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Obtaining the Latest Handouts
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Source localisation and blind source separation (BSS). An
example of topics using statistical signal processing.



Aims and Objectives

•Obtaining the Latest

Handouts
•Module Abstract

• Introduction and Overview

•Description and Learning

Outcomes
•Structure of the Module

•Passive and Active Target

Localisation
•Passive Target Localisation

Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

• Indirect TDOA-based

Methods
•Hyperbolic Least Squares

Error Function
•TDOA estimation methods

•GCC TDOA estimation

•GCC Processors

•Direct Localisation

Methods
•Steered Response Power

Function
•Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

- p. 4/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Obtaining the Latest Handouts

Direct

paths Indirect

paths

Observer

Walls

and other

obstacles

Sound

Source 1

Sound

Source 2

Sound

Source 3

Humans turn their head in the direction of interest in order
to reduce inteference from other directions; joint detection,
localisation, and enhancement. An application of probability

and estimation theory, and statistical signal processing.
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Obtaining the Latest Handouts

This research tutorial is intended to cover a wide range of
aspects which cover the fundamentals of statistical signal
processing.

This tutorial is being continually updated, and feedback is
welcomed. The documents published on the USB stick may
differ to the slides presented on the day.

The latest version of this document can be obtained from the
author, Dr James R. Hopgood, by emailing him at: at:

mailto:james.hopgood@ed.ac.uk

(Update: The notes are no longer online due to the desire to
maintain copyright control on the document.)

Extended thanks are given to the many MSc students over the
past 12 years who have helped proof-read and improve these
documents.

mailto:james.hopgood@ed.ac.uk
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Module Abstract

This topic is covered in two related lecture modules:

1. Probability, Random Variables, and Estimation Theory, and

2. Statistical Signal Processing,
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Module Abstract

This topic is covered in two related lecture modules:

1. Probability, Random Variables, and Estimation Theory, and

2. Statistical Signal Processing,

Random signals are extensively used in algorithms, and are:

constructively used to model real-world processes;

described using probability and statistics.
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Module Abstract

Their properties are estimated by assumming:

an infinite number of observations or data points;

time-invariant statistics.
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Module Abstract

Their properties are estimated by assumming:

an infinite number of observations or data points;

time-invariant statistics.

In practice, these statistics must be estimated from
finite-length data signals in noise.
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Module Abstract

Their properties are estimated by assumming:

an infinite number of observations or data points;

time-invariant statistics.

In practice, these statistics must be estimated from
finite-length data signals in noise.

Module investigates relevant statistical properties, how they
are estimated from real signals, and how they are used.
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Introduction and Overview
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Signal processing is concerned with the modification or
manipulation of a signal, defined as an
information-bearing representation of a real process, to
the fulfillment of human needs and aspirations.
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
implementation, and applications of statistical signal
processing.
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
implementation, and applications of statistical signal
processing.

Module Objectives At the end of these modules, a student should
be able to have:

1. acquired sufficient expertise in this area to understand and
implement spectral estimation, signal modelling,
parameter estimation, and adaptive filtering techniques;
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
implementation, and applications of statistical signal
processing.

Module Objectives At the end of these modules, a student should
be able to have:

1. acquired sufficient expertise in this area to understand and
implement spectral estimation, signal modelling,
parameter estimation, and adaptive filtering techniques;

2. developed an understanding of the basic concepts and
methodologies in statistical signal processing that provides
the foundation for further study, research, and application
to new problems.
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;



Aims and Objectives

•Obtaining the Latest

Handouts
•Module Abstract

• Introduction and Overview

•Description and Learning

Outcomes
•Structure of the Module

•Passive and Active Target

Localisation
•Passive Target Localisation

Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

• Indirect TDOA-based

Methods
•Hyperbolic Least Squares

Error Function
•TDOA estimation methods

•GCC TDOA estimation

•GCC Processors

•Direct Localisation

Methods
•Steered Response Power

Function
•Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

- p. 8/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;

6. linear systems with stationary random inputs, and linear
system models;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;

6. linear systems with stationary random inputs, and linear
system models;

7. signal modelling and parametric spectral estimation;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;

6. linear systems with stationary random inputs, and linear
system models;

7. signal modelling and parametric spectral estimation;

8. an application investigating the estimation of sinusoids in
noise, outperforming the Fourier transform.
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Passive and Active Target Localisation

A number of signal processing problems rely on knowledge of
the desired source position:

1. Tracking methods and target intent inference.

2. Mobile sensor node geometry.

3. Look-direction in beamforming techniques (for example in
speech enhancement).

4. Camera steering for audio-visual BSS (including Robot
Audition).

5. Speech diarisation.
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Passive Target Localisation Methodology

Sensors
(microphones)

Sound

Source

s n[ ]

m1

m2
m3

m4

x n3[ ] x n4[ ]x n2[ ]x n1[ ]

Direct

paths

Ideal free-field model.

Most passive target localisation (PTL) techniques rely on the
fact that an impinging wavefront reaches one sensor before it
reaches another.
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Passive Target Localisation Methodology

Sensors
(microphones)

Sound

Source

s n[ ]

m1

m2
m3

m4

x n3[ ] x n4[ ]x n2[ ]x n1[ ]

Direct

paths

Ideal free-field model.

Most PTL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another.

