
Sparse Signal Processing Techniques for 

Electromagnetic Applications

John Thompson, University of Edinburgh

UDRC WP2.2

Research Associate: 

Dr Fraser Coutts

PhD Student:

Kaiyu Zhang

WP2 Lead: 

Prof. Bernie Mulgrew

University Defence Research Collaboration (UDRC)
Signal Processing in the Information Age

EPSRC “Low Power Mm-wave”

Research Associate: 

Dr Evangelos Vlachos

(now at ISI ATHENA, Greece)

PhD Student:

Aryan Kaushik

(now at UCL, London)



• Sparse Signal Processing aims to reconstruct a signal X using as few 

samples of Y as possible, with the help of measurement matrix 
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Sparse Signal Processing

• Subject area received a lot of attention with 

Compressed Sensing (2006)

• More recently, techniques have evolved to 

be used in many sensing problems

• Discuss two examples for Mm-wave 

communications and Radar sensing 
Emmanuel 
Candès

David 
Donoho
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Part 1: Energy Efficient Mm-Wave Systems
 Millimetre wave bands provide higher capacity; use directional 

beamforming to mitigate channel effects

 First systems to launch operate around 24-28 GHz bands

 How does sparsity play a role in mm-wave communications?

 Number of multipath components is small

 Aim to minimise energy consumption and activated hardware 

components: Hybrid Architecture

Figure 2 of T.S. Rappaport et al, IEEE Access, May 2013

Source: P. Cao et. al., "Constant Modulus Shaped Beam Synthesis via Convex Relaxation," IEEE AWP Letters, pp. 617-620, 2017.

Source: 
IBM
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Hybrid mm-Wave Architecture

 Using Multiple TX/RX Antennas enables Spatial Multiplexing

 No TX Antennas NT >> No of Spatial Streams NS

 Minimise No of activated RF Chains LT to improve  energy efficiency
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Optimising Energy Efficiency

• Communications system has TX power levels PTX

• Given the spectral efficiency R(PTX)

• And the TX/RX power consumed P(PTX)

• The Energy Efficiency is defined by:

• Usually have a minimum rate constraint on R(PTX)

Difficult quantity to optimise: 

Ratio of two complex functions!
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Power Consumption Modelling

• Interested in the total power P consumed by the transmit-receive 

system, not just the TX power PTX

• Use a model that computes the power for each element of TX/RX, 

including circuit power consumption

• Assume TX power amplifier is 40% efficient

• Summing these terms gives total power consumed P(PTX)

Example Power Consumption Settings 

for a mm-wave MIMO system
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Brute Force Approach

• Main Goal: Find No of RF chains to maximise EE

• Basic Approach:

• Measure the channel matrix H

• Compute R(PTX) and P(PTX) for each possible number of 

RF chains

• Find the number LT
opt that maximises EE

• This approach directly solves the problem

Method is complex as we have to 

design a complete receiver for 

each Choice of RF chains!

Source: R. Zi et al., “Energy efficiency optimization of 5G 
radio frequency chain systems”, IEEE JSAC., Vol. 34(4),  
pp. 758-771, 2016
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Dinkelbach Method
• First idea: Use approximation for rate R(PTX) 

• Second idea: We adopt the Dinkelbach Method: 

• Used to optimize the ratio of two functions

• Use several iterations to find the optimum number of RF 

chains LT
opt and value of EE

• Method much simpler than Brute Force but still yields good 

Energy Efficient solutions

Source: A. Kaushik et al., "Dynamic RF Chain Selection for 
Energy Efficient and Low Complexity Hybrid Beamforming     
in Millimeter Wave MIMO Systems"  IEEE TGCN, Vol. 3(4), 
Dec. 2019.
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Simulations

Simulated a single user MIMO system using 1000 Monte 

Carlo Runs  with NT=32 and NR=8 antennas

Systems Studied:

1. Brute Force

2. Dinkelbach

3. Analog – 1 

RF chain

4. Digital – One 

RF chain per 

antenna
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Simulation Results/Observations

Observations: Dinkelbach Method achieves similar EE to 

Brute Force method but lower SE than Digital;

Dinkelbach Method typically converges in 3 iterations 

NT=32 & NR=8 
antennas



• UDRC WP2.2: Signal processing 

systems routinely dispose of 

information in the processing chain

• This “lost” information may be worth 

recovering: 

• for rapid reconfiguration to 

address imminent threat; 

• in post-engagement forensic 

analysis.

• How does sparsity play a role:

• Minimize storage needed for Y

• Limits post-processing for 

estimation or classification
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Part 2: Reconfigurable Signal Processing
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WP2.2: Research Questions & Challenges

What are:

• the fundamental limits of such 

information recovery;

• active steps that can be put in place 

to facilitate it;

• the algorithms to reconfigure the 

data flow to implement the 

necessary recovery?

• Typically operating in resource 

constrained scenarios

Demanding because it is not known 

a priori which “lost” information the 

operator will ask for.
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Application to Micro-Doppler Signatures

• Model the received signals using stochastic Gaussian 

mixture distributions.

• Prior work has used real-valued magnitude data taken from 

time-frequency representations.

• Use Complex-valued framework to classify micro-Doppler 

(m-D) signatures with structured input noise. 

• Potential to simultaneously detect the classes of:

• a primary source exhibiting m-D features in its radar return;

• a secondary, coincident source with its own m-D signature. 

• Evaluations using real radar return data collected at 

Strathclyde University (Thanks to: Dr Carmine Clemente, 

Domenico Gaglione & Christos Ilioudis)
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New Information Theoretic Result

• For the micro-Doppler scenario our signal model is:

• Here X represents the information source of interest and N is 

the second/fleeting signal.

• In order to choose the best measurement matrix , a new 

gradient function has been derived:

• The matrix  is the covariance matrix of the noise W and Ez,c

is a mean squared error matrix for Z

• The gradient calculation is used to iteratively improve  to 

optimise a given metric, e.g. correct signal classification

Source: F. Coutts et. al, “Information-Theoretic 
Compressive Measurement Design for Micro-Doppler 
Signatures”, In Proc IEEE SSPD 2020 Conf.
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Micro-Doppler Signature Example

• The main motion of an object with respect to a radar determines 

its predominant Doppler frequency shift.

• Any secondary motions, such as the rotation of an aircraft’s rotor 

blades, contribute with features known as m-D signatures.

• E.G. Apache Helicopter, 4 blades of length 7.32m @ 289 rpm:



University Defence Research Collaboration (UDRC)
Signal Processing in the Information Age

WP2.2: Generation of Radar Data

• UDRC Phase 2 dataset from Strathclyde comprises coincident 

radar returns from two sources.

𝑿 𝑵

Monostatic CW 

24 GHz radar

3 speeds3 speeds

• Our primary task is to classify the speed of the first fan.

• Can we make our measurement model flexible such that we 

can simultaneously detect the speed of the second fan? 

Primary Secondary
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Simulation Results
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Conclusions and Future Work

• Sparse signal processing techniques find a wide variety of 

applications in electromagnetic signals and sensing

• We have described a novel approach to maximise energy efficiency 

for mm-wave communications systems using Dinkelbach method

• We have also shown how sparse sampling techniques can be 

designed to extract information about a signal of interest

• Desire to investigate theoretical limits to a wide range of problems 

with different availability of side information/prior knowledge

• PhD: “Data Driven Information Recovery in Sensor Systems”

• Kaiyu Zhang investigating potential applications in communications 

and radar signal processing


