1
xHHHs

HH 

This solution is obtained by minimization of the norm of 
the error (exploiting orthogonality principle): 

2
  Hsxe 

2



Linear Equation :-  

Underdetermined Case 

When m<n: 

There are many vectors that satisfy the equations, and a 
unique solution is defined to satisfy the minimum norm 
condition: 

 )( 1
xHHHs

 HH

If H has full rank, then minimum norm solution is 
(pseudo inverse): 

smin



Permutation and Scaling Matrices 

Permutation matrix: 

(an example: 5x5) 
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(an example: 5x5) 
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Conventional ICA Techniques for  

Blind Source Separation 

Solution - making assumptions: 

1. The sources are statistically (mutually) 
independent from each other. 
 

2. The mixing matrix H is a full rank matrix with 
m no less than n. 
 

3. At most one source signal has Gaussian 
distribution. 

H is unknown, i.e. no prior information about H 



Illustration of ICA 

Joint distribution of two independent 
components s1 and s2 that are uniformly 
distributed. These two componenents are 
mixed using a mixing matrix H = [2  3; 2  1]  
to obtain the mixed variables x1 and x2. 

Joint distribution of the two mixtures x1 and 
x2 which are still uniformly distributed on the 
parallelogram.  By finding the edges, we can 
potentially estimate the mixing matrix H. 
However, for other distributions this would 
become much more complicated. 

Aapo Hyvarinen and Erkki Oja, Independent component analysis: algorithms and 
applications, Neural Networks, vol. 13, pp. 411-430, 2000 



Why non-Gaussianity? 

The joint distribution of x1 and x2 when the sources s1 and s2 are both Gaussian. 
This figure shows that the joint density is symmetric and does not give any 
information about the direction of the columns of the mixing matrix H. 

Aapo Hyvarinen and Erkki Oja, Independent component analysis: algorithms and 
applications, Neural Networks, vol. 13, pp. 411-430, 2000 



Maximizing non-Gaussianity Gives 

Independent Components 

• Central Limit Theorem: the distribution of a sum of independent random 
variables tends toward a Gaussian distribution. 

• How could we use the Central Limit Theorem to estimate the mixing 
matrix H then? 
 
 
 

• From this equation, we can see that y is always more Gaussian than s. 
• It is clear that if only one of the elements zi  of z  is nonzero, we would 

get the least-Gaussian y. 
• In n-dimensional space (i.e. n sources), w would have 2n local maxima 

(“2” here comes from the sign ambiguity). To more quickly find these 
local maxima, a whitening process is often employed to make the 
subsequent estimate uncorrelated with the previously obtained ones. 

 

  szHswxw
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Indeterminacies and Ambiguities  

with the Model 

sPWHsWxy 

Separation process: 

Separation matrix Permutation matrix 

Scaling matrix 



Independence Measurement 

224 ))((3)()( yEyEykurt 

Kurtosis (fourth-order cumulant for the measurement 
of non-Gaussianity): 

In practice, we need to find out the direction where the kurtosis 
of y grows most strongly (super-Gaussian signals) or decreases 
most strongly (sub-Gaussian signals). 

 

(To be covered in detail by Mohsen Naqvi) 



Independence Measurement-Cont. 

Mutual information (MI): 

In practice, minimization of MI leads to the statistical 
independence between the output signals. 
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(To be covered in detail by Mohsen Naqvi) 



Independence Measurement-Cont. 

Kullback-Leibler (KL) divergence: 

Minimization of KL between the joint density and the product of 
the marginal densities of the outputs leads to the statistical 
independence between the output signals. 
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Types of Sources 

• Non-Gaussian signals (super/sub-Gaussian) 
[Conventional BSS] 

• Stationary signals [Conventional BSS] 

• Temporally correlated but spectrally disjoint signals 
[SOBI, Belouchrani et al., 1993] 

• Non-stationary signals [Freq. Domain BSS, Parra & 
Spence, 2000] 

• Sparse Signals [Mendal, 2010] 

 

 



Types of Mixtures 

• Instantaneous mixtures (memory-less, flat fading): 

  Hsx 
A scalar matrix 

•  Convolutive mixtures (with indirect response with time-
delays) 

  sHx  A filter matrix 

  TT
Hsx  (Transpose form) 

(Direct form) 



Types of Mixtures-Cont. 