Most PTL algorithms are designed assuming there is no
multipath or reverberation present, the free-field assumption.
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Source Localization Strategies

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)
of a beamformer:

location estimate derived directly from a filtered, weighted,
and sum version of the signal data;
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Source Localization Strategies

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)
of a beamformer:

location estimate derived directly from a filtered, weighted,
and sum version of the signal data;

2. techniques adopting high-resolution spectral estimation
concepts:

any localisation scheme relying upon an application of the
signal correlation matrix;
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Source Localization Strategies

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)
of a beamformer:

location estimate derived directly from a filtered, weighted,
and sum version of the signal data;

2. techniques adopting high-resolution spectral estimation
concepts:

any localisation scheme relying upon an application of the
signal correlation matrix;

3. approaches employing TDOA information:

source locations calculated from a set of TDOA estimates
measured across various combinations of sensors.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

Suppose there is a:

sensor array consisting of N nodes located at positions
mi ∈ R

3, for i ∈ {0, . . . , N − 1},

M talkers (or targets) at positions xk ∈ R
3, for

k ∈ {0, . . . ,M − 1}.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

The TDOA between the sensor node at position mi and mj due
to a source at xk can be expressed as:

T (mi, mj , xk) , Tij (xk) =
|xk −mi| − |xk −mj |

c

where c is the speed of the impinging wavefront.
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Ideal Free-field Model

In an anechoic free-field environment, the signal from source
k, denoted sk(t), propagates to the i-th sensor at time t as:

xik(t) = αik sk(t− τik) + bik(t)

where bik(t) denotes additive noise.

Note that, in the frequency domain, this expression becomes:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω)

The additive noise source is assumed to be uncorrelated with
the source and noise sources at other sensors.
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Ideal Free-field Model

In an anechoic free-field environment, the signal from source
k, denoted sk(t), propagates to the i-th sensor at time t as:

xik(t) = αik sk(t− τik) + bik(t)

where bik(t) denotes additive noise.

Note that, in the frequency domain, this expression becomes:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω)

The additive noise source is assumed to be uncorrelated with
the source and noise sources at other sensors.

The TDOA between the i-th and j-th sensor is given by:

τijk = τik − τjk = T (mi, mj , xk)
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
sensor.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
sensor.

The error between the measured and hypothesised TDOAs is
then minimised.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
sensor.

The error between the measured and hypothesised TDOAs is
then minimised.

Accurate and robust TDOA estimation is the key to the
effectiveness of this class of PTL methods.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
sensor.

The error between the measured and hypothesised TDOAs is
then minimised.

Accurate and robust TDOA estimation is the key to the
effectiveness of this class of PTL methods.

An alternative way of viewing these solutions is to consider
what spatial positions of the target could lead to the
estimated TDOA.
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Hyperbolic Least Squares Error Function

If a TDOA is estimated between two sensor nodes i and j,
then the error between this and modelled TDOA is

ǫij(xk) = τijk − T (mi, mj , xk)

The total error as a function of target position

J(xk) =
N∑

i=1

N∑

j 6=i=1

ǫij(xk) =
N∑

i=1

N∑

j 6=i=1

(τijk − T (mi, mj , xk))
2

where

T (mi, mj , xk) , Tij (xk) =
|xk −mi| − |xk −mj |

c

Unfortunately, since T (mi, mj , xk) is a nonlinear function of
xk, the minimum least-squares estimate (LSE) does not
possess a closed-form solution.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the adaptive eigenvalue decomposition (AED)
algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

computationally efficient, and hence short decision delays;

perform fairly well in moderately noisy and reverberant
environments.



Aims and Objectives

•Obtaining the Latest

Handouts
•Module Abstract

• Introduction and Overview

•Description and Learning

Outcomes
•Structure of the Module

•Passive and Active Target

Localisation
•Passive Target Localisation

Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

• Indirect TDOA-based

Methods
•Hyperbolic Least Squares

Error Function
•TDOA estimation methods

•GCC TDOA estimation

•GCC Processors

•Direct Localisation

Methods
•Steered Response Power

Function
•Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

- p. 16/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the adaptive eigenvalue decomposition (AED)
algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

computationally efficient, and hence short decision delays;

perform fairly well in moderately noisy and reverberant
environments.

However, GCC-based methods

fail when multipath is high;

focus of current research is on combating the effect of
multipath.



Aims and Objectives

•Obtaining the Latest

Handouts
•Module Abstract

• Introduction and Overview

•Description and Learning

Outcomes
•Structure of the Module

•Passive and Active Target

Localisation
•Passive Target Localisation

Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

• Indirect TDOA-based

Methods
•Hyperbolic Least Squares

Error Function
•TDOA estimation methods

•GCC TDOA estimation

•GCC Processors

•Direct Localisation

Methods
•Steered Response Power

Function
•Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

- p. 16/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the adaptive eigenvalue decomposition (AED)
algorithm.

AED Algorithm Approaches the TDOA estimation approach from a
different point of view from the traditional GCC method.

adopts a multipath rather than free-field model;

computationally more expensive than GCC;

can fail when there are common-zeros in the channel.



Aims and Objectives

•Obtaining the Latest

Handouts
•Module Abstract

• Introduction and Overview

•Description and Learning

Outcomes
•Structure of the Module

•Passive and Active Target

Localisation
•Passive Target Localisation

Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

• Indirect TDOA-based

Methods
•Hyperbolic Least Squares

Error Function
•TDOA estimation methods

•GCC TDOA estimation

•GCC Processors

•Direct Localisation

Methods
•Steered Response Power

Function
•Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

- p. 17/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

GCC TDOA estimation

The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

The TDOA estimate between two microphones i and j

τ̂ij = argmax
ℓ

rxi xj
[ℓ]

The cross-correlation function is given by

rxi xj
[ℓ] = F−1

(
Φ
(
ejωTs

)
Px1x2

(
ejωTs

))

where the cross-power spectral density (CPSD) is given by

Px1x2

(
ejωTs

)
= E

[
X1

(
ejωTs

)
X2

(
ejωTs

)]
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GCC TDOA estimation

The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

The TDOA estimate between two microphones i and j

τ̂ij = argmax
ℓ

rxi xj
[ℓ]

The cross-correlation function is given by

rxi xj
[ℓ] = F−1

(
Φ
(
ejωTs

)
Px1x2

(
ejωTs

))

where the CPSD is given by

Px1x2

(
ejωTs

)
= E

[
X1

(
ejωTs

)
X2

(
ejωTs

)]

