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1
Module Overview, Aims and Objectives

Everything that needs to be said has already

been said. But since no one was listening,

everything must be said again.

André Gide

If you can’t explain it simply, you don’t

understand it well enough.

Albert Einsten

This handout also provides an introduction to signals and systems, and an overview of statistical

signal processing applications.

1.1 Obtaining the Latest Version of these Handouts

New slide

• This research tutorial is intended to cover a wide range of aspects which cover the fundamentals

of statistical signal processing. It is written at a level which assumes knowledge of

undergraduate mathematics and signal processing nomenclature, but otherwise should be

accessible to most technical graduates.

2
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1.1. Obtaining the Latest Version of these Handouts 3

� ✁ ✂ ✁ ✄ ☎ ✁ ✆✝ ✞ ✄ ✂ ✟ ✆ ✆ ✠ ✡ ☛

☞ ✌ ✄ ✍ ✁
✎ ✏ ✑ ✒ ✓ ✔ ✕ ✖ ✔ ✗ ✘ ✙ ✚ ✛ ✜ ✙ ✘ ✚ ✛ ✢ ✣ ✤ ✥ ✚

✦ ✧ ★ ✩ ✧ ✪ ✫ ✬ ✭ ✮ ✯

☞ ✌ ✄ ✍ ✁

Figure 1.1: Source localisation and BSS. An example of topics using statistical signal processing.

Direct

paths Indirect

paths

Observer

Walls

and other

obstacles

Sound

Source 1

Sound

Source 2

Sound

Source 3

Figure 1.2: Humans turn their head in the direction of interest in order to reduce inteference from

other directions; joint detection, localisation, and enhancement. An application of probability and

estimation theory, and statistical signal processing.

October 11, 2016 – 18 : 39
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4 Aims and Objectives

Figure 1.3: Empirical Gaussian probability density function.

KEYPOINT! (Latest Slides). Please note the following:

• This tutorial is being continually updated, and feedback is welcomed. The documents published

on the USB stick may differ to the slides presented on the day. In particular, there are likely to

be a few typos in the document, so if there is something that isn’t clear, please feel free to email

me so I can correct it (or make it clearer).

• The latest version of this document can be obtained from the author, Dr James R. Hopgood, by

emailing him at: at:

mailto:james.hopgood@ed.ac.uk

(Update: The notes are no longer online due to the desire to maintain copyright control on the

document.)

• Extended thanks are given to the many MSc students over the past 12 years who have helped

proof-read and improve these documents.

1.2 Module Abstract

New slide The notion of random or stochastic quantities is an extremely powerful concept that can be

constructively used to model observations that result from real-world processes. These quantities

could be scalar measurements, such as an instantaneous measurement of distance, or they could be

vector-measurements such as a coordinate. They could be random signals either in one-dimension,

or in higher-dimensions, such as images. Stochastic quantities such as random signals, by their very

nature, are described using the mathematics of probability and statistics. By making assumptions

such as the availability of an infinite number of observations or data samples, time-invariant statistics,

and known signal or observation models, it is possible to estimate the properties of these random

quantities or signals and, consequently, use them in signal processing algorithms.

In practice, of course, these statistical properties must be estimated from finite-length data signals

observed in noise. In order to understand both the concept of stochastic processes and the inherent

uncertainty of signal estimates from finite-length sequences, it is first necessary to understand the

fundamentals of probability, random variables, and estimation theory.

This topic is covered in two related lecture modules:

1. Probability, Random Variables, and Estimation Theory, and

mailto:james.hopgood@ed.ac.uk
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(a) Input signal; uncorrelated

white noise process.
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(b) Frequency response of
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(c) Output signal: a coloured

(correlated) noise process.

(d) Block diagram of system representing convolution.

Figure 1.4: Solutions to the so-called blind deconvolution problem require statistical signal processing

methods.

2. Statistical Signal Processing,

together introduce the subject of statistical signal modelling and estimation. In particular, the module

Statistical Signal Processing investigates which statistical properties are relevant for dealing with

signal processing problems, how these properties can be estimated from real-world signals, and how

they can be used in signal processing algorithms to achieve a particular goal.

1.3 Introduction and Overview

New slideSignal processing is concerned with the modification or manipulation of a signal, defined

as an information-bearing representation of a real process, to the fulfillment of human

needs and aspirations.

Gone is the era where information in the form of electrical signals are processed through analogue

devices. For the foreseeable future, processing of digital, sampled, or discrete-time signals is the

definitive approach to analysing data and extracting information. In this course, it is assumed that

the reader already has a grounding in digital signal processing (DSP), and this module will take you

to the next level; a tour of the exciting, fascinating, and active research area of statistical signal

processing (SSP).

