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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. The cdf is plotted here:
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A plot of the cumulative distribution function. �
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Marginal Density Function

The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.
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Marginal Density Function

The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.

Let k be an M -dimensional vector containing unique indices to
elements in the N -dimensional random vector X (ζ),

k =









k1

k2
...

kM
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Marginal Density Function

The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.

Let k be an M -dimensional vector containing unique indices to
elements in the N -dimensional random vector X (ζ),

Now define a M -dimensional random vector, Xk(ζ), that
contains the M random variables which are components of X (ζ)
and indexed by the elements of k. In other-words, if

k =









k1

k2
...

kM









then Xk(ζ) =









Xk1(ζ)

Xk2(ζ)
...

XkM
(ζ)
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Marginal Density Function

The marginal pdf is then given by:

fXk
(xk) =

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − M integrals

fX (x) dx−k
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Marginal Density Function

The marginal pdf is then given by:

fXk
(xk) =

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − M integrals

fX (x) dx−k

A special case is the marginal pdf describing the individual RV

Xj:

fXj
(xj) =

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − 1 integrals

fX (x) dx1 · · · dxj−1dxj+1 · · · dxN
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Marginal Density Function

The marginal pdf is then given by:

fXk
(xk) =

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − M integrals

fX (x) dx−k

A special case is the marginal pdf describing the individual RV

Xj:

fXj
(xj) =

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − 1 integrals

fX (x) dx1 · · · dxj−1dxj+1 · · · dxN

Marginal pdfs will become particular useful when dealing with
Bayesian parameter estimation later in the course.
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Marginal Density Function

Example (Marginalisation). The joint-pdf of a random vector Z(ζ)
which has two elements and therefore two random variables
given by X (ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise
⋊⋉

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).
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Marginal Density Function

Example (Marginalisation). The joint-pdf of a random vector Z(ζ)
which has two elements and therefore two random variables
given by X (ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. By definition:

fX (x) =

∫

R

fZ (z) dy

fY (y) =

∫

R

fZ (z) dx

�
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. Taking fX (x), then:

fX (x) =

{
1
2

∫ 1

0
(x+ 3y) dy 0 ≤ x ≤ 1

0 otherwise

�
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. Taking fX (x), then:

fX (x) =

{
1
2

∫ 1

0
(x+ 3y) dy 0 ≤ x ≤ 1

0 otherwise

which after a simple integration gives:

fX (x) =

{
1
2

(
x+ 3

2

)
0 ≤ x ≤ 1

0 otherwise

�
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. The cdf, FX (x), is thus given by:

FX (x) =

∫ x

−∞

fX (u) du =







0 x ≤ 0
1
2

∫ x

0

(
u+ 3

2

)
du 0 ≤ x ≤ 1

1
2

∫ 1

0

(
u+ 3

2

)
du x > 1

�
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. The cdf, FX (x), is thus given by:

FX (x) =

∫ x

−∞

fX (u) du =







0 x ≤ 0
1
2

∫ x

0

(
u+ 3

2

)
du 0 ≤ x ≤ 1

1
2

∫ 1

0

(
u+ 3

2

)
du x > 1

FX (x) =







0 x ≤ 0
x
4 (x+ 3) 0 ≤ x ≤ 1

1 x > 1

�
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. Similarly, it can be shown that:

fY (y) =

{
1
2

(
1
2 + 3y

)
0 ≤ y ≤ 1

0 otherwise

and

FY (y) =







0 y ≤ 0
y
4 (1 + 3y) 0 ≤ y ≤ 1

1 y > 1

�



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

•Abstract

•Definition of Random

Vectors
•Distribution and Density

Functions
•Marginal Density Function

• Independence

•Conditionals and Bayes’s

•Statistical Description

•Probability Transformation

Rule
•Polar Transformation

•Auxiliary Variables

•Multivariate Gaussian

Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

- p. 48/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

SOLUTION. The marginal-pdfs and cdfs are shown below.
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The marginal-pdf, fX (x), and cdf, FX (x), for the RV, X (ζ).
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

SOLUTION. The marginal-pdfs and cdfs are shown below.
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The marginal-pdf, fY (y), and cdf, FY (y), for the RV, Y (ζ).
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Independence

Two random variables, X1(ζ) and X2(ζ) are independent if the
events {X1(ζ) ≤ x1} and {X2(ζ) ≤ x2} are jointly independent;
that is, the events do not influence one another, and

Pr (X1(ζ) ≤ x1, X2(ζ) ≤ x2) = Pr (X1(ζ) ≤ x1) Pr (X2(ζ) ≤ x2)
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Independence

Two random variables, X1(ζ) and X2(ζ) are independent if the
events {X1(ζ) ≤ x1} and {X2(ζ) ≤ x2} are jointly independent;
that is, the events do not influence one another, and

Pr (X1(ζ) ≤ x1, X2(ζ) ≤ x2) = Pr (X1(ζ) ≤ x1) Pr (X2(ζ) ≤ x2)

This then implies that

FX1,X2 (x1, x2) = FX1 (x1)FX2 (x2)

fX1,X2 (x1, x2) = fX1 (x1) fX2 (x2)
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y (ζ), given the random vector X (ζ).



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

•Abstract

•Definition of Random

Vectors
•Distribution and Density

Functions
•Marginal Density Function

• Independence

•Conditionals and Bayes’s

•Statistical Description

•Probability Transformation

Rule
•Polar Transformation

•Auxiliary Variables

•Multivariate Gaussian

Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

- p. 50/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y (ζ), given the random vector X (ζ).

The conditional pdf of Y (ζ) given X (ζ) is defined as:

fY|X (y | x) = fXY (x, y)

fX (x)
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y (ζ), given the random vector X (ζ).

