Sparse Signal Processing Techniques for Electromagnetic Applications

John Thompson, University of Edinburgh

EPSRC "Low Power Mm-wave"

Research Associate:

Dr Evangelos Vlachos (*now at ISI ATHENA, Greece*) **PhD Student:**

Aryan Kaushik (*now at UCL, London*) UDRC WP2.2 Research Associate: Dr Fraser Coutts PhD Student: Kaiyu Zhang WP2 Lead: Prof. Bernie Mulgrew

Sparse Signal Processing

Sparse Signal Processing aims to reconstruct a signal X using as few samples of Y as possible, with the help of measurement matrix Φ

$$Y = \Phi X + W$$

 $m \ll n$

- Subject area received a lot of attention with Compressed Sensing (2006)
- More recently, techniques have evolved to be used in many sensing problems
- Discuss two examples for Mm-wave communications and Radar sensing

Emmanuel Candès

David Donoho

Part 1: Energy Efficient Mm-Wave Systems

- Millimetre wave bands provide higher capacity; use directional beamforming to mitigate channel effects
- First systems to launch operate around 24-28 GHz bands
- How does sparsity play a role in mm-wave communications?
 - Number of multipath components is small
 - Aim to minimise energy consumption and activated hardware components: Hybrid Architecture

Source: P. Cao et. al., "Constant Modulus Shaped Beam Synthesis via Convex Relaxation," IEEE AWP Letters, pp. 617-620, 2017.

Hybrid mm-Wave Architecture

- Using Multiple TX/RX Antennas enables Spatial Multiplexing
- N° TX Antennas $N_{\rm T} >> N^{\circ}$ of Spatial Streams $N_{\rm S}$
- Minimise N° of activated RF Chains L_T to improve energy efficiency

Optimising Energy Efficiency

- Communications system has TX power levels P_{TX}
- Given the spectral efficiency $R(\mathbf{P}_{TX})$
- And the TX/RX **power consumed** $P(\mathbf{P}_{TX})$
- The **Energy Efficiency** is defined by:

$$\operatorname{EE}(\mathbf{P}_{\mathrm{TX}}) \triangleq \frac{R(\mathbf{P}_{\mathrm{TX}})}{P(\mathbf{P}_{\mathrm{TX}})}$$
 (bits/Hz/J).

• Usually have a minimum rate constraint on $R(\mathbf{P}_{TX})$

Difficult quantity to optimise: Ratio of two complex functions

Power Consumption Modelling

- Interested in the total power P consumed by the transmit-receive system, not just the TX power P_{TX}
- Use a model that computes the power for each element of TX/RX, including circuit power consumption
- Assume TX power amplifier is 40% efficient
- Summing these terms gives total power consumed

Power Term	Value	$\mathbf{F}_{BB} = \mathbf{P}_{TX}^{\frac{1}{2}} \hat{\mathbf{F}}_{BB}$	TX Antennas ▽)))))	RX Antennas		
Power required by all circuit components	$P_{\rm CP} = 10 \ {\rm W}$	Switches			ADC-RF	
Power required by each RF chain	$P_{\rm RF} = 100 {\rm mW}$	Digital :	: Analog Char	nnel ^E Analog	Chain : :	Digital
Power required by each phase shifter	$P_{\rm PS} = 10 {\rm mW}$	$\begin{array}{c} \vdots \\ \mathbf{Precoder} \\ N_{\mathbf{S}} \\ \hline \mathbf{\hat{F}}_{\mathbf{BB}} \\ \vdots \\ \vdots \\ \end{array}$	Precoder N _T F	H N _R Combiner : W _{RF}	L _R : :	Combiner : W _{BB} _{Ns}
Power per TX/RX antenna element	$P_{\rm T} = P_{\rm R} = 100 \text{ mW}$	S DAC-RF		₩ <u>₹</u>	ADC-RF	r
Maximum allocated power	$P_{\max} = 1 \text{ W}$	Dinkelbach	t T	vill v	Dinkelbach	
		Method	•		Method	

Example Power Consumption Settings for a mm-wave MIMO system

Brute Force Approach

- Main Goal: Find N° of RF chains to maximise EE
- Basic Approach:
 - Measure the channel matrix **H**
 - Compute R(P_{TX}) and P(P_{TX}) for each possible number of RF chains
 - Find the number L_T^{opt} that maximises **EE**
- This approach directly solves the problem

Method is complex as we have to design a complete receiver for each Choice of RF chains!

Source: R. Zi et al., "Energy efficiency optimization of 5G radio frequency chain systems", IEEE JSAC., Vol. 34(4), pp. 758-771, 2016

Dinkelbach Method

First idea: Use approximation for rate $R(\mathbf{P}_{Tx})$ ۲

Dec. 2019.