1.3.1 Description and Learning Outcomes

New slideModule Aims The aims of the two modules Probability, Random Variables, and Estimation Theory

(PET), and statistical signal processing (SSP), are similar to those of the text book

[Manolakis:2000, page xvii]. The principle aim of the modules are:

to provide a unified introduction to the theory, implementation, and

applications of statistical signal processing.

October 11, 2016 – 18 : 39
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6 Aims and Objectives

Pre-requisites It is strongly recommended that the student has previously attended an undergraduate

level course in either signals and systems, digital signal processing, automatic control,

or an equivalent course.

Section 1.3.2 provides further details regarding the material a student should have

previously covered.

Short Description The Probability, Random Variables, and Estimation Theory module

introduces the fundamental statistical tools that are required to analyse and describe

advanced signal processing algorithms. It provides a unified mathematical framework

which is the basis for describing random events and signals, and how to describe key

characteristics of random processes.

The module covers probability theory, considers the notion of random variables and

vectors, how they can be manipulated, and provides an introduction to estimation

theory. It is demonstrated that many estimation problems, and therefore signal

processing problems, can be reduced to an exercise in either optimisation or

integration. While these problems can be solved using deterministic numerical

methods, the module introduces Monte Carlo techniques which are the basis of

powerfull stochastic optimisation and integration algorithms. These methods rely on

being able to sample numbers, or variates, from arbitrary distributions. This module

will therefore discuss the various techniques which are necessary to understand

these methods and, if time permits, techniques for random number generation are

considered.

The Statistical Signal Processing module then consider representing real-world

signals by stochastic or random processes. The tools for analysing these random

signals are developed in the Probability, Random Variables, and Estimation

Theory module, and this module extends them to deal with time series. The notion

of statistical quantities such as autocorrelation and auto-covariance are extended from

random vectors to random processes, and a frequency-domain analysis framework is

developed. This module also investigates the affect of systems and transformations

on time-series, and how they can be used to help design powerful signal processing

algorithms to achieve a particular task.

The module introduces the notion of representing signals using parametric models;

it extends the broad topic of statistical estimation theory covered in the Probability,

Random Variables, and Estimation Theory module for determining optimal model

parameters. In particular, the Bayesian paradigm for statistical parameter estimation

is introduced. Emphasis is placed on relating these concepts to state-of-the-art

applications and signals.

Keywords Probability, scalar and multiple random variables, stochastic processes, power

spectral densities, linear systems theory, linear signal models, estimation theory, and

Monte Carlo methods.

Module Objectives At the end of these modules, a student should be able to have:

1. acquired sufficient expertise in this area to understand and implement spectral

estimation, signal modelling, parameter estimation, and adaptive filtering

techniques;

2. developed an understanding of the basic concepts and methodologies in

statistical signal processing that provides the foundation for further study,

research, and application to new problems.
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1.3. Introduction and Overview 7

Intended Learning Outcomes At the end of the Probability, Random Variables, and Estimation

Theory module, a student should be able to:

1. define, understand and manipulate scalar and multiple random variables,

using the theory of probability; this should include the tools of probability

transformations and characteristic functions;

2. explain the notion of characterising random variables and random vectors using

moments, and be able to manipulate them; understand the relationship between

random variables within a random vector;

3. understand the central limit theorem (CLT) and explain its use in estimation

theory and the sum of random variables;

4. understand the principles of estimation theory; understand and be apply to apply

estimation techniques such as maximum-likelihood, least squares, and Bayesian

estimation;

5. be able to characterise the uncertainty in an estimator, as well as characterise

the performance of an estimator (bias, variance, and so forth); understand the

Cramér-Rao lower-bound (CRLB) and minimum variance unbiased estimator

(MVUE) estimators.

6. if time permits, explain and apply methods for generating random numbers,

or random variates, from an arbitrary distribution, using methods such as

accept-reject and Gibbs sampling; understand the notion of stochastic numerical

methods for solving integration and optimisation problems.

At the end of the Statistical Signal Processing module, a student should be able to:

1. explain, describe, and understand the notion of a random process and statistical

time series;

2. characterise random processes in terms of its statistical properties, including the

notion of stationarity and ergodicity;

3. define, describe, and understand the notion of the power spectral density of

stationary random processes; analyse and manipulate power spectral densities;

4. analyse in both time and frequency the affect of transformations and linear

systems on random processes, both in terms of the density functions, and

statistical moments;

5. explain the notion of parametric signal models, and describe common

regression-based signal models in terms of its statistical characteristics, and in

terms of its affect on random signals;

6. apply least squares, maximum-likelihood, and Bayesian estimators to model

based signal processing problems;

1.3.2 Prerequisites

The mathematical treatment throughout this module is kept at a level that is within the grasp of

final-year undergraduate and graduate students, with a background in digital signal processing

(DSP), linear system and control theory, basic probability theory, calculus, linear algebra, and a

competence in Engineering mathematics.