For the free-field model, it can be shown that:

∠Pxixj
(ω) = −jω T (mi, mj , xk)
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GCC Processors

Processor Name Frequency Function

Cross Correlation 1

PHAT
1

|Px1x2 (e
jωTs)|

Roth Impulse Response
1

Px1x1 (e
jωTs)

or
1

Px2x2 (e
jωTs)

SCOT
1

√

Px1x1 (e
jωTs)Px2x2 (e

jωTs)

Eckart
Ps1s1

(
ejωTs

)

Pn1n1 (e
jωTs)Pn2n2 (e

jωTs)

Hannon-Thomson or ML

∣
∣γx1x2

(
ejωTs

)∣
∣
2

|Px1x2 (e
jωTs)|

(

1− |γx1x2 (e
jωTs)|2

)

where γx1x2

(
ejωTs

)
is the normalised CPSD or coherence

function
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GCC Processors
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Normal cross-correlation and GCC-phase
transform (PHAT) (GCC-PHAT) functions for a frame of

speech.
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Direct Localisation Methods

Direct localisation methods have the advantage that the
relationship between the measurement and the state is linear.

However, extracting the position measurement requires a
multi-dimensional search over the state space and is usually
computationally expensive.
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Steered Response Power Function

The steered beamformer (SBF) or SRP function is a measure of
correlation across all pairs of microphone signals for a set of
relative delays that arise from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position x̂k such that τ̂pk = |x̂−mp|:

S (x̂) =

∫

Ω

∣
∣
∣
∣
∣

N∑

p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣
∣
∣
∣
∣

2

dω
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Steered Response Power Function

The SBF or SRP function is a measure of correlation across all
pairs of microphone signals for a set of relative delays that arise
from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position x̂k such that τ̂pk = |x̂−mp|:

S (x̂) =

∫

Ω

∣
∣
∣
∣
∣

N∑

p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣
∣
∣
∣
∣

2

dω

E [S (x̂)] =

N∑

p=1

N∑

q=1

rxi xj
[τ̂pqk]

≡
N∑

p=1

N∑

q=1

rxi xj

[ |xk −mi| − |xk −mj |
c

]
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Steered Response Power Function
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SBF response from a frame of speech signal. The integration
frequency range is 300 to 3500 Hz. The true source position is

at [2.0, 2.5]m. The grid density is set to 40 mm.
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Steered Response Power Function

An example video showing the SBF changing as the source
location moves.

Show video!
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Conclusions

To fully appreciate the algorithms in PTL, we need:

1. Signal analysis in time and frequency domain.

2. Least Squares Estimation Theory.

3. Expectations and frequency-domain statistical analysis.

4. Correlation and power-spectral density theory.

5. And, of course, all the theory to explain the above!
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Introduction

How many water taxis are there in Venice?
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Introduction

How many water taxis are there in Venice?

How does your answer change when you see more taxis?
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Introduction

The theory of probability deals with averages of mass
phenomena occurring sequentially or simultaneously;

this might include radar detection, signal detection,
anomaly detection, parameter estimation, ...

By considering fundamentals such as the probability of
individual events, we can develop a probabilistic framework
for analysing signals.

It is observed that certain averages approach a constant value
as the number of observations increases; and that this value
remains the same if the averages are evaluated over any
sub-sequence specified before the experiment is performed.
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Introduction

If an experiment is performed n times, and the event A
occurs nA times, then with a high degree of certainty, the
relative frequency nA/n is close to Pr (A), such that:

Pr (A) ≈ nA

n

provided that n is sufficiently large.

Note that this interpretation and the language used is all very
imprecise.
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Classical Definition of Probability

For several centuries, the theory of probability was based on the
classical definition, which states that the probability Pr (A) of an
event A is determine a priori without actual experimentation. It
is given by the ratio:

Pr (A) =
NA

N

where:

N is the total number of outcomes,

and NA is the total number of outcomes that are favourable to
the event A, provided that all outcomes are equally probable.
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Bertrand’s Paradox

Consider a circle C of radius r; what is the probability p that the
length ℓ of a randomly selected cord AB is greater than the

length, r
√
3, of the inscribed equilateral triangle?

r

A

B

Circle C

l

r/2

r

Bertrand’s paradox, problem definition.
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Bertrand’s Paradox

A

B

M

Different selection methods.

1. In the random midpoints method, a cord is selected by
choosing a point M anywhere in the full circle, and two
end-points A and B on the circumference of the circle, such
that the resulting chord AB through these chosen points has
M as its midpoint.

p =
π
(
r
2

)2

πr2
=

1

4
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Bertrand’s Paradox

A

B

M

A

BD

E

Different selection methods.

1. In the random endpoints method, consider selecting two
random points on the circumference of the (outer) circle, A
and B, and drawing a chord between them.

p =
2πr
3

2πr
=

1

3
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Bertrand’s Paradox

A

B

M

A

BD

E

A B
R

Different selection methods.

1. Finally, in the random radius method, a radius of the circle is
chosen at random, and a point on the radius is chosen at
random. The chord AB is constructed as a line perpendicular
to the chosen radius through the chosen point.

p =
r

2r
=

1

2

There are thus three different but reasonable solutions to the
same problem. Which one is valid?
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Difficulties with the Classical Definition

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!
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Difficulties with the Classical Definition

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!

2. The definition can only be applied to a limited class of
problems.

In the die experiment, for example, it is applicable only if the
six faces have the same probability. If the die is loaded and the
probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio.
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Difficulties with the Classical Definition

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!

2. The definition can only be applied to a limited class of
problems.

In the die experiment, for example, it is applicable only if the
six faces have the same probability. If the die is loaded and the
probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio.