Second idea: We adopt the Dinkelbach Method:

$$\max_{\mathbf{P}^{(m)}\in\mathcal{D}^{L_{\mathrm{T}}\times L_{\mathrm{T}}}}\left\{R(\mathbf{P}^{(m)})-\nu^{(m)}P(\mathbf{P}^{(m)})\right\}$$

- Used to optimize the ratio of two functions •
- Use several iterations to find the optimum number of RF • chains L_{T}^{opt} and value of **EE**
- Method much simpler than **Brute Force** but still yields good ٠ **Energy Efficient** solutions

Simulations

Simulated a single user MIMO system using 1000 Monte Carlo Runs with $N_{\rm T}$ =32 and $N_{\rm R}$ =8 antennas

System Parameter	Value	<u>Sy</u>	stems Studied
Number of clusters	$N_{\rm cl}=2$		Drute Cores
Number of rays	$N_{\rm ray} = 10$	1.	Brute Force
Angular spread	7.5°	2	Dinkolbach
Average power for each cluster	$\sigma_{\alpha,i} = 1$	Z .	DIIIKeibacii
Mean angles (azimuth domain)	$60^{\circ} - 120^{\circ}$	2	Analog – 1
Mean angles (elevation domain)	$80^{\circ} - 100^{\circ}$	З.	Analog
Normalized system bandwidth	1 Hz		RF chain
SNR	$1/\sigma_n^2$		
Amplifier efficiency	$1/\beta = 0.4$	4.	Digital – One
Minimum desired SE in (10)	$R_{\rm min} = 1$ bits/s/Hz		DC choin nor
Tolerance values	$\epsilon = 10^{-4}$ and $\epsilon_{\rm th} = 10^{-6}$		RF chain per
Number of available RF chains	$L_{\rm T} = L_{\rm R} = \text{length}(\text{eig}(\mathbf{H}\mathbf{H}^H))$		antonna
Spacing between antenna elements	$d = \lambda/2$ (e.g., $\lambda = 1/28$ GHz [13])		anicina
		-	

Simulation Results/Observations

Observations: Dinkelbach Method achieves similar EE to Brute Force method but lower SE than Digital; Dinkelbach Method typically converges in 3 iterations

Part 2: Reconfigurable Signal Processing

- **UDRC WP2.2:** Signal processing systems routinely dispose of information in the processing chain
- This "lost" information may be worth recovering:
 - for rapid reconfiguration to address imminent threat;
 - in post-engagement forensic analysis.
 - How does **sparsity** play a role:
 - Minimize storage needed for Y
 - Limits post-processing for estimation or classification

WP2.2: Research Questions & Challenges

What are:

- the fundamental limits of such information recovery;
- active steps that can be put in place to facilitate it;
- the algorithms to reconfigure the data flow to implement the necessary recovery?
- Typically operating in <u>resource</u> <u>constrained</u> scenarios

Demanding because it is not known *a priori* which "lost" information the operator will ask for.

Application to Micro-Doppler Signatures

- Model the received signals using stochastic Gaussian mixture distributions.
- Prior work has used real-valued magnitude data taken from time-frequency representations.
- Use Complex-valued framework to classify micro-Doppler (m-D) signatures with structured input noise.
- Potential to simultaneously detect the classes of:
 - a primary source exhibiting m-D features in its radar return;
 - a secondary, coincident source with its own m-D signature.
- Evaluations using real radar return data collected at Strathclyde University (Thanks to: Dr Carmine Clemente, Domenico Gaglione & Christos Ilioudis)

New Information Theoretic Result

• For the micro-Doppler scenario our signal model is:

 $\boldsymbol{Y} = \boldsymbol{\Phi}(\boldsymbol{X} + \boldsymbol{N}) + \boldsymbol{W} = \boldsymbol{\Phi}\boldsymbol{Z} + \boldsymbol{W} \qquad \qquad \boldsymbol{C} \to \boldsymbol{X} \to \boldsymbol{Z} \to \boldsymbol{Y}$

- Here X represents the information source of interest and N is the second/fleeting signal.
- In order to choose the best measurement matrix Φ , a new gradient function has been derived:

$$\nabla_{\mathbf{\Phi}} I(C; \mathbf{Y}) = \mathbf{\Lambda}^{-1} \mathbf{\Phi} \mathbf{E}_{\mathbf{z}, c}.$$

- The matrix Λ is the covariance matrix of the noise W and $E_{z,c}$ is a mean squared error matrix for Z
- The gradient calculation is used to iteratively improve Φ to optimise a given metric, e.g. correct signal classification

Source: F. Coutts et. al, "Information-Theoretic Compressive Measurement Design for Micro-Doppler Signatures", In Proc IEEE SSPD 2020 Conf.

Micro-Doppler Signature Example

- The main motion of an object with respect to a radar determines its predominant Doppler frequency shift.
- Any secondary motions, such as the rotation of an aircraft's rotor blades, contribute with features known as m-D signatures.
- E.G. Apache Helicopter, 4 blades of length 7.32m @ 289 rpm:

WP2.2: Generation of Radar Data

 UDRC Phase 2 dataset from Strathclyde comprises coincident radar returns from two sources.

- Our primary task is to classify the speed of the first fan.
- Can we make our measurement model flexible such that we can simultaneously detect the speed of the second fan?

Simulation Results

Primary, always-present source with classes C

> $\max_{\mathbf{\Phi}} F(\mathbf{\Phi}, \beta) = \max_{\mathbf{\Phi}} \{ I(C; \mathbf{Y}) + \beta \cdot I(L; \mathbf{Y}) \}$ Objective $\beta \geq 0$ **Function:**

Simulation Results

Simulation Results

Conclusions and Future Work

- Sparse signal processing techniques find a wide variety of applications in electromagnetic signals and sensing
- We have described a novel approach to maximise energy efficiency for mm-wave communications systems using Dinkelbach method
- We have also shown how sparse sampling techniques can be designed to extract information about a signal of interest
- Desire to investigate theoretical limits to a wide range of problems with different availability of side information/prior knowledge
- PhD: "Data Driven Information Recovery in Sensor Systems"
 - Kaiyu Zhang investigating potential applications in communications and radar signal processing