In summary, it is assumed that the reader has knowledge of:

October 11, 2016 – 18 : 39
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8 Aims and Objectives

(a) Cover of paperback

version.

(b) Cover of hardback version.

Figure 1.5: The main course text for this module: [Manolakis:2000].

1. Engineering mathematics, including linear algebra, manipulation of vectors and matrices,

complex numbers, linear transforms including Fourier series and Fourier transforms,

z-transforms, and Laplace transforms;

2. basic probability and statistics, albeit with a solid understanding;

3. differential and integral calculus, including differentiating products and quotients, functions of

functions, integration by parts, integration by substitution;

4. basic digital signal processing (DSP), including:

• the notions of deterministic continuous-time signals, discrete-time signals and digital

(quantised) signals;

• filtering and inverse filtering of signals; convolution;

• the response of linear systems to harmonic inputs; analysing the time and frequency

domain properties of signals and systems;

• sampling of continuous time processes, Nyquist’s sampling theorem and signal

reconstruction;

• and analysing discrete-time signals and systems.

Note that while the reader should have been exposed to the idea of a random variable, it is not

assumed that the reader has been introduced to random signals in any form. A list of recommended

texts covering these prerequisites is given in Section 1.3.3.

1.3.3 Recommended Texts for Module Content

The recommended text for this module is cited throughout this document as [Manolakis:2000]. The

full reference is:
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1.3. Introduction and Overview 9

(a) Recommended text:

[Kay:1993].

(b) Recommended text:

[Papoulis:1991].

Figure 1.6: Additional recommended texts for the course.

Manolakis D. G., V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal

Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array

Processing, McGraw Hill, Inc., 2000.

IDENTIFIERS – Paperback, ISBN10: 0070400512, ISBN13: 9780070400511

It is recommended that, if you wish to purchase a hard-copy of this book, you try and find this

paperback version; it should be possible to order a copy relatively cheaply through the US version

of Amazon (check shipping costs). However, please note that this book is now available, at great

expense, in hard-back from an alternative publisher. The full reference is:

Manolakis D. G., V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal

Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array

Processing, Artech House, 2005.

IDENTIFIERS – Hardback, ISBN10: 1580536107, ISBN13: 9781580536103

Images of the book covers are shown in Figure 1.5. For further reading, or an alternative perspective

on the subject matter, other recommended text books for this module include:

1. Therrien C. W., Discrete Random Signals and Statistical Signal Processing, Prentice-Hall, Inc.,

1992.

IDENTIFIERS – Paperback, ISBN10: 0130225452, ISBN13: 9780130225450

Hardback, ISBN10: 0138521123, ISBN13: 9780138521127

2. Kay S. M., Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall,

Inc., 1993.

October 11, 2016 – 18 : 39
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10 Aims and Objectives

(a) Third Edition cover. (b) Fourth Edition cover.

Figure 1.7: Course text: further reading for digital signal processing and mathematics,

[Proakis:1996].

IDENTIFIERS – Hardback, ISBN10: 0133457117, ISBN13: 9780133457117

Paperback, ISBN10: 0130422681, ISBN13: 9780130422682

3. Papoulis A. and S. Pillai, Probability, Random Variables, and Stochastic Processes, Fourth

edition, McGraw Hill, Inc., 2002.

IDENTIFIERS – Paperback, ISBN10: 0071226613, ISBN13: 9780071226615

Hardback, ISBN10: 0072817259, ISBN13: 9780072817256

These are referenced throughout as [Therrien:1992], [Kay:1993], and [Papoulis:1991], respectively.

Images of the book covers are shown in Figure 1.6. The material in [Kay:1993] is mainly covered

in Handout 5 on Estimation Theory of the PET module. The material in [Therrien:1992] and

[Papoulis:1991] is covered throughout the course, with the former primarily in the Statistical Signal

Processing (SSP) module.

KEYPOINT! (Proposed Recommended Text Book for Future Years). Finally, Therrien has also

published a recent book which covers much of this course extremely well, and therefore comes

thoroughly recommended. It has a number of excellent examples, and covers the material in good

detail.

Therrien C. W. and M. Tummala, Probability and Random Processes for Electrical and

Computer Engineers, Second edition, CRC Press, 2011.

IDENTIFIERS – Hardback, ISBN10: 1439826986, ISBN13: 978-1439826980

1.3.4 Recommended Texts: Prerequisite Material

As mentioned in Section 1.3.2 above, regarding the prerequisites, it is assumed that the reader has a

basic knowledge of digital signal processing. If not, or if the reader wishes to revise the topic, the

following book which is highly recommended:
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Figure 1.8: Further reading for statistical signal processing, [Therrien:2011].

Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms,

and Applications, Third edition, Prentice-Hall, Inc., 1996.

IDENTIFIERS – Paperback, ISBN10: 0133942899, ISBN13: 9780133942897

Hardback, ISBN10: 0133737624, ISBN13: 9780133737622

This is cited throughout as [Proakis:1996] and is referred to in the second handout. This is the third

edition to the book, and a fourth edition has recently been released:

Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms,

and Applications, Pearson New International Edition, Fourth edition, Pearson Education,

2013.

IDENTIFIERS – Paperback, ISBN10: 1292025735, ISBN13: 9781292025735

Although it is best to purchase the fourth edition, please bear in mind that the equation references

throughout the lecture notes correspond to the third edition. For an undergraduate level text book

covering an introduction to signals and systems theory, which it is assumed you have covered, the

following is recommended [Mulgrew:2002]:

Mulgew B., P. M. Grant, and J. S. Thompson, Digital Signal Processing: Concepts and

Applications, Palgrave, Macmillan, 2003.

IDENTIFIERS – Paperback, ISBN10: 0333963563, ISBN13: 9780333963562

See http://www.see.ed.ac.uk/˜{}pmg/SIGPRO

The latest edition was printed in 2003, but any of the book edition will do. An alternative presentation

of roughly the same material is provided by the following book [Balmer:1997]:

October 11, 2016 – 18 : 39

http://www.see.ed.ac.uk/~{}pmg/SIGPRO
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(a) [Mulgrew:2002]. (b) [Balmer:1997]. (c) [McClennan:2003].

Figure 1.9: Undergraduate texts on Signals and Systems.

Balmer L., Signals and Systems: An Introduction, Second edition, Prentice-Hall, Inc.,

1997.

IDENTIFIERS – Paperback, ISBN10: 0134954729, ISBN13: 9780134956725

The Appendix on complex numbers may prove useful.

For an excellent and gentle introduction to signals and systems, with an elegant yet thorough overview

of the mathematical framework involved, have a look at the following book, if you can get hold of a

copy (but don’t go spending money on it):

McClellan J. H., R. W. Schafer, and M. A. Yoder, Signal Processing First, Pearson

Education, Inv, 2003.

IDENTIFIERS – Paperback, ISBN10: 0131202650, ISBN13: 9780131202658

Hardback, ISBN10: 0130909998, ISBN13: 9780130909992

1.3.5 Further Recommended Reading

For additional reading, and for guides to the implementation of numerical algorithms used for some

of the actual calculations in this lecture course, the following book is also strongly recommended:

Press W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Receipes in

C: The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

IDENTIFIERS – Paperback, ISBN10: 0521437202, ISBN13: 9780521437202

Hardback, ISBN10: 0521431085, ISBN13: 9780521431088

Please note that there are many versions of the numerical recipes book, and that any version will do.

So it would be worth getting the latest version.
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(a) Recommended text:

[Press:1992].

Figure 1.10: Further reading for numerical methods and mathematics.

(a) The MATLAB logo. MATLAB is a

useful utility to experiment with.

(b) Wikipedia, The Free

Encyclopedia.

Figure 1.11: Some useful resources.

October 11, 2016 – 18 : 39



A
u
th

o
r:

 J
. 
R

. 
H

o
p
g
o
o
d
; 
C

o
p
y
ri

g
h
t:

 U
n
iv

er
si

ty
 o

f 
E

d
in

b
u
rg

h

O
ct

o
b
er

 1
1
, 
2
0
1
6
--

 1
8
:3

9

Author: J. R. Hopgood; Copyright: University of Edinburgh  --  

14 Aims and Objectives

1.3.6 Additional Resources

Other useful resources include:

• The extremely comprehensive and interactive mathematics encyclopedia:

Weisstein E. W., MathWorld, From MathWorld - A Wolfram Web Resource, 2008.

See http://mathworld.wolfram.com

• Connexions is an environment for collaboratively developing, freely sharing, and rapidly

publishing scholarly content on the Web. A wide variety of technical lectures can be found

at:

Connexions, The Connexions Project, 2008.

See http://cnx.org

• The Wikipedia online encyclopedia is very useful, although beware that there is no guarantee

that the technical articles are either correct, or comprehensive. However, there are some

excellent articles available on the site, so it is worth taking a look.

Wikipedia, The Free EncyclopediaWikipedia, The Free Encyclopedia, 2001 –

present.

See http://en.wikipedia.org/

• The Mathworks website, the creators of MATLAB, contains much useful information:

MATLAB: The language of technical computing, The MathWorks, Inc., 2008.