3. If the number of possible outcomes is infinite, then some other
measure of infinity for determining the classical probability
ratio is needed, such as length, or area. This leads to
difficulties, as discussed in Bertrand’s paradox.
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Axiomatic Definition

The axiomatic approach to probability is based on the following
three postulates and on nothing else:

1. The probability Pr (A) of an event A is a non-negative number
assigned to this event:

Pr (A) ≥ 0

2. Defining the certain event, S, as the event that occurs in
every trial, then the probability of the certain event equals 1,
such that:

Pr (S) = 1

3. If the events A and B are mutually exclusive, then the
probability of one event or the other occurring separately is:

Pr (A ∪B) = Pr (A) + Pr (B)
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Set Theory

Unions and Intersections Unions and intersections are
commutative, associative, and distributive, such that:

A ∪B = B ∪A, (A ∪B) ∪ C = A ∪ (B ∪ C)

AB = BA, (AB)C = A(BC), A(B ∪ C) = AB ∪AC
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Set Theory

Unions and Intersections Unions and intersections are
commutative, associative, and distributive, such that:

A ∪B = B ∪A, (A ∪B) ∪ C = A ∪ (B ∪ C)

AB = BA, (AB)C = A(BC), A(B ∪ C) = AB ∪AC

Complements The complement A of a set A ⊂ S is the set
consisting of all elements of S that are not in A. Note that:

A ∪A = S and A ∩A ≡ AA = {∅}
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Set Theory

Unions and Intersections Unions and intersections are
commutative, associative, and distributive, such that:

A ∪B = B ∪A, (A ∪B) ∪ C = A ∪ (B ∪ C)

AB = BA, (AB)C = A(BC), A(B ∪ C) = AB ∪AC

Complements The complement A of a set A ⊂ S is the set
consisting of all elements of S that are not in A. Note that:

A ∪A = S and A ∩A ≡ AA = {∅}

Partitions A partition U of a set S is a collection of mutually
exclusive subsets Ai of S whose union equations S:

∞⋃

i=1

Ai = S, Ai ∩Aj = {∅}, i 6= j ⇒ U = [A1, . . . , An]
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Set Theory

De Morgan’s Law Using Venn diagrams, it is relatively
straightforward to show

A ∪ B = A ∩B ≡ AB and A ∩B ≡ AB = A ∪B
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Set Theory

De Morgan’s Law Using Venn diagrams, it is relatively
straightforward to show

A ∪ B = A ∩B ≡ AB and A ∩B ≡ AB = A ∪B

As an application of this, note that:

A ∪BC = ABC = A
(
B ∪ C

)

=
(
AB

)
∪
(
AC

)

= A ∪B ∪A ∪ C

⇒ A ∪BC = (A ∪B) (A ∪ C)
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Properties of Axiomatic Probability

Impossible Event The probability of the impossible event is 0, and
therefore:

Pr (∅) = 0
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Properties of Axiomatic Probability

Impossible Event The probability of the impossible event is 0, and
therefore:

Pr (∅) = 0

Complements Since A ∪A = S and AA = {∅}, then

Pr
(
A ∪A

)
= Pr (A) + Pr

(
A
)
= Pr (S) = 1, such that:

Pr
(
A
)
= 1− Pr (A)
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Properties of Axiomatic Probability

Impossible Event The probability of the impossible event is 0, and
therefore:

Pr (∅) = 0

Complements Since A ∪A = S and AA = {∅}, then

Pr
(
A ∪A

)
= Pr (A) + Pr

(
A
)
= Pr (S) = 1, such that:

Pr
(
A
)
= 1− Pr (A)

Sum Rule The addition law of probability or the sum rule for
any two events A and B is given by:

Pr (A ∪B) = Pr (A) + Pr (B)− Pr (A ∩B)
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Properties of Axiomatic Probability

Example (Proof of the Sum Rule). SOLUTION. To prove this,
separately write A ∪B and B as the union of two mutually
exclusive events.

First, note that

A ∪B =
(
A ∪A

)
(A ∪B) = A ∪

(
AB

)

and that since A
(
AB

)
=

(
AA

)
B = {∅}B = {∅}, then A and

AB are mutually exclusive events.

Second, note that:

B =
(
A ∪A

)
B = (AB) ∪

(
AB

)
�

and that (AB) ∩
(
AB

)
= AAB = {∅}B = {∅} and are

therefore mutually exclusive events.



Aims and Objectives

Probability Theory

• Introduction

•Classical Definition of

Probability

•Bertrand’s Paradox

•Difficulties with the

Classical Definition
•Axiomatic Definition

•Set Theory

•Properties of Axiomatic

Probability

•The Real Line

•Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

- p. 29/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Properties of Axiomatic Probability

Example (Proof of the Sum Rule). SOLUTION. Using these two
disjoint unions, then:

Pr (A ∪B) = Pr
(
A ∪

(
AB

))
= Pr (A) + Pr

(
AB

)

Pr (B) = Pr
(
(AB) ∪

(
AB

))
= Pr (AB) + Pr

(
AB

)

Eliminating Pr
(
AB

)
by subtracting these equations gives the

desired result:

Pr (A ∪B)− Pr (B) = Pr
(
A ∪

(
AB

))
= Pr (A)− Pr (AB) �
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Properties of Axiomatic Probability

Example (Sum Rule). Let A and B be events with probabilities
Pr (A) = 3/4 and Pr (B) = 1/3. Show that 1/12 ≤ Pr (AB) ≤ 1/3.
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Properties of Axiomatic Probability

Example (Sum Rule). Let A and B be events with probabilities
Pr (A) = 3/4 and Pr (B) = 1/3. Show that 1/12 ≤ Pr (AB) ≤ 1/3.