The conditional pdf of Y (ζ) given X (ζ) is defined as:

fY|X (y | x) = fXY (x, y)

fX (x)

If the random vectors X (ζ) and Y (ζ) are independent, then the
conditional pdf must be identical to the unconditional pdf:
fY|X (y | x) = fY (y). Hence, it follows that:

fXY (x, y) = fX (x) fY (y)
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Conditionals and Bayes’s

Since

fXY (x, y) = fY|X (y | x) fX (x) = fX|Y (x | y) fY (y) = fYX (y, x)

it follows

fX|Y (x | y) = fY|X (y | x) fX (x)

fY (y)
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Conditionals and Bayes’s

Since

fXY (x, y) = fY|X (y | x) fX (x) = fX|Y (x | y) fY (y) = fYX (y, x)

it follows

fX|Y (x | y) = fY|X (y | x) fX (x)

fY (y)

Since fY (y) can be expressed as:

fY (y) =

∫

R

fXY (x, y) dx =

∫

R

fY|X (y | x) fX (x) dx

then it follows

fX|Y (x | y) = fY|X (y | x) fX (x)
∫

R
fY|X (y | x) fX (x) dx
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.

With care, it is possible to extend many of the statistical
descriptors for scalar RVs to random vectors.
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.

With care, it is possible to extend many of the statistical
descriptors for scalar RVs to random vectors.

However, it is important to understand that multiple RVs leads to
the notion of measuring their interaction or dependence. This
concept is useful in abstract, but also when dealing with
stochastic processes or time-series.
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Statistical Description

Mean vector The mean vector is the first-moment of the random
vector, and is given by:

µX = E [X (ζ)] =







E [X1(ζ)]
...

E [XN (ζ)]






=







µX1

...

µXN
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Statistical Description

Mean vector The mean vector is the first-moment of the random
vector, and is given by:

µX = E [X (ζ)] =







E [X1(ζ)]
...

E [XN (ζ)]






=







µX1

...

µXN







Correlation Matrix The second-order moments of the random
vector describe the spread of the distribution. The
autocorrelation matrix is defined by:

RX , E
[
X (ζ)XH(ζ)

]
=







rX1X1 · · · rX1XN

...
. . .

...

rXNX1 · · · rXNXN
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Statistical Description

Correlation Matrix The diagonal terms

rXiXi
, E

[

|Xi(ζ)|2
]

, i ∈ {1, . . . , N}

are the second-order moments of each of the RVs, Xi(ζ).
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Statistical Description

Correlation Matrix The diagonal terms

rXiXi
, E

[

|Xi(ζ)|2
]

, i ∈ {1, . . . , N}

are the second-order moments of each of the RVs, Xi(ζ).

The off-diagonal terms

rXiXj
, E

[
Xi(ζ)X

∗
j (ζ)

]
= r∗XjXi

, i 6= j

measure the correlation, or statistical similarity between the
RVs Xi(ζ) and Xj(ζ).
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Statistical Description

Correlation Matrix The diagonal terms

rXiXi
, E

[

|Xi(ζ)|2
]

, i ∈ {1, . . . , N}

are the second-order moments of each of the RVs, Xi(ζ).

The off-diagonal terms

rXiXj
, E

[
Xi(ζ)X

∗
j (ζ)

]
= r∗XjXi

, i 6= j

measure the correlation, or statistical similarity between the
RVs Xi(ζ) and Xj(ζ).

If the Xi(ζ) and Xj(ζ) are orthogonal then their correlation
is zero:

rXiXj
= E

[
Xi(ζ)X

∗
j (ζ)

]
= 0, i 6= j
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Statistical Description

Covariance Matrix The autocovariance matrix is defined by:

ΓX , E

[

(X (ζ)− µX) (X (ζ)− µX)
H
]

=







γX1X1 · · · γX1XN

...
. . . · · ·

γXNX1 · · · γXNXN
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Statistical Description

Covariance Matrix The autocovariance matrix is defined by:

ΓX , E

[

(X (ζ)− µX) (X (ζ)− µX)
H
]

=







γX1X1 · · · γX1XN

...
. . . · · ·

γXNX1 · · · γXNXN







The diagonal terms

γXiXi
, σ2

Xi
= E

[

|Xi(ζ)− µXi
|2
]

, i ∈ {1, . . . , N}

are the variances of each of the RVs, Xi(ζ).
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Statistical Description

Covariance Matrix The off-diagonal terms

γXiXj
, E

[

(Xi(ζ)− µXi
)
(
Xj(ζ)− µXj

)∗
]

= rXiXj
− µXi

µ∗
Xj

= γ∗
XjXi

, i 6= j

measure the covariance Xi(ζ) and Xj(ζ).
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Statistical Description

Covariance Matrix The off-diagonal terms

γXiXj
, E

[

(Xi(ζ)− µXi
)
(
Xj(ζ)− µXj

)∗
]

= rXiXj
− µXi

µ∗
Xj

= γ∗
XjXi

, i 6= j

measure the covariance Xi(ζ) and Xj(ζ).

It should also be noticed that the covariance and correlation
matrices are positive semidefinite; that is, they satisfy the
relations:

aH RXa ≥0

aH ΓXa ≥0

for any complex vector a.
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Statistical Description

The autocorrelation and autocovariance matrices are related,
and it can easily be seen that:

ΓX , E

[

[X (ζ)− µX] [X (ζ)− µX]H
]

= RX − µXµH
X

In fact, if µX = 0, then ΓX = RX.
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Statistical Description

The autocorrelation and autocovariance matrices are related,
and it can easily be seen that:

ΓX , E

[

[X (ζ)− µX] [X (ζ)− µX]H
]

= RX − µXµH
X

In fact, if µX = 0, then ΓX = RX.

If the random variables Xi(ζ) and Xj(ζ) are independent, then
they are also uncorrelated since:

rXiXj
= E [Xi(ζ)Xj(ζ)

∗] = E [Xi(ζ)]E
[
X∗

j (ζ)
]

= µXi
µ∗
Xj

⇒ γXiXj
= 0
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Statistical Description

The autocorrelation and autocovariance matrices are related,
and it can easily be seen that:

ΓX , E

[

[X (ζ)− µX] [X (ζ)− µX]H
]

= RX − µXµH
X

In fact, if µX = 0, then ΓX = RX.