See http://www.mathworks.com/

• And, of course, the one website to rule them all:

Google Search Engine, Google, Inc., 1998 – present.

See http://www.google.co.uk

1.3.7 Convention for Equation Numbering

In this handout, the following labelling convention is used for numbering equations that are taken from

the various recommended texts. This labelling should be helpful for locating the relevant sections in

the books for further reading. Equations labelled as:

M:v.w.xyz are similar to those with the same equation reference in the core recommended text

book, namely [Manolakis:2001];

T:w.xyz are similar to those in [Therrien:1992] with the corresponding label;

K:w.xyz are similar to those in [Kay:1993] with the corresponding label;

P:v.w.xyz are used in chapters referring to basic DSP, and are references made to

[Proakis:1996].

All other equation labeling refers to intra-cross-referencing for these handouts. Most equations are

numbered for ease of referencing the equations, should you wish to refer to them in tutorials or email

communications, and so forth.

http://mathworld.wolfram.com
http://cnx.org
http://en.wikipedia.org/
http://www.mathworks.com/
http://www.google.co.uk
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1.4 What are Signals and Systems?

New slideCommon usage and understanding of the word signal is actually correct from an Engineering

perspective within some rather broad definitions: a signal is thought of as something that carries

information. Usually, that something is a pattern of variations of a physical quantity that can be

manipulated, stored, or transmitted by a physical process. Examples include speech signals, general

audio signals, video or image signals, biomedical signals, radar signals, and seismic signals, to name

but a few.

So formally, a signal is defined as an information-bearing representation of a real physical process. It

is important to recognise that signals can take many equivalent forms or representations. For example,

a speech signal is produced as an acoustic signal, but it can be converted to an electrical signal by a

microphone, or a pattern of magnetization on a magnetic tape, or even as a string of numbers as in

digital audio recording.

The term system is a little more ambiguous, and can be subject to interpretation. The word system can

correctly be understood as a process, but often the word system is used to refer to a large organisation

that administers or implements some process.

In Engineering terminology, a system is something that can manipulate, change, record, or transmit

signals. In general, systems operate on signals to produce new signals or new signal representations.

For example, an audio compact disc (CD) stores or represents a music signal as a sequence of

numbers. A CD player is a system for converting the numerical representation of the signal stored on

the disk to an acoustic signal that can be heard.

1.4.1 Mathematical Representation of Signals

New slideA signal is defined as an information-bearing representation of a real process. It is a pattern of

variations, commonly referred to as a waveform, that encodes, represents, and carries information.

Many signals are naturally thought of as a pattern of variations with time. For example, a speech

signal arises as a pattern of changing air pressure in the vocal tract, creating a sound wave, which is

then converted into electrical energy using a microphone. This electrical signal can then be plotted as

a time-waveform, and an example is shown in Figure 1.12. The vertical axis denotes air pressure

or microphone voltage, and the horizontal axis represents time. This particular plot shows four

contiguous segments of the speech waveform. The second plot is a continuation of the first, and

so on, and each plot is vertically offset with the starting time of each segment shown on the left

vertical axis.

1.4.1.1 Continuous-time and discrete-time signals

New slideThe signal shown in Figure 1.12 is an example of a one-dimensional continuous-time signal. Such

signals can be represented mathematically as a function of a single independent variable, t, which

represents time and can take on any real-valued number. Hence, each segment of the speech waveform

can be associated with a function s(t). In some cases, the function s(t) might be a simple function,

such as a sinusoid, but for real signals, it will be a complicated function.

Generally, most real world signals are continuous in time and analogue: this means they exist for

all time-instances, and can assume any value, within a predefined range, at these time instances.

Although most signals originate as continuous-time signals, digital processors and devices can only

deal with discrete-time signals. A discrete-time representation of a signal can be obtained from a

continuous-time signal by a process known as sampling. There is an elegant theoretical foundation

October 11, 2016 – 18 : 39
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Plot of segments of speech signal

Figure 1.12: Plot of part of a speech signal. This signal can be represented by the function s(t),
where t is the independent variable representing time. The shaded region is shown in more detail in

Figure 1.13.
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Figure 1.13: Example of a discrete-time signal. This is a sampled version of the shaded region shown

in Figure 1.12.

to the process of sampling, although it suffices to say that the result of sampling a continuous-time

signal at isolated, equally spaced points in time is a sequence of numbers that can be represented as a

function of an index variable that can take on only discrete integer values.