SOLUTION. Using the sum rule, that:

Pr (AB) = Pr (A)+Pr (B)−Pr (A ∪B) ≥ Pr (A)+Pr (B)−1 =
1

12
�

which is the case when the whole sample space is covered by
the two events. The second bound occurs since A ∩B ⊂ B and
similarly A ∩B ⊂ A, where ⊂ denotes subset. Therefore, it can
be deduced Pr (AB) ≤ min{Pr (A) , Pr (B)} = 1/3.
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
x1 < x ≤ x2, and their countable unions and intersections.
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
x1 < x ≤ x2, and their countable unions and intersections.

To complete the specification of probabilities for this set, it
suffices to assign probabilities to the events {x ≤ xi}.
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
x1 < x ≤ x2, and their countable unions and intersections.

To complete the specification of probabilities for this set, it
suffices to assign probabilities to the events {x ≤ xi}.

This notion leads to cumulative distribution functions (cdfs)
and probability density functions (pdfs) in the next handout.
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Conditional Probability

If an experiment is repeated n times, and on each occasion the
occurrences or non-occurrences of two events A and B are
observed. Suppose that only those outcomes for which B occurs
are considered, and all other experiments are disregarded.
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Conditional Probability

If an experiment is repeated n times, and on each occasion the
occurrences or non-occurrences of two events A and B are
observed. Suppose that only those outcomes for which B occurs
are considered, and all other experiments are disregarded.

In this smaller collection of trials, the proportion of times that A
occurs, given that B has occurred, is:

Pr
(
A
∣
∣B

)
≈ nAB

nB

=
nAB/n
nB/n

=
Pr (AB)

Pr (B)

provided that n is sufficiently large.

It can be shown that this definition satisfies the Kolmogorov
Axioms.
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Conditional Probability

Example (Two Children). A family has two children. What is the
probability that both are boys, given that at least one is a boy?

SOLUTION. The younger and older children may each be male or
female, and it is assumed that each is equally likely.
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Conditional Probability
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Definition

R

Abstract
sample space,S

X( )z1

X( )z2

X( )z3 R

R

Outcome
z1=“Red”

Outcome
z2=“Green”

Outcome
z3=“Blue”

real number line

Physical
Experiment

Pr( )z1

Pr( )z2

Pr( )z3

x1=1

x2=2

x3=4

Green

Blue

Red

A graphical representation of a random variable.
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Definition

A random variable (RV) X (ζ) is a mapping that assigns a real
number X ∈ (−∞, ∞) to every outcome ζ from an abstract
probability space.

1. the interval {X (ζ) ≤ x} is an event in the abstract probability
space for every x ∈ R;

2. Pr (X (ζ) = ∞) = 0 and Pr (X (ζ) = −∞) = 0.
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Definition

Example (Rolling die). Consider rolling a die, with six outcomes
{ζi, i ∈ {1, . . . , 6}}. In this experiment, assign the number 1 to
every even outcome, and the number 0 to every odd outcome.
Then the RV X (ζ) is given by:

X (ζ1) = X (ζ3) = X (ζ5) = 0 and X (ζ2) = X (ζ4) = X (ζ6) = 1
⋊⋉
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Distribution functions

x

FX( )x

x1

Pr( )X�< x1

x2

Pr( )X�< x2

The cumulative distribution function.

The probability set function Pr (X (ζ) ≤ x) is a function of
the set {X (ζ) ≤ x}, and therefore of the point x ∈ R.
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Distribution functions

x

FX( )x

x1

Pr( )X�< x1

x2

Pr( )X�< x2

The cumulative distribution function.

The probability set function Pr (X (ζ) ≤ x) is a function of
the set {X (ζ) ≤ x}, and therefore of the point x ∈ R.

This probability is the cumulative distribution
function (cdf), FX (x) of a RV X (ζ), and is defined by:

FX (x) , Pr (X (ζ) ≤ x)
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Distribution functions

x

FX( )x

x1

Pr( )X�< x1

x2

Pr( )X�< x2

The cumulative distribution function.

It hence follows that the probability of being within an
interval (xℓ, xr] is given by:

Pr (xℓ < X (ζ) ≤ xr) = Pr (X (ζ) ≤ xr)− Pr (X (ζ) ≤ xℓ)

= FX (xr)− FX (xℓ)
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Distribution functions

x

FX( )x

x1

Pr( )X�< x1

x2

Pr( )X�< x2

The cumulative distribution function.

It hence follows that the probability of being within an
interval (xℓ, xr] is given by:

Pr (xℓ < X (ζ) ≤ xr) = Pr (X (ζ) ≤ xr)− Pr (X (ζ) ≤ xℓ)

= FX (xr)− FX (xℓ)

For small intervals, it is clearly apparent that gradients are
important.
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Kolmogorov’s Axioms

The events {X ≤ x1} and {x1 < X ≤ x2} are mutually exclussive
events. Therefore, their union equals {x ≤ x2}, and therefore:

Pr (X ≤ x1) + Pr (x1 < X ≤ x2) = Pr (X ≤ x2)
∫ x1

−∞

p (v) dv + Pr (x1 < X ≤ x2) =

∫ x2

−∞

p (v) dv

⇒ Pr (x1 < X ≤ x2) =

∫ x2

x1

p (v) dv

Moreover, it follows that Pr (−∞ < X ≤ ∞) = 1 and the
probability of the impossible event, Pr (X ≤ −∞) = 0. Hence,
the cdf satisfies the axiomatic definition of probability.
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Density functions

The probability density function (pdf), fX (x) of a RV X (ζ),
is defined as a formal derivative:

fX (x) ,
dFX (x)

dx

Note fX (x) is not a probability on its own; it must be
multiplied by a certain interval ∆x to obtain a probability:

fX (x) ∆x ≈ FX (x+∆x)−FX (x) ≈ Pr (x < X (ζ) ≤ x+∆x)
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Density functions