If the random variables Xi(ζ) and Xj(ζ) are independent, then
they are also uncorrelated since:

rXiXj
= E [Xi(ζ)Xj(ζ)

∗] = E [Xi(ζ)]E
[
X∗

j (ζ)
]

= µXi
µ∗
Xj

⇒ γXiXj
= 0

Note, however, that uncorrelatedness does not imply
independence, unless the RVs are jointly-Gaussian.
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Statistical Description

Cross-correlation is defined as

RXY , E
[
X (ζ)YH(ζ)

]
=







E [X1(ζ)Y
∗
1 (ζ)] · · · E [X1(ζ)Y

∗
M (ζ)]

...
. . .

...

E [XN (ζ)Y ∗
1 (ζ)] · · · E [XN (ζ)Y ∗

M (ζ)]
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Statistical Description

Cross-correlation is defined as

RXY , E
[
X (ζ)YH(ζ)

]
=







E [X1(ζ)Y
∗
1 (ζ)] · · · E [X1(ζ)Y

∗
M (ζ)]

...
. . .

...

E [XN (ζ)Y ∗
1 (ζ)] · · · E [XN (ζ)Y ∗

M (ζ)]







Cross-covariance is defined as

ΓXY , E

[

{X (ζ)− µX} {Y (ζ)− µY}H
]

= RXY − µXµH
Y
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Statistical Description

Cross-correlation is defined as

RXY , E
[
X (ζ)YH(ζ)

]
=







E [X1(ζ)Y
∗
1 (ζ)] · · · E [X1(ζ)Y

∗
M (ζ)]

...
. . .

...

E [XN (ζ)Y ∗
1 (ζ)] · · · E [XN (ζ)Y ∗

M (ζ)]







Cross-covariance is defined as

ΓXY , E

[

{X (ζ)− µX} {Y (ζ)− µY}H
]

= RXY − µXµH
Y

Uncorrelated if ΓXY = 0 ⇒ RXY = µXµH
Y.

Orthogonal if RXY = 0.
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Probability Transformation Rule

Theorem (Probability Transformation Rule). The set of random
variables X (ζ) = {Xn(ζ), n ∈ N} are transformed to a new set
of RVs, Y (ζ) = {Yn(ζ), n ∈ N}, using the transformations:

Yn(ζ) = gn(X (ζ)), n ∈ N
♦
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Probability Transformation Rule

Theorem (Probability Transformation Rule). The set of random
variables X (ζ) = {Xn(ζ), n ∈ N} are transformed to a new set
of RVs, Y (ζ) = {Yn(ζ), n ∈ N}, using the transformations:

Yn(ζ) = gn(X (ζ)), n ∈ N

Assuming M -real vector-roots of the equation y = g(x) by
{xm, m ∈ M},

y = g(x1) = · · · = g(xM )

then the joint-pdf of Y (ζ) in terms of (i. t. o.) the joint-pdf of
X (ζ)is:

fY (y) =
M∑

m=1

fX (xm)

|J(xm)| ♦

The Jacobian is defined in the notes, but is the usual definition!
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Polar Transformation

Consider the transformation from the random vector
C(ζ) = [X (ζ) , Y (ζ)]T to P(ζ) = [r(ζ), θ(ζ)]T , where

r(ζ) =
√

X2(ζ) + Y 2(ζ)

θ(ζ) = arctan
Y (ζ)

X (ζ)
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Polar Transformation

Consider the transformation from the random vector
C(ζ) = [X (ζ) , Y (ζ)]T to P(ζ) = [r(ζ), θ(ζ)]T , where

r(ζ) =
√

X2(ζ) + Y 2(ζ)

θ(ζ) = arctan
Y (ζ)

X (ζ)

The Jacobian is given by:

Jg(c) =

∣
∣
∣
∣
∣

cos θ −r sin θ

sin θ r cos θ

∣
∣
∣
∣
∣

−1

=
1

r

Thus, it follows that:

fR,Θ (r, θ) = rfXY (r cos θ, r sin θ)
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Auxiliary Variables

The density of a RV that is one function Z(ζ) = g(X (ζ) , Y (ζ))
of two RVs can be determined by choosing a auxiliary variable.
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Auxiliary Variables

The density of a RV that is one function Z(ζ) = g(X (ζ) , Y (ζ))
of two RVs can be determined by choosing a auxiliary variable.

fZ (z) =

∫

R

fWZ (w, z) dw =
M∑

m=1

∫

R

fXY (xm, ym)

|J(xm, ym)| dw
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Auxiliary Variables

The density of a RV that is one function Z(ζ) = g(X (ζ) , Y (ζ))
of two RVs can be determined by choosing a auxiliary variable.

fZ (z) =

∫

R

fWZ (w, z) dw =
M∑

m=1

∫

R

fXY (xm, ym)

|J(xm, ym)| dw

Example (Sum of two RVs). If X (ζ) and Y (ζ) have joint-pdf
fXY (x, y), find the pdf of the RV Z(ζ) = aX (ζ) + bY (ζ) .
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Auxiliary Variables

The density of a RV that is one function Z(ζ) = g(X (ζ) , Y (ζ))
of two RVs can be determined by choosing a auxiliary variable.

fZ (z) =

∫

R

fWZ (w, z) dw =
M∑

m=1

∫

R

fXY (xm, ym)

|J(xm, ym)| dw

Example (Sum of two RVs). If X (ζ) and Y (ζ) have joint-pdf
fXY (x, y), find the pdf of the RV Z(ζ) = aX (ζ) + bY (ζ) .

SOLUTION. Use as the auxiliary variable the function
W (ζ) = Y (ζ). The system z = ax+ by, w = y has a single

solution at x = z−bw
a

, y = w.

Thus:

fZ (z) =
1

|a|

∫

R

fXY

(
z − bw

a
, w

)

dw �
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Multivariate Gaussian Density Function

Gaussian random vectors play a very important role in the design
and analysis of signal processing systems. A Gaussian random
vector is characterised by a multivariate Normal or Gaussian
density function.
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Multivariate Gaussian Density Function

Gaussian random vectors play a very important role in the design
and analysis of signal processing systems. A Gaussian random
vector is characterised by a multivariate Normal or Gaussian
density function.