The sampling points are spaced by the sampling period, denoted by Ts. Hence, the continuous-time

signal, s(t), is sampled at times t = nTs resulting in the discrete-time waveform denoted by:

s[n] = s(nTs), n ∈ {0, 1, 2, . . . }. (1.1)

where n is the index variable. A discrete-time signal is sometimes referred to as a discrete-time

sequence, since the waveform s[n] is a sequence of numbers. Note, the convention that parenthesis

( ) are used to enclose the independent variable of a continuous-time function, and square brackets [ ]
enclose the index variable of a discrete-time signal. Unfortunately, this notation is not always adhered

too (and is not yet consistent in these notes either).

Figure 1.13 shows an example of a short segment of the speech waveform from Figure 1.12, with

a sampling period of Ts = 1
44100

seconds, or a sampling frequency of fs = 1
Ts

= 44.1 kHz. It is

not possible to evaluate the continuous-time function s(t) for every value of t, only at a finite-set of

points, which will take a finite time to evaluate. Intuitively, however, it is known that the closer the
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Figure 1.14: Example of a signal that can be represented by a function of two spatial variables.

spacing of the sampled points, the more the sequence retains the shape of the original continuous-time

signal. The question arises, then, regarding what is the largest sampling period that can be used to

retain all or most of the information about the original signal.

1.4.1.2 Other types of signals

New slideWhile many signals can be considered as evolving patterns in time, many other signals are not

time-varying patterns at all. For example, an image formed by focusing light through a lens onto

an imaging array is a spatial pattern. Thus, an image is represented mathematically as a function of

two independent spatial variables, x and y; thus, a picture might be denoted as p(x, y). An example of

a gray-scale image is shown in Figure 1.14; thus, the value p(x0, y0) represents the particular shade

of gray at position (x0, y0) in the image.

Although images such as that shown in Figure 1.14 represents a quantity from a physical

two-dimensional (2-D) spatial continuum, digital images are usually discrete-variable 2-D signals

obtained by sampling a continuous-variable 2-D signal. Such a 2-D discrete-variable signal would be

represented by a 2-D sequence or array of numbers, and is denoted by:

p[m, n] = p(m∆x, n∆y), m, n ∈ {0, 1, . . . N − 1}. (1.2)

where m and n take on integer values, and ∆x and ∆y are the horizontal and vertical sampling spacing

or periods, respectively.

Two-dimensional functions are appropriate mathematical representations of still images that do not

change with time; on the other hand, a sequence of images that creates a video requires a third

independent variable for time. Thus, a video sequence is represented by the three-dimensional (3-D)

function v(x, y, t).

The purpose of this section is to introduce the idea that signals can:

• be represented by mathematical functions in one or more dimensions;

• be functions of continuous or discrete variables.

The connection between functions and signals is key to signal processing and, at this point, functions

serve as abstract symbols for signals. This is an important, but very simple, concept for using

mathematics to describe signals and systems in a systematic way.

October 11, 2016 – 18 : 39
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Direct
paths

Indirect
paths Sound

Source

Observer

Walls
and other
obstacles

(a) Acoustic path from a sound source to a

microphone.

(b) Many sound sources within a room.

Figure 1.15: Observed signals in room acoustics.

1.4.2 Mathematical Representation of Systems

New slide A system manipulates, changes, records, or transmits signals. To be more specific, a one-dimensional

continuous-time system takes an input signal x(t) and produces a corresponding output signal y(t).
This can be represented mathematically by the expression

y(t) = T {x(t)} (1.3)

which means that the input signal, x(t), be it a waveform or an image, is operated on by the system,

which is symbolised by the operator T to produce the output y(t). So, for example, consider a signal

that is the square of the input signal; this is represented by the equation

y(t) = [x(t)]2 (1.4)

Figure 1.15 and Figure 1.17 show how signals can be generated and observed in a real application. In

Figure 1.15, the sound source and the information received by the observer, or microphone, are the

signals; the room acoustics represent the system. Figure 1.16 shows the input signal to the system,

a characterisation of the system, and the resulting output signal. In Figure 1.17, the blurred images

are the result of the original image being passed through a linear system; the linear system represents

the physical process of a camera, for example, being out-of-focus, or in motion relative to the object

of interest.

The subject of signals and systems is the basis of a branch of Engineering known as signal processing;

this area is formally defined as follows:

Signal processing is concerned with the modification or manipulation of a signal, defined

as an information-bearing representation of a real process, that has been passed through

a system, to the fulfillment of human needs and aspirations.



A
u
th

o
r:

 J
. 
R

. 
H

o
p
g
o
o
d
; 
C

o
p
y
ri

g
h
t:

 U
n
iv

er
si

ty
 o

f 
E

d
in

b
u
rg

h

O
ct

o
b
er

 1
1
, 
2
0
1
6
--

 1
8
:3

9

Author: J. R. Hopgood; Copyright: University of Edinburgh  --  

1.4. What are Signals and Systems? 19

0 50 100 150 200 250 300 350 400 450 500
−4

−3

−2

−1

0

1

2

3

4

White noise signal

time

n
o

is
e

 m
e

a
s
u

re
m

e
n

t

(a) Source signal into a

system.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−35

−30

−25

−20

−15

−10

−5

0

Transfer Function for Gramophone Horn

Frequency (Hz)

G
a

in
 (

d
B

)

Measured Response
AR(68) model     

(b) A frequency response

representing the characteristics

of the system.