The probability density function (pdf), fX (x) of a RV X (ζ),
is defined as a formal derivative:

fX (x) ,
dFX (x)

dx

Note fX (x) is not a probability on its own; it must be
multiplied by a certain interval ∆x to obtain a probability:

fX (x) ∆x ≈ FX (x+∆x)−FX (x) ≈ Pr (x < X (ζ) ≤ x+∆x)

It directly follows that:

FX(x) =

∫ x

−∞

fX(v) dv
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Density functions

The probability density function (pdf), fX (x) of a RV X (ζ),
is defined as a formal derivative:

fX (x) ,
dFX (x)

dx

Note fX (x) is not a probability on its own; it must be
multiplied by a certain interval ∆x to obtain a probability:

fX (x) ∆x ≈ FX (x+∆x)−FX (x) ≈ Pr (x < X (ζ) ≤ x+∆x)

It directly follows that:

FX(x) =

∫ x

−∞

fX(v) dv

For discrete-valued RV, use the pmf, pk, the probability that

X (ζ) takes on a value equal to xk: pk , Pr (X (ζ) = xk).
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Density functions

0a x

f xX( )

1-p
p

2

b c x

F xX( )

1-p

1

0a b c

A probability density function and its corresponding
cumulative distribution function for a RV which is a mixture

of continuous and discrete components.
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Properties: Distributions and Densities

Properties of cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX(x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b



Aims and Objectives

Probability Theory

Scalar Random Variables

•Definition

•Distribution functions

•Kolmogorov’s Axioms

•Density functions

•Properties: Distributions

and Densities
•Common Continuous RVs

•Probability transformation

rule
•Expectations

•Properties of expectation

operator

•Moments

•Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

- p. 37/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Properties: Distributions and Densities

Properties of cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX(x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of pdfs:

fX (x) ≥ 0,

∫ ∞

−∞

fX (x) dx = 1
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Properties: Distributions and Densities

Properties of cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX(x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of pdfs:

fX (x) ≥ 0,

∫ ∞

−∞

fX (x) dx = 1

Probability of arbitrary events:

Pr (x1 < X (ζ) ≤ x2) = FX (x2)− FX (x1) =

∫ x2

x1

fX (x) dx
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Common Continuous RVs

Uniform distribution

fX (x) =

{
1

b−a
if a < x ≤ b,

0 otherwise

Normal distribution

fX (x) =
1

√

2πσ2
X

exp

[

−1

2

(
x− µX

σX

)2
]

, x ∈ R

Cauchy distribution

fX (x) =
β

π

1

(x− µX)2 + β2

The Cauchy random variable is symmetric around the value
x = µX , but its mean and variance do not exist.
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Common Continuous RVs

Gamma distribution

fX (x) =

{

0 if x < 0,
1

Γ(β)α
β xβ−1 e−αx if x ≥ 0,

0 2 4 6 8
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Gamma pdf

x

f X
(x

)

β = 2
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β = 3.5
β = 4

0 2 4 6 8
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0.8

1
Gamma cdf

x

F
X
(x

)

β = 2
β = 2.5
β = 3
β = 3.5
β = 4

The Gamma density and distribution functions, for the
case when α = 1 and for various values of β.
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Common Continuous RVs

Weibull distribution

fX (x) =

{

0 x < 0

αβxβ−1 e−αxβ

x ≥ 0

0 1 2 3 4
0

0.2
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1
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Weilbull pdf

x
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)
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α = 1.3
α = 1.5

The Weibull density and distribution functions, for the
case when α = 1, and for various values of the parameter

β.



Aims and Objectives

Probability Theory

Scalar Random Variables

•Definition

•Distribution functions

•Kolmogorov’s Axioms

•Density functions

•Properties: Distributions

and Densities
•Common Continuous RVs

•Probability transformation

rule
•Expectations

•Properties of expectation

operator

•Moments

•Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

- p. 39/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Probability transformation rule

Suppose a random variable Y (ζ) is a function, g, of a random
variable X (ζ), which has pdf given by fX (x). What is fY (y)?

The mapping y = g(x), and the effect of the mapping on
intervals.
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Probability transformation rule

Suppose a random variable Y (ζ) is a function, g, of a random
variable X (ζ), which has pdf given by fX (x). What is fY (y)?

Y g X( ) ( ( ))z z=
X( )z Y( )z

f xX( ) f yY( )
?

The mapping y = g(x).

The mapping y = g(x), and the effect of the mapping on
intervals.
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Probability transformation rule

The mapping y = g(x), and the effect of the mapping on
intervals.

Theorem (Probability transformation rule). Denote the real roots of
y = g(x) by {xn, n ∈ N}, such that

y = g(x1) = · · · = g(xN )

fY (y) =
N∑

n=1

fX (xn)

|g′(xn)|
♦
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Probability transformation rule

The mapping y = g(x), and the effect of the mapping on
intervals.

Theorem (Probability transformation rule). Denote the real roots of
y = g(x) by {xn, n ∈ N}, such that

y = g(x1) = · · · = g(xN )

Then, if the Y (ζ) = g[X (ζ)], the pdf of Y (ζ) in terms of the pdf
of X (ζ) is given by:

fY (y) =
N∑ fX (xn)

|g′(xn)|
♦
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Probability transformation rule

Example (Log-normal distribution). Let Y = eX , where
X ∼ N (0, 1). Find the pdf for the RV Y .
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Probability transformation rule

Example (Log-normal distribution). Let Y = eX , where
X ∼ N (0, 1). Find the pdf for the RV Y .

SOLUTION. Since X ∼ N (0, 1), then:

fX (x) =
1√
2π

e−
x2

2

�
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Probability transformation rule

Example (Log-normal distribution). Let Y = eX , where
X ∼ N (0, 1). Find the pdf for the RV Y .

SOLUTION. Since X ∼ N (0, 1), then:

fX (x) =
1√
2π

e−
x2

2

Considering the transformation y = g(x) = ex, there is one root,
given by x = ln y. Therefore, the derivative of this expression is
g′(x) = ex = y.