•  Noisy and non negative mixtures (corrupted by noises and 
interferences): 

0s0H

nHsx





 and  where

  Noise 
vector 

  

• Non-linear mixtures (mixed with a mapping function) 

Unknown nonlinear 
function 

 sx F



Taxonomy of Algos. :-  

Block Based- JADE 

Joint Approximate Diagonalization of Eigen-
matrices (JADE) (Cardoso & Souloumiac, 1993): 

1. Initialisation. Estimate a whitening matrix V, and set 

2. Form statistics. Est. set of 4th order cumulant matrices:  

Vxx 

iQ

3. Optimize an orthogonal contrast. Find the rotation matrix U such that 
the cumulant matrices are as diagonal as possible (using Jacobi rotations), 
that is  






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
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i

i

Hoff )(minarg UQUU
U

4. The separation matrix is therefore obtained by rotation & whitening:  

VUVUW
1 H 



Taxonomy of algorithms:-  

Block Based - SOBI. 

Second Order Blind Identification (SOBI) (Belouchrani et al., 1993): 

1. Perform robust orthogonalization: 

2. Estimate the set of covariance matrices: 

)()( kk Vxx 

3. Perform joint approximate diagonalization:  

T

iip UUDRx )(ˆ

4. Estimate the source signals:  

)()(ˆ kk T
VxUs 

T

i

N

k

i

T

i ppkkNp VRVxxR xx )(ˆ)()()/1()(ˆ

1

 

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Taxonomy of Algorithms:-  

Block Based - FastICA 

Fast ICA ( Hyvärinen & Oja, 1999): 

1. Choose an initial (e.g. random) weighting vector W 

2. Let  

3. Let  

4. If not converged, go back to step 2. 

Non-linearity g(.) chosen as a function of sources. 

     WxWxWxW
TT gEgE 

 WWW

(Details to be covered by Mohsen Naqvi) 



Taxonomy of Algos:-  

Sequential - InforMax 

InforMax (Minimal Mutual Information/Maximum 
Entropy) (Bell & Sejnowski, 1995): 
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Taxonomy of Algos:-  

Sequential - Natural Gradient 

Natural Gradient (Amari & Cichocki, 1998): 
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General adaptation equation: 
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(Details to be covered by Mohsen Naqvi) 



Performance Measurement 
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Performance Measurement – Cont. 

• Signal to Interference Ratio 

• Signal to Artefact Ratio 

• Signal to Distortion Ratio 

 

• Perceptual Evaluation Speech Quality (PESQ) 

• Perceptual Evaluation Audio Quality (PEAQ) 

• Perceptual Evaluation of Audio Source Separation (PEASS) 



From Time to Time-Frequency Domain 

• Time-frequency domain: frequency domain ICA/time 
frequency masking (more to be covered in my second lecture) 

• Time domain: Multichannel ICA/Beamforming (more 
to be discussed by Mohsen Naqvi and Stephan Weiss)  



Time-Frequency Masking 

Audio sources can be extracted by simple masking operations 

X 

Masks mixture 

Source 1 Source 2 Source 3 



Other Methods and Recent Trends 

• Polynomial matrix decomposition (to be covered by 
Stephan Weiss) 

• Non-negative matrix factorization 

• Sparse representations 

• Low-rank representation 

• Deep neural networks 

• Informed/assisted/supervised/semi-supervised source 
separation 

• Interactive (on the fly) source separation 

• … 



Summary 

In this talk, we have reviewed: 

• BSS applications and concepts 

• Mathematical preliminaries 

• Type of sources and mixtures 

• Representative block and sequential algorithms 

• Performance measures 

• Transform domain separation 

• Other methods and recent trends 

 

Some of these will be discussed in more depth in the ensuing talks. 



Acknowledgements 

    We wish to express our sincere thanks for the support of 

Professor Andrzej Cichocki, Riken Brain Science Institute, 

Japan, and cites the use of some of the figures in his book in 

this talk. 