0 50 100 150 200 250 300 350 400 450 500
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4 Correlated noise signal

time

n
o
is

e
 m

e
a
s
u
re

m
e
n
t

(c) The system output.

(d) Block diagram representation of signal paths.

Figure 1.16: The result of passing a signal through a system.

(a) An original unblurred

noiseless image.

(b) An image distorted by an

out-of-focus blur.

(c) Image distorted by motion

blur.

Figure 1.17: A blind image deconvolution problem; restoration of natural photographic images.
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Figure 1.18: Amplitude-verses-time plot.

1.4.3 Deterministic Signals

New slide The deterministic signal model assumes that signals are explicitly known for all time from time t =
−∞ to t = +∞, where t ∈ R, the set of all real numbers. There is absolutely no uncertainty

whatsoever regarding their past, present, or future signal values. The simplest description of such

signals is an amplitude-verses-time plot, such as that shown in Figure 1.18; this time history helps in

the identification of specific patterns, which can subsequently be used to extract information from the

signal. However, quite often, information present in a signal becomes more evident by transformation

of the signal into another domain, and one of the most nature examples is the frequency domain.

1.5 Motivation for Signal Modelling

New slide Some state-of-the-art applications of statistical signal processing include the following:

Biomedical From medical imaging to analysis and diagnosis, signal processing is now dominant

in patient monitoring, preventive health care, and tele-medicine. From analysing

electroencephalogram (EEG) scans to magnetic resonance imaging (MRI) (or

nuclear magnetic resonance imaging (NMRI)), to classification and analysis of

deoxyribonucleic acid (DNA) from micro-arrays, signal processing is required to

make sense of the analogue signals to then provide information to clinicians and

doctors.

Surveillance and homeland security From fingerprint analysis, voice transcription and

communication monitoring, to the analysis of closed-circuit television (CCTV)

footage, digital signal processing is applied in many areas of homeland security. It is

an especially well-funded area at the moment.

Target tracking and navigation Although radar and sonar principally use analogue signals for

illuminating an object with either an electromagnetic or acoustic wave, discrete-time

signal processing is the primary method for analysing the received data. Typical

features for estimation include detecting targets, estimating the position, orientation,

and velocity of the object, target tracking and target identification.

Of recent interest is tracking groups of targets, such as a convoy of vehicles, or a flock

of birds. Attempting to track each individual target is an overly complicated problem,

and by considering the group dynamics of a particular scenario, the multi-target

tracking problem is substantially simplified.
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Mobile communications New challenges in mobile communications include next-generation

networks; users demand higher data-rates which, in-turn, requires higher bandwidth.

Typically, higher-bandwidth communication systems have shorter range. Rather than

have more and more base stations for the mobile network, there is substantial research

into mobile ad-hoc networks.

A mobile ad-hoc network is a self-configuring network of mobile routers connected

by wireless links, forming an arbitrary topology. The routers are free to move

randomly and organize themselves arbitrarily; thus, the network’s wireless topology

may change rapidly and unpredictably. The challenge is to design a system that

can cope with this changing topology, and is a very active area of research in

communication theory.

A testament to the change in mobile communications is the availability of cheap

mobile broadband modems which provide broadband Internet access which is

comparable with fixed-line technologies that were available only a few years ago.

Speech enhancement and recognition Whether for the analysis of a black-box recording, for

enhancing speech recognition in noisy and reverberant environments, or for the

improved acoustic clarity of mobile phone conversations, the enhancement of acoustic

signals is still a major aspect of signal processing research.

Many signal processing systems are designed to extract information for some purpose. They share

the common problem of needing to estimate the values of a group of parameters. Such algorithms

involve signal modelling and spectral estimation. Some typical applications and the desired parameter

include:

Radar Radar is primarily used in determining the position of an aircraft or other moving

object; for example, in airport surveillance. It is desirable to estimate the range of the

aircraft, as determined by the time for an electromagnetic pulse to be reflected by the

aircraft.

Sonar Sonar is also interested in the position of a target, such as a submarine. However,

whereas radar is, mostly, an active device in the sense that it transmits an

electromagnetic pulse to illuminate the target, sonar listens for noise radiated by the

target. This radiated noise includes sounds generated by machinery, or the propeller

action. Then, by using a sensor array where the relative positions of each sensor are

known, the time delay between the arrival of the pulse at each sensor can be measured

and this can be used to determine the bearing of the target.