For a real random vector, this density function has the form:

fX (x) =
1

(2π)
N
2 |ΓX| 12

exp

[

−1

2
(x− µX)T Γ−1

X (x− µX)

]

where N is the dimension of X (ζ), and X (ζ) has mean µX and
covariance ΓX. It is often denoted as:

fX (x) = N
(
x
∣
∣µX, ΓX

)
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Multivariate Gaussian Density Function

The normal distribution is a useful model of a random vector
because of its many important properties.

1. fX (x) = N
(
x
∣
∣µX, ΓX

)
is completely specified by its mean

µX and covariance ΓX.

2. If the components of X (ζ) are mutually uncorrelated, then
they are also independent.
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Multivariate Gaussian Density Function

The normal distribution is a useful model of a random vector
because of its many important properties.

1. fX (x) = N
(
x
∣
∣µX, ΓX

)
is completely specified by its mean

µX and covariance ΓX.

2. If the components of X (ζ) are mutually uncorrelated, then
they are also independent.

3. A linear transformation of a normal random vector is also
normal.

This is a particularly useful, since the output of a linear system
subject to a Gaussian input is also Gaussian.
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Multivariate Gaussian Density Function

The normal distribution is a useful model of a random vector
because of its many important properties.

1. fX (x) = N
(
x
∣
∣µX, ΓX

)
is completely specified by its mean

µX and covariance ΓX.

2. If the components of X (ζ) are mutually uncorrelated, then
they are also independent.

3. A linear transformation of a normal random vector is also
normal.

This is a particularly useful, since the output of a linear system
subject to a Gaussian input is also Gaussian.

4. If X (ζ) and Y (ζ) are jointly-Gaussian, then so are their
marginal-distributions, and their conditional-distributions.
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

In most practical applications, this is the exception rather than
the rule.
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

In most practical applications, this is the exception rather than
the rule.

The properties and parameters of random events must be
obtained by collecting and analysing finite set of
measurements.
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

In most practical applications, this is the exception rather than
the rule.

The properties and parameters of random events must be
obtained by collecting and analysing finite set of
measurements.

This handout will consider the problem of Parameter
Estimation. This refers to the estimation of a parameter that
is fixed, but is unknown.
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]

The function θ̂ [X ] is known as an estimator whereas the value
taken by the estimator, using a particular set of observations, is
called a point-estimate.
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]

The function θ̂ [X ] is known as an estimator whereas the value
taken by the estimator, using a particular set of observations, is
called a point-estimate.

An aim is to design an estimator, θ̂, that should be as close to the
true value of the parameter, θ, as possible.
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]

The function θ̂ [X ] is known as an estimator whereas the value
taken by the estimator, using a particular set of observations, is
called a point-estimate.

An aim is to design an estimator, θ̂, that should be as close to the
true value of the parameter, θ, as possible.

Since θ̂ is a function of a number of particular realisations of a
random outcome (or experiment), then it is itself a RV, and thus
has a mean and variance.



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

• Introduction

•Properties of Estimators

•Bias of estimator

•Variance of estimator

•Mean square error

•Cramer-Rao Lower Bound

•Consistency of an Estimator

•Maximum Likelihood

Estimation
•Properties of the MLE

•DC Level in white Gaussian

noise
•MLE for Transformed

Parameter
•Least Squares

•The Least Squares

Approach

•DC Level

•Linear Least Squares

MonteCarlo

Passive Target Localisation

- p. 59/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Bias of estimator

The bias of an estimator θ̂ of a parameter θ is defined as:

B(θ̂) , E

[

θ̂
]

− θ
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Bias of estimator

The bias of an estimator θ̂ of a parameter θ is defined as:

B(θ̂) , E

[

θ̂
]

− θ

If θ is large, then a small deviation would give what would
appear to be a large bias. Thus, the normalised bias is often
used instead:

ǫb(θ̂) ,
B(θ̂)

θ
=

E

[

θ̂
]

θ
− 1, θ 6= 0
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Bias of estimator

The bias of an estimator θ̂ of a parameter θ is defined as:

B(θ̂) , E

[

θ̂
]

− θ

If θ is large, then a small deviation would give what would
appear to be a large bias. Thus, the normalised bias is often
used instead:

ǫb(θ̂) ,
B(θ̂)

θ
=

E

[

θ̂
]

θ
− 1, θ 6= 0

Example (Biasness of sample mean estimator). Is the sample mean,

µ̂x = 1
N

∑N−1
n=0 x[n] biased?

SOLUTION. No, since

E [µ̂x] = E

[
1
N

∑N−1
n=0 x[n]

]

= 1
N

∑N−1
n=0 E [x[n]] = NµX

N
= µX .
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Variance of estimator

The variance of the estimator θ̂ is defined by:

var
[

θ̂
]

= σ2
θ̂
, E

[∣
∣
∣θ̂ − E

[

θ̂
]∣
∣
∣

2
]

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may
result in an increase in bias.
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Variance of estimator

The variance of the estimator θ̂ is defined by:

var
[

θ̂
]

= σ2
θ̂
, E

[∣
∣
∣θ̂ − E

[

θ̂
]∣
∣
∣

2
]

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may
result in an increase in bias.

Therefore, a compromise or balance between these two
conflicting criteria is required, and this is provided by the
mean-squared error (MSE) measure described below.
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Variance of estimator

The variance of the estimator θ̂ is defined by:

var
[

θ̂
]

= σ2
θ̂
, E

[∣
∣
∣θ̂ − E

[

θ̂
]∣
∣
∣

2
]

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may
result in an increase in bias.

Therefore, a compromise or balance between these two
conflicting criteria is required, and this is provided by the
mean-squared error (MSE) measure described below.