 

    The invitation to give this part of the vacation school.   

 



References 

• J.-F. Cardoso and A. Souloumiac. “Blind beamforming for non Gaussian signals”, In IEE 
Proceedings-F, vol. 140, no. 6, pp. 362-370, December 1993. 

• A. Belouchrani, K. Abed Meraim, J.-F. Cardoso, E. Moulines. “A blind source separation technique 
based on second order statistics”, IEEE Trans. on Signal Processing, vol. 45, no 2, pp. 434-44, Feb. 
1997.  

• A. Mansour and M. Kawamoto, “ICA Papers Classified According to their Applications and 
Performances”, IEICE Trans. Fundamentals, vol. E86-A, no. 3, pp. 620-633, March 2003. 

• Aapo Hyvärinen, “Survey on Independent Component Analysis”, Neural Computing Surveys, vol. 2, 
pp. 94-128, 1999.  

• A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent component analysis”, 

Neural Computation, vol. 9, no. 7, pp. 1483-1492, 1997.  

•  J. Bell, and T. J. Sejnowski,  “An information-maximization to blind separation and blind 

deconvolution”, Neural Comput., vol. 7, pp. 1129-1159, 1995.  

• S. Amari, A. Cichocki, and H.H. Yang, “A new learning algorithm for blind source separation”. In 

Advances in Neural Information Processing 8, pp. 757-763. MIT Press, Cambridge, MA, 1996. 

• L. Parra, and C. Spence, “Convolutive blind separation of non-stationary sources”, IEEE Trans. 

Speech Audio Processing, vol. 8, no. 3, pp. 320–327, 2000. 

• T.-W. Lee, Independent Component Analysis: Theory and Applications, Kluwer, 1998 . 

• A. Hyvarinen and E. Oja, Independent component analysis: algorithms and applications, Neural 

Networks, vol. 13, pp. 411-430, 2000. 

 

 

 



References 

• H. Buchner, R. Aichner, and W. Kellermann, “Blind source separation for convolutive mixtures: A 

unified treatment”. In Huang, Y. and Benesty, J., editors, Audio Signal Processing for Next-

Generation Multimedia Communication Systems, pp. 255–293. Kluwer Academic Publishers, 2004. 

• S. Araki, S. Makino, A. Mukai Blin, and H. Sawada, “Underdetermined blind separation for speech 

in real environments with sparseness and ICA”. In Proc. ICASSP, volume III, pp. 881–884, 2004. 

• M. I. Mandel, S. Bressler, B. Shinn-Cunningham, and D. P. W. Ellis, “Evaluating source separation 

algorithms with reverberant speech,” IEEE Transactions on Audio, Speech, and Language 

Processing, vol. 18, no. 7, pp. 1872–1883, 2010. 

• Y. Hu and P.C. Loizou, "Evaluation of objective quality measures for speech enhancement," IEEE 

Transactions on  Audio, Speech, and Language Processing, vol.16, no.1, pp.229-238, Jan. 2008.  

• Y. Luo, W. Wang, J. A. Chambers, S. Lambotharan, and I. Prouder, "Exploitation of source non-

stationarity for underdetermined blind source separation with advanced clustering  

techniques," IEEE Transactions on Signal Processing, vol. 54, no. 6, pp. 2198-2212, June 2006. 

• W. Wang, S. Sanei, and J.A. Chambers, "Penalty function based joint diagonalization approach for 

convolutive blind separation of nonstationary sources," IEEE Transactions on Signal Processing, 

vol. 53, no. 5, pp. 1654-1669, May 2005. 

• T. Xu, W. Wang, and W. Dai, "Sparse coding with adaptive dictionary learning for underdetermined 

blind speech separation", Speech Communication, vol. 55, no. 3, pp. 432-450, 2013. 

• Y. Yu, W. Wang, and P. Han, "Localization based stereo speech source separation using 

probabilistic time-frequency masking and deep neural networks", EURASIP Journal on Audio 

Speech and Music Processing, 2016:7, 18 pages, DOI 10.1186/s13636-016-0085-x, 2016. 

 