Hence, it follows:

fY (y) =
fX (x)

g′(x)
=

1

y
√
2π

e−
(ln y)2

2 �
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Expectations

To completely characterise a RV, the pdf must be known.
However, it is desirable to summarise key aspects of the pdf by
using a few parameters rather than having to specify the entire
density function.

The expected or mean value of a function of a RV X (ζ) is
given by:

E [X (ζ)] =

∫

R

x fX(x) dx
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Expectations

If X (ζ) is discrete, then its corresponding pdf may be written
in terms of its pmf as:

fX(x) =
∑

k

pk δ(x− xk)

where the Dirac-delta, δ(x− xk), is unity if x = xk, and zero
otherwise.
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Expectations

If X (ζ) is discrete, then its corresponding pdf may be written
in terms of its pmf as:

fX(x) =
∑

k

pk δ(x− xk)

where the Dirac-delta, δ(x− xk), is unity if x = xk, and zero
otherwise.

Hence, for a discrete RV, the expected value is given by:

µx =

∫

R

x fX(x) dx =

∫

R

x
∑

k

pk δ(x− xk) dx =
∑

k

xk pk

where the order of integration and summation have been
interchanged, and the sifting-property applied.
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX(x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX(x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.

If fX(x) is an even function, then µX = 0. Note that since
fX(x) ≥ 0, then fX(x) cannot be an odd function.

If fX(x) is symmetrical about x = a, such that
fX(a− x) = fX(x+ a), then µX = a.
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX(x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.

If fX(x) is an even function, then µX = 0. Note that since
fX(x) ≥ 0, then fX(x) cannot be an odd function.

If fX(x) is symmetrical about x = a, such that
fX(a− x) = fX(x+ a), then µX = a.

The expectation operator is linear:

E [αX (ζ) + β] = αµX + β
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX(x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.

If fX(x) is an even function, then µX = 0. Note that since
fX(x) ≥ 0, then fX(x) cannot be an odd function.

If fX(x) is symmetrical about x = a, such that
fX(a− x) = fX(x+ a), then µX = a.

The expectation operator is linear:

E [αX (ζ) + β] = αµX + β

If Y (ζ) = g{X (ζ)} is a RV obtained by transforming X (ζ)
through a suitable function, the expectation of Y (ζ) is:

E [Y (ζ)] , E [g{X (ζ)}] =
∫ ∞

−∞

g(x) fX(x) dx
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Moments

Recall that mean and variance can be defined as:

E [X (ζ)] = µX =

∫

R

x fX(x) dx

var [X (ζ)] = σ2
X =

∫

R

x2 fX(x) dx− µ2
X = E

[
X2(ζ)

]
− E

2 [X (ζ)]

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [Xm(ζ)] , m ∈ {1, 2} are known.
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Moments

Recall that mean and variance can be defined as:

E [X (ζ)] = µX =

∫

R

x fX(x) dx

var [X (ζ)] = σ2
X =

∫

R

x2 fX(x) dx− µ2
X = E

[
X2(ζ)

]
− E

2 [X (ζ)]

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [Xm(ζ)] , m ∈ {1, 2} are known.

Further aspects of the pdf can be described by defining various
moments of X (ζ): the m-th moment of X (ζ) is given by:

r
(m)
X , E [Xm(ζ)] =

∫

R

xm fX(x) dx

Note, of course, that in general: E [Xm(ζ)] 6= E
m [X (ζ)].
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Higher-order statistics

Two important and commonly used higher-order statistics that
are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a
distribution. It is a normalised third-order central moment:

κ̃
(3)
X , E

[{
X (ζ)− µX

σX

}3
]

=
1

σ3
X

γ
(3)
X

and is a dimensionless quantity.

Positive SkewNegative Skew

f xX( ) f xX( )

x x
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Higher-order statistics

Two important and commonly used higher-order statistics that
are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a
distribution. It is a normalised third-order central moment:

κ̃
(3)
X , E

[{
X (ζ)− µX

σX

}3
]

=
1

σ3
X

γ
(3)
X

and is a dimensionless quantity.

The skewness is:

κ̃
(3)
X =







< 0 if the density leans or stretches out towards the left

0 if the density is symmetric about µX

> 0 if the density leans or stretches out towards the right
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Higher-order statistics

Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.
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Higher-order statistics

Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.

It is defined based on a normalised fourth-central moment:

κ̃
(4)
X , E

[{
X (ζ)− µX

σX

}4
]

− 3 =
1

σ4
X

γ
(4)
X − 3
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Higher-order statistics

Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.

It is defined based on a normalised fourth-central moment:

κ̃
(4)
X , E

[{
X (ζ)− µX

σX

}4
]

− 3 =
1

σ4
X

γ
(4)
X − 3

This measure is relative with respect to a normal distribution,

which has the property γ
(4)
X = 3σ4

X , therefore having zero
kurtosis.
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

Note that each element of a random vector is not necessarily
generated independently from a separate experiment.
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

Note that each element of a random vector is not necessarily
generated independently from a separate experiment.

Random vectors also lead to the notion of the relationship
between the random elements.
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

Note that each element of a random vector is not necessarily
generated independently from a separate experiment.

Random vectors also lead to the notion of the relationship
between the random elements.