The normalised standard deviation is defined by:

ǫr ,
σ
θ̂

θ
, θ 6= 0
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Mean square error

Minimising estimator variance can increase bias. A compromise
criterion is the mean-squared error (MSE) of the estimator,
which is given by:

MSE(θ̂) = E

[∣
∣
∣θ̂ − θ

∣
∣
∣

2
]

= σ2
θ̂
+ |B(θ̂)|2
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Mean square error

Minimising estimator variance can increase bias. A compromise
criterion is the mean-squared error (MSE) of the estimator,
which is given by:

MSE(θ̂) = E

[∣
∣
∣θ̂ − θ

∣
∣
∣

2
]

= σ2
θ̂
+ |B(θ̂)|2

The estimator θ̂MSE = θ̂MSE [X ] which minimises MSE(θ̂) is known
as the minimum mean-square error:

θ̂MSE = arg
θ̂
min MSE(θ̂)
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Mean square error

Minimising estimator variance can increase bias. A compromise
criterion is the mean-squared error (MSE) of the estimator,
which is given by:

MSE(θ̂) = E

[∣
∣
∣θ̂ − θ

∣
∣
∣

2
]

= σ2
θ̂
+ |B(θ̂)|2

The estimator θ̂MSE = θ̂MSE [X ] which minimises MSE(θ̂) is known
as the minimum mean-square error:

θ̂MSE = arg
θ̂
min MSE(θ̂)

This measures the average mean squared deviation of the
estimator from its true value.

Unfortunately, adoption of this natural criterion leads to
unrealisable estimators; ones which cannot be written solely as a
function of the data.
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Cramer-Rao Lower Bound

If the MSE can be minimised when the bias is zero, then clearly
the variance is also minimised. Such estimators are called
minimum variance unbiased estimators (MVUEs).
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Cramer-Rao Lower Bound

If the MSE can be minimised when the bias is zero, then clearly
the variance is also minimised. Such estimators are called
MVUEs.

MVUE possess the important property that they attain a
minimum bound on the variance of the estimator, called the
Cramér-Rao lower-bound (CRLB).
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Cramer-Rao Lower Bound

Theorem (CRLB - scalar parameter). If

X(ζ) = [x[0, ζ] , · · · , x[N − 1, ζ]]
T

and fX (x | θ) is the joint
density of X(ζ) which depends on fixed but unknown parameter

θ, then the variance of the estimator θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

♦
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Cramer-Rao Lower Bound

Theorem (CRLB - scalar parameter). If

X(ζ) = [x[0, ζ] , · · · , x[N − 1, ζ]]
T

and fX (x | θ) is the joint
density of X(ζ) which depends on fixed but unknown parameter

θ, then the variance of the estimator θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

Alternatively, it may also be expressed as:

var
[

θ̂
]

≥ − 1

E

[
∂2 ln fX(x | θ)

∂θ2

]

♦
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Cramer-Rao Lower Bound

Theorem (CRLB - scalar parameter). If

X(ζ) = [x[0, ζ] , · · · , x[N − 1, ζ]]
T

and fX (x | θ) is the joint
density of X(ζ) which depends on fixed but unknown parameter

θ, then the variance of the estimator θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

Alternatively, it may also be expressed as:

var
[

θ̂
]

≥ − 1

E

[
∂2 ln fX(x | θ)

∂θ2

] ♦

The function ln fX (x | θ) is called the log-likelihood of θ.
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Cramer-Rao Lower Bound

Theorem (CRLB - scalar parameter). If

X(ζ) = [x[0, ζ] , · · · , x[N − 1, ζ]]
T

and fX (x | θ) is the joint
density of X(ζ) which depends on fixed but unknown parameter

θ, then the variance of the estimator θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

Alternatively, it may also be expressed as:

var
[

θ̂
]

≥ − 1

E

[
∂2 ln fX(x | θ)

∂θ2

]

Furthermore, an unbiased estimator may be found that attains
the bound for all θ if, and only if, (iff)

∂ ln fX (x | θ)
∂θ

= I(θ)
(

θ̂ − θ
)

♦
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Consistency of an Estimator

If the MSE of the estimator,

MSE(θ̂) = E

[

|θ̂ − θ|2
]

= σ2
θ̂
+ |B(θ̂)|2

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.
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Consistency of an Estimator

If the MSE of the estimator,

MSE(θ̂) = E

[

|θ̂ − θ|2
]

= σ2
θ̂
+ |B(θ̂)|2

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.

Thus, the sampling distribution tends to concentrate around θ,
and as N → ∞, it will become an impulse at θ.
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Consistency of an Estimator

If the MSE of the estimator,

MSE(θ̂) = E

[

|θ̂ − θ|2
]

= σ2
θ̂
+ |B(θ̂)|2

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.

Thus, the sampling distribution tends to concentrate around θ,
and as N → ∞, it will become an impulse at θ.

This is a very important and desirable property, and such an
estimator is called a consistent estimator.
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).

This same quantity, viewed as a function of the parameter θ
when a particular set of observations, x̂ is given, is known as the
likelihood function.
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).

This same quantity, viewed as a function of the parameter θ
when a particular set of observations, x̂ is given, is known as the
likelihood function.

The maximum-likelihood estimate (MLE) of the parameter θ,

denoted by θ̂ml, is defined as that value of θ that maximises
fX ( x̂ | θ).
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).

This same quantity, viewed as a function of the parameter θ
when a particular set of observations, x̂ is given, is known as the
likelihood function.

The maximum-likelihood estimate (MLE) of the parameter θ,

denoted by θ̂ml, is defined as that value of θ that maximises
fX ( x̂ | θ).

The MLE for θ is defined by:

θ̂ml(x) = argθ max fX (x | θ)

Note that since θ̂ml(x) depends on the random observation
vector x, and so is itself a RV.
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Properties of the MLE

1. The MLE satisfies

∇θfX (x | θ)|
θ=θ̂ml

= 0P×1

∇θ ln fX (x | θ)|
θ=θ̂ml

= 0P×1
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Properties of the MLE

1. The MLE satisfies

∇θfX (x | θ)|
θ=θ̂ml

= 0P×1

∇θ ln fX (x | θ)|
θ=θ̂ml

= 0P×1

2. If an MVUE exists and the MLE does not occur at a boundary,
then the MLE is the MVUE.

A single parameter MLE that occurs at a boundary
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Properties of the MLE

1. The MLE satisfies

∇θfX (x | θ)|
θ=θ̂ml

= 0P×1

∇θ ln fX (x | θ)|
θ=θ̂ml

= 0P×1

2. If an MVUE exists and the MLE does not occur at a boundary,
then the MLE is the MVUE.

A single parameter MLE that occurs at a boundary

3. If the pdf, fX (x | θ), satisfies certain regularity conditions,
then the MLE is asymptotically distributed according to a
Gaussian distribution:

θ̂ml ∼ N
(
θ, J−1(θ)

)
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DC Level in white Gaussian noise

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive white Gaussian
noise (WGN). That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)
⋊⋉

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of the unknown
signal A.
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DC Level in white Gaussian noise

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive WGN. That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of the unknown
signal A.

SOLUTION. Since this is a memoryless system, and w(n) are
independent and identically distributed (i. i. d.), then so is x[n],
and

the log-likelihood is given by:

ln fX (x | A) = −N

2
ln(2πσ2

w)−
∑

n∈N (x[n]−A)
2

2σ2
w

Differentiating this expression w. r. t. A

and setting to zero :

∑
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MLE for Transformed Parameter

Theorem (Invariance Property of the MLE). The MLE of the parameter
α = g(θ), where g is an r-dimensional function of the P × 1
parameter θ, and the pdf, fX (x | θ) is parameterised by θ, is
given by

α̂ml = g(θ̂ml) ♦

where θ̂ml is the MLE of θ.
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MLE for Transformed Parameter

Theorem (Invariance Property of the MLE). The MLE of the parameter
α = g(θ), where g is an r-dimensional function of the P × 1
parameter θ, and the pdf, fX (x | θ) is parameterised by θ, is
given by

α̂ml = g(θ̂ml)

where θ̂ml is the MLE of θ.

The MLE of θ, θ̂ml, is obtained by maximising fX (x | θ). If the
function g is not an invertible function, then α̂ maximises the
modified likelihood function p̄T (x | α) defined as:

p̄T (x | α) = max
θ:α=g(θ)

fX (x | θ) ♦
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make
good sense for many problems of interest: the principle of least
squares.
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make
good sense for many problems of interest: the principle of least
squares.

A salient feature of the method is that no probabilistic
assumptions are made about the data; only a signal model is
assumed.
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make
good sense for many problems of interest: the principle of least
squares.

A salient feature of the method is that no probabilistic
assumptions are made about the data; only a signal model is
assumed.

As will be seen, it turns out that the LSE can be calculated when
just the first and second moments are known, and through the
solution of linear equations.
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The Least Squares Approach

In the least-squares (LS) approach, it is sought to minimise the
squared difference between the given, or observed, data x[n] and
the assumed, or hidden, signal or noiseless data.
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The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some
unknown parameter θ.
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The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some
unknown parameter θ.

The LSE of θ chooses the value that makes s[n] closest to the
observed data x[n], and this closeness is measured by the LS error
criterion:

J(θ) =
N−1∑

n=0

(x[n]− s[n])2
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The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some
unknown parameter θ.

The LSE of θ chooses the value that makes s[n] closest to the
observed data x[n], and this closeness is measured by the LS error
criterion:

J(θ) =
N−1∑

n=0

(x[n]− s[n])2

The LSE is given by:

θ̂LSE = argθ min J(θ)
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DC Level

Example ( [Kay:1993, Example 6.1, Page 221]). It is assumed that an
observed signal, x[n], is a perturbed version of an unknown
signal, s[n], which is modelled as s[n] = A, for
n ∈ N = {0, . . . , N − 1}. Calculate the LSE of the unknown
signal A.
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DC Level

Example ( [Kay:1993, Example 6.1, Page 221]). It is assumed that an
observed signal, x[n], is a perturbed version of an unknown
signal, s[n], which is modelled as s[n] = A, for
n ∈ N = {0, . . . , N − 1}. Calculate the LSE of the unknown
signal A.

SOLUTION. According to the LS approach, then:

ÂLSE = argA minJ(A) where J(A) =

N−1∑

n=0

(x[n]−A)
2

Differentiating w. r. t. A and setting the result to zero produces

ÂLSE =
1

N

N−1∑

n=0

x[n] �

which is the sample mean estimator.
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Linear Least Squares

Thus, the unknown random-vector s is linear in the unknown
parameter vector θ = [θ1, · · · , θP ],

s = Hθ

The LSE is found by minimising:

J(θ) =
N−1∑

n=0

|x[n]− s[n]|2 = (x−Hθ)T (x−Hθ)
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Linear Least Squares

Thus, the unknown random-vector s is linear in the unknown
parameter vector θ = [θ1, · · · , θP ],

s = Hθ

The LSE is found by minimising:

J(θ) =
N−1∑

n=0

|x[n]− s[n]|2 = (x−Hθ)T (x−Hθ)

Setting the gradient of J(θ) to zero yields the LSE:

θ̂LSE =
(

HTH
)−1

HTx
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Linear Least Squares

Thus, the unknown random-vector s is linear in the unknown
parameter vector θ = [θ1, · · · , θP ],

s = Hθ

The LSE is found by minimising:

J(θ) =
N−1∑

n=0

|x[n]− s[n]|2 = (x−Hθ)T (x−Hθ)

Setting the gradient of J(θ) to zero yields the LSE:

θ̂LSE =
(

HTH
)−1

HTx

The equations HTHθ = HTx, to be solved for θ̂, are termed the
normal equation.
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Optimisation: involves finding the solution to

θ̂ = argmax
θ∈Θ

h(θ)

where h(·) is a scalar function of a multi-dimensional vector
of parameters, θ.

Typically, h(·) might represent some cost function, and it is
implicitly assumed that the optimisation cannot be calculated
explicitly.
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Integration: involves evaluating an integral,

I =

∫

Θ

f(θ) dθ,

that cannot explicitly be calculated in closed form.
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Integration: involves evaluating an integral,

I =

∫

Θ

f(θ) dθ,

that cannot explicitly be calculated in closed form.

For example, the Gaussian-error function:

Φ(t) =

∫ t

−∞

1√
2π

e−
θ2

2 dθ

Again, the integral may be multi-dimensional, and in general
θ is a vector.
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Optimisation and Integration Some problems involve both
integration and optimisation: a fundamental problem is the
maximisation of a marginal distribution:

θ̂ = argmax
θ∈Θ

∫

Ω

f(θ, ω) dω
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Deterministic Numerical Methods
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Function h(x) = (cos 50x + sin 20x)2

Plot of the function h(x) = (cos 50x+ sin 20x)
2
, 0 ≤ x ≤ 1.