This course mainly deals with real-valued random vectors,
although the concept can be extended to complex-valued
random vectors.
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Definition of Random Vectors

A real-valued random vector X (ζ) containing N real-valued RVs,
each denoted by Xn(ζ) for n ∈ N = {1, . . . , N}, is denoted by
the column-vector:

X (ζ) =
[

X1(ζ) X2(ζ) · · · XN (ζ)
]T
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Definition of Random Vectors

A real-valued random vector X (ζ) containing N real-valued RVs,
each denoted by Xn(ζ) for n ∈ N = {1, . . . , N}, is denoted by
the column-vector:

X (ζ) =
[

X1(ζ) X2(ζ) · · · XN (ζ)
]T

A real-valued random vector can be thought as a mapping from

an abstract probability space to a vector-valued, real space R
N .
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Definition of Random Vectors

A real-valued random vector X (ζ) containing N real-valued RVs,
each denoted by Xn(ζ) for n ∈ N = {1, . . . , N}, is denoted by
the column-vector:

X (ζ) =
[

X1(ζ) X2(ζ) · · · XN (ζ)
]T

A real-valued random vector can be thought as a mapping from

an abstract probability space to a vector-valued, real space R
N .

Denote a specific value for a random vector as:

x =
[

x1 x2 · · · xN

]T

Then the notation X (ζ) ≤ x is equivalent to the event
{Xn(ζ) ≤ xn, n ∈ N}.
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Distribution and Density Functions

The joint cdf completely characterises a random vector, and is
defined by:

FX (x) , Pr ({Xn(ζ) ≤ xn, n ∈ N}) = Pr (X (ζ) ≤ x)
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Distribution and Density Functions

The joint cdf completely characterises a random vector, and is
defined by:

FX (x) , Pr ({Xn(ζ) ≤ xn, n ∈ N}) = Pr (X (ζ) ≤ x)

A random vector can also be characterised by its joint pdf,

which is defined by

fX (x) = lim
∆x→0

Pr ({xn < Xn(ζ) ≤ xn +∆xn, n ∈ N})
∆x1 · · ·∆xN

=
∂

∂x1

∂

∂x2
· · · ∂

∂xN

FX (x)
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Distribution and Density Functions

The joint cdf completely characterises a random vector, and is
defined by:

FX (x) , Pr ({Xn(ζ) ≤ xn, n ∈ N}) = Pr (X (ζ) ≤ x)

A random vector can also be characterised by its joint pdf,

which is defined by

fX (x) = lim
∆x→0

Pr ({xn < Xn(ζ) ≤ xn +∆xn, n ∈ N})
∆x1 · · ·∆xN

=
∂

∂x1

∂

∂x2
· · · ∂

∂xN

FX (x)

Hence, it follows:

FX (x) =

∫ x1

−∞

· · ·
∫ xN

−∞

fX (v) dvN · · · dv1 =

∫ x

−∞

fX (v) dv
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Distribution and Density Functions

Properties of joint-cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX (x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b
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Distribution and Density Functions

Properties of joint-cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX (x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of joint-pdfs:

fX (x) ≥ 0,

∫
∞

−∞

fX (x) dx = 1
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Distribution and Density Functions

Properties of joint-cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX (x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of joint-pdfs:

fX (x) ≥ 0,

∫
∞

−∞

fX (x) dx = 1

Probability of arbitrary events; note that

Pr (x1 < X (ζ) ≤ x2) 6= FX (x2)− FX (x1) =

∫ x2

x1

fX (v) dv
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(ζ) which has two elements and therefore two
random variables given by X (ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise
⋊⋉

Calculate the joint-cumulative distribution function, FZ (z).
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(ζ) which has two elements and therefore two
random variables given by X (ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. First note that the pdf integrates to unity since:

∫
∞

−∞

fZ (z) dz =

∫ 1

0

∫ 1

0

1

2
(x+ 3y) dx dy =

∫ 1

0

1

2

[
1

2
x2 + 3xy

]1

0

dy

�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(ζ) which has two elements and therefore two
random variables given by X (ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. First note that the pdf integrates to unity since:

∫
∞

−∞

fZ (z) dz =

∫ 1

0

∫ 1

0

1

2
(x+ 3y) dx dy =

∫ 1

0

1

2

[
1

2
x2 + 3xy

]1

0

dy

=

∫ 1

0

1

4
+

3

2
y dy =

[
y

4
+

3y2

4

]1

0

=
1

4
+

3

4
= 1

�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. The pdf is shown here:

−2

0

2

−2

0

2
0

0.5

1

1.5

2

x

PDF

y

f Z
(z

)

Region of support for pdf. �
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .

If 0 < x ≤ 1 and 0 < y ≤ 1, the cdf is given by:

FZ (z) =

∫ z

−∞

fZ (z̄) dz̄ =

∫ y

0

∫ x

0

1

2
(x̄+ 3ȳ) dx̄ dȳ

�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .

If 0 < x ≤ 1 and 0 < y ≤ 1, the cdf is given by:

FZ (z) =

∫ z

−∞

fZ (z̄) dz̄ =

∫ y

0

∫ x

0

1

2
(x̄+ 3ȳ) dx̄ dȳ

=

∫ y

0

1

2

(
x2

2
+ 3xȳ

)

dȳ =
1

2

(
x2

2
y +

3xy2

2

)

=
xy

4
(x+ 3y)

�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .

If 0 < x ≤ 1 and 0 < y ≤ 1, the cdf is given by:

FZ (z) =

∫ z

−∞

fZ (z̄) dz̄ =

∫ y

0

∫ x

0

1

2
(x̄+ 3ȳ) dx̄ dȳ

=

∫ y

0

1

2

(
x2

2
+ 3xȳ

)

dȳ =
1

2

(
x2

2
y +

3xy2

2

)

=
xy

4
(x+ 3y)�

Finally, if x > 1 or y > 1, the upper limit of integration for the
corresponding variable becomes equal to 1.
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. Hence, in summary, it follows:

FZ (z) =







0 x ≤ 0 or y ≤ 0
xy
4 (x+ 3y) 0 < x, y ≤ 1
x
4 (x+ 3) 0 < x ≤ 1, 1 < y
y
4 (1 + 3y) 0 < y ≤ 1, 1 < x

1 1 < x, y < ∞
�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. The cdf is plotted here:
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A plot of the cumulative distribution function. �
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