There are various deterministic solutions to the optimisation and
integration problems.
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Deterministic Numerical Methods

Optimisation: 1. Golden-section search and Brent’s Method in one
dimension;

2. Nelder and Mead Downhill Simplex method in
multi-dimensions;

3. Gradient and Variable-Metric methods in
multi-dimensions, typically an extension of
Newton-Raphson methods.



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

•Markov chain Monte Carlo

Methods
•The Metropolis-Hastings

algorithm

•Gibbs Sampling

Passive Target Localisation

- p. 74/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Deterministic Numerical Methods

Integration: Most deterministic integration rely on classic
formulas for equally spaced abscissas:

1. simple Riemann integration;

2. standard and extended Simpson’s and Trapezoidal rules;

3. refinements such as Romberg Integration.

Unfortunately, these methods are not easily extended to
multi-dimensions.
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Deterministic Numerical Methods

Integration: Most deterministic integration rely on classic
formulas for equally spaced abscissas:

1. simple Riemann integration;

2. standard and extended Simpson’s and Trapezoidal rules;

3. refinements such as Romberg Integration.

More sophisticated approaches allow non-uniformally spaced
abscissas at which the function is evaluated.

These methods tend to use Gaussian quadratures and
orthogonal polynomials. Splines are also used.

Unfortunately, these methods are not easily extended to
multi-dimensions.
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Deterministic Optimisation

The Nelder-Mead Downhill Simplex method simply crawls
downhill in a straightforward fashion that makes almost no
special assumptions about your function.

This can be extremely slow, but it can be robust.
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Deterministic Optimisation

Gradient methods are typically based on the Newton-Raphson
algorithm which solves ∇h(θ) = 0.

For a scalar function, h(θ), of a vector of independent variables
θ, a sequence θn is produced such that:
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Deterministic Optimisation

Gradient methods are typically based on the Newton-Raphson
algorithm which solves ∇h(θ) = 0.

For a scalar function, h(θ), of a vector of independent variables
θ, a sequence θn is produced such that:

θn+1 = θn −
(
∇∇Th (θn)

)−1 ∇h (θn)

Numerous variants of Newton-Raphson-type techniques exist,
and include the steepest descent method, or the
Levenberg-Marquardt method.
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Deterministic Integration

The integral

I =

∫ b

a

f(θ) dθ,

where θ is a scalar, and b > a, can be solved with the trapezoidal
rule using

Î =
1

2

N−1∑

k=0

(θk+1 − θk) (f(θk) + f(θk+1))

where the θk ’s constitute an ordered partition of [a, b].
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Deterministic Integration

The integral

I =

∫ b

a

f(θ) dθ,

where θ is a scalar, and b > a, can be solved with the trapezoidal
rule using

Î =
1

2

N−1∑

k=0

(θk+1 − θk) (f(θk) + f(θk+1))

where the θk ’s constitute an ordered partition of [a, b].

Another formula is Simpson’s rule:

Î =
δ

3

{

f(a) + 4
N∑

k=1

f(θ2k−1) + 2
N∑

k=1

h(θ2k) + f(b)

}

in the case of equally spaced samples with δ = θk+1 − θk.
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Monte Carlo Numerical Methods

Monte Carlo methods are stochastic techniques, in which random
numbers are generated and use to examine some problem.



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

•Markov chain Monte Carlo

Methods
•The Metropolis-Hastings

algorithm

•Gibbs Sampling

Passive Target Localisation

- p. 78/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Monte Carlo Integration

Consider the integral,

I =

∫

Θ

f(θ) dθ.
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Monte Carlo Integration

Consider the integral,

I =

∫

Θ

f(θ) dθ.

Defining a function π(θ) which is non-zero and positive for all

θ ∈ Θ, this integral can be expressed in the alternate form:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ,

where the function π(θ) > 0, θ ∈ Θ is a pdf which satisfies

∫

Θ

π(θ) dθ = 1
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Monte Carlo Integration

Consider the integral,

I =

∫

Θ

f(θ) dθ.

Defining a function π(θ) which is non-zero and positive for all

θ ∈ Θ, this integral can be expressed in the alternate form:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ,

where the function π(θ) > 0, θ ∈ Θ is a pdf which satisfies

∫

Θ

π(θ) dθ = 1

This may be written as an expectation:

I = Eπ

[
f(θ)

π(θ)

]
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Monte Carlo Integration

This expectation can be estimated using the idea of the sample
expectation, and leads to the idea behind Monte Carlo
integration:

1. Sample N random variates from a density function π(θ),

θ(k) ∼ π(θ), k ∈ N = {0, . . . , N − 1}

2. Calculate the sample average of the expectation using

Î =
1

N

N−1∑

k=0

f(θ(k))

π(θ(k))
≈ Eπ

[
f(θ)

π(θ)

]
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Stochastic Optimisation

There are two distinct approaches to the Monte Carlo
optimisation of the objective function h(θ):

θ̂ = argmax
θ∈Θ

h(θ)

The first method is broadly known as an exploratory approach,
while the second approach is based on a probabilistic
approximation of the objective function.
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Stochastic Optimisation

Exploratory approach This approach is concerned with fast
explorations of the sample space rather than working with the
objective function directly.
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Stochastic Optimisation

Exploratory approach This approach is concerned with fast
explorations of the sample space rather than working with the
objective function directly.

For example, maximisation can be solved by sampling a large

number, N , of independent random variables, {θ(k)}, from a
pdf π(θ), and taking the estimate:

θ̂ ≈ argmax
{θ(k)}

h
(

θ(k)
)

Typically, when no specific features regarding the function
h (θ), are taken into account, π(θ) will take on a uniform
distribution over Θ.
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Stochastic Optimisation

Exploratory approach This approach is concerned with fast
explorations of the sample space rather than working with the
objective function directly.

For example, maximisation can be solved by sampling a large

number, N , of independent random variables, {θ(k)}, from a
pdf π(θ), and taking the estimate:

θ̂ ≈ argmax
{θ(k)}

h
(

θ(k)
)

Typically, when no specific features regarding the function
h (θ), are taken into account, π(θ) will take on a uniform
distribution over Θ.

Stochastic Approximation The Monte Carlo EM algorithm
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Generating Random Variables

This section discusses a variety of techniques for generating
random variables from a different distributions.
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Uniform Variates

The foundation underpinning all stochastic simulations is the
ability to generate a sequence of i. i. d. uniform random variates
over the range (0, 1].
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Uniform Variates

The foundation underpinning all stochastic simulations is the
ability to generate a sequence of i. i. d. uniform random variates
over the range (0, 1].

Random variates are pseudo or synthetic and not truly random
since they are usually generated using a recurrence of the form:

xn+1 = (a xn + b) mod m
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Uniform Variates

The foundation underpinning all stochastic simulations is the
ability to generate a sequence of i. i. d. uniform random variates
over the range (0, 1].

Random variates are pseudo or synthetic and not truly random
since they are usually generated using a recurrence of the form:

xn+1 = (a xn + b) mod m

This is known as the linear congruential generator.

However, suitable values of a, b and m can be chosen such that
the random variates pass all statistical tests of randomness.
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Transformation Methods

It is possible to sample from a number of extremely important
probability distributions by applying various probability
transformation methods.

Theorem (Probability transformation rule). Denote the real roots of
y = g(x) by {xn, n ∈ N}, such that

y = g(x1) = · · · = g(xN )

PROOF. The proof is given in the handout on scalar random
variables.
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Inverse Transform Method

A simple derivation of the inverse transform method

X(ζ) and Y (ζ) are RVs related by the function Y (ζ) = Π(X(ζ)).

Π(ζ) is monotonically increasing so that there is only one

solution to the equation y = Π(x), x = Π−1(y).
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Inverse Transform Method

A simple derivation of the inverse transform method

fX (x) =
dΠ(x)

dx
fY (y)

Now, suppose Y (ζ) ∼ U[0, 1] is a uniform random variable. If

Π(x) is the cdf corresponding to a desired pdf π (x), then

fX (x) = π(x), where x = Π−1(y)
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Inverse Transform Method

In otherwords, if

U(ζ) ∼ U[0, 1], X(ζ) = Π−1U(ζ) ∼ π (x)
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Inverse Transform Method

In otherwords, if

U(ζ) ∼ U[0, 1], X(ζ) = Π−1U(ζ) ∼ π (x)

Example (Exponential variable generation). If X(ζ) ∼ Exp(1), such

that π(x) = e−x and Π(x) = 1− e−x, then solving for x in terms

of u = 1− e−x gives x = − log(1− u).
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Inverse Transform Method

In otherwords, if

U(ζ) ∼ U[0, 1], X(ζ) = Π−1U(ζ) ∼ π (x)

Example (Exponential variable generation). If X(ζ) ∼ Exp(1), such

that π(x) = e−x and Π(x) = 1− e−x, then solving for x in terms

of u = 1− e−x gives x = − log(1− u).

Therefore, if U(ζ) ∼ U[0, 1], then the RV from the transformation

X(ζ) = − logU(ζ) has the exponential distribution (since U(ζ)
and 1− U(ζ) are both uniform).
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Acceptance-Rejection Sampling

For most distributions, it is often difficult or even impossible to
directly simulate using either the inverse transform or probability
transformations.
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Acceptance-Rejection Sampling

On average, you would expect to have too many variates that
take on the value X by a factor of

u(X) =
Pp

Pπ

=
p (X)

π (X)
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Acceptance-Rejection Sampling

Thus, to reduce the number of variates that take on a value of X ,
simply throw away a number of samples in proportion to the
amount of over sampling.
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Acceptance-Rejection Sampling

Thus, to reduce the number of variates that take on a value of X ,
simply throw away a number of samples in proportion to the
amount of over sampling.

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ Pa = π(X)
Mp(x) ;

3. Otherwise, reject and return to first step.
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Envelope and Squeeze Methods

A problem with many sampling methods, which can make the
density π (x) difficult to simulate, is that the function may
require substantial computing time at each evaluation.

It is possible to reduce the algorithmic complexity by looking for
another computationally simple function, q (x) which bounds
π (x) from below.
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Envelope and Squeeze Methods

If X satisfies q (X) ≤ π (X), then it should be accepted when

U ≤ q(X)
Mp(x) , since this also satisfies U ≤ π(X)

Mp(x) .
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Envelope and Squeeze Methods

This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ q(X)
Mp(x) ;

3. Otherwise, accept X if U ≤ π(X)
Mp(x) ;

4. Otherwise, reject and return to first step.
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Envelope and Squeeze Methods

This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ q(X)
Mp(x) ;

3. Otherwise, accept X if U ≤ π(X)
Mp(x) ;

4. Otherwise, reject and return to first step.

By construction of a lower envelope on π (x), the number of
function evaluations is potentially decreased by a factor of

Pπ̄ =
1

M

∫

q (x) dx

which is the probability that π (x) is not evaluated.
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Importance Sampling

The problem with accept-reject sampling methods is finding the
envelope functions and the constant M .
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Importance Sampling

The problem with accept-reject sampling methods is finding the
envelope functions and the constant M .

The simplest application of importance sampling is in Monte
Carlo integration. Suppose that is is desired to evaluate the
function:

I =

∫

Θ

f(θ) dθ.
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Importance Sampling

The problem with accept-reject sampling methods is finding the
envelope functions and the constant M .

The simplest application of importance sampling is in Monte
Carlo integration. Suppose that is is desired to evaluate the
function:

I =

∫

Θ

f(θ) dθ.

Approximate by empirical average:

Î =
1

N

N−1∑

k=0

IΘ

(

θ(k)
)

, where θ(k) ∼ f(θ)

where IA (a) is the indicator function, and is equal to one if
a ∈ A and zero otherwise.
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Importance Sampling

Defining an easy-to-sample-from density π(θ) > 0, ∀θ ∈ Θ:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ = Eπ

[
f(θ)

π(θ)

]

,
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