Image analysis It might be desirable to estimate the position and orientation of an object from a

camera image. This would be useful, for example, in guiding a robot to pick up an

object. Alternatively, it might be desirable to remove various forms of blur from an

image, as shown in Figure 1.17; this blur might be characterised by a parametric

function.

Biomedicine A parameter of interest might be the heart rate of a fetus.

Communications Estimate the carrier frequency of a signal such that the signal can be demodulated

to baseband.

Control Estimate the position of a boat such that corrective navigational action can be taken.

Seismology Estimate the underground distance of an oil deposit based on sound reflections due to

different densities of oil and rock layers.
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Figure 1.19: The speech synthesis model.

And the list can go on, with a multitude of applications stemming from the analysis of data from

physical experiments through to economic analysis. To gain some motivation for looking at various

aspects of statistical signal processing, some specific applications will be considered that require the

tools this module will introduce. These applications include:

• Speech Modelling and Recognition

• Single Channel Blind System Identification

• Blind Signal Separation

• Data Compression

• Enhancement of Signals in Noise

1.5.1 Speech Modelling and Recognition

New slide Statistical parametric modelling can be used to characterise the speech production system, and

therefore can be applied in the analysis and synthesis of speech. In the analysis of speech, the

waveform is sampled at a rate of about 8 to 20 kHz, and broken up into short segments whose duration

is typically 10 to 20 ms; this results in consecutive segments containing about 80 to 400 time samples.

Most speech sounds, generally, are classified as either voiced or unvoiced speech:

• voiced speech is characteristic of vowels;

• unvoiced speech is characteristic of consonants at the beginning of syllables, fricatives (/f/, /s/

sounds), and a combination of these.

Thinking of the types of sound fields created by vowels, it is apparent that voiced speech has a

harmonic quality. In fact, it is sometimes known as frequency-modulated speech. A commonly used

model for voiced speech exploits this harmonic characteristic, and uses the so-called sum-of-sinusoids

decomposition. Unvoiced speech, on the other hand, does not exhibit such a harmonic structure,

although it does possesses a form that can be modelled using the statistical models introduced in later

lectures.
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Figure 1.20: Solutions to the blind deconvolution problem requires advanced statistical signal

processing.

For both of these types of speech, the production is modelled by driving or exciting a linear system,

representing the vocal tract, with an excitation having a flat (or constant) spectrum.

The vocal tract, in turn, is modelled by using a pole-zero system, with the poles modelling the vocal

tract resonances and the zeros serving the purpose of dampening the spectral response between pole

frequencies. In the case of voiced speech, the input to the vocal tract model is a quasi-periodic

pulse waveform, whereas for unvoiced speech, the source is modelled as random noise. Thus, the

complete set of parameters for this model include an indicator variable as to whether the speech is

voiced or unvoiced, the pitch period for voiced sounds, the gain or variance parameter for unvoiced

sounds, and the coefficients for the all-pole filter modelling the vocal tract filter. The model is shown

in Figure 1.19. This model is widely used for low-bit-rate (less than 2.4 kbits/s) speech coding,

synthetic speech generation, and extraction of features for speaker and speech recognition.

1.5.2 Single Channel Blind System Identification

New slideConsider the following abstract problem that is shown in Figure 1.20:

• The output only of a system is observed, and it is desirable to estimate the source signal that

is applied to the input of the system without knowledge of the system itself. In other-words,

the output observation, x = {x[n], n ∈ Z},1 is modelled as a function of the unknown source

signal, s = {s[n], n ∈ Z}, with an unknown, possibly nonlinear, distortion denoted by F ; more

formally, x = F(s).

• When the function F is linear time-invariant (LTI), and defined by the impulse response h[n],
then:

x[n] = h[n] ∗ s[n] =
∑

k∈Z

h[n− k] s[n] (1.5)

• Problem: Given only {x[n]}, estimate either the channel function, F , which in the LTI case

will be represented by the impulse response h[n], or a scaled shifted version of the source

signal, {s[n]}; i.e. ŝ[n] = a s[n− l] for some l.

The distortion operator, F , could represent the:

• acoustical properties of a room (with applications in hands free telephones, hearing aids,

archive restoration, and automatic speech recognition);

• effect of multi-path radio propagation (with applications in communication channels);

• non-impulsive excitation in seismic applications (with applications in seismology);

• blurring functions in image processing; in this case, the signals are 2-D.

1 The notation n ∈ Z means that n belongs to, or is an element of, the set of integers:

{−∞, . . . ,−2,−1, 0, 1, 2, . . . ,∞}. In otherwords, it may take on any integer value.
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Figure 1.21: Standard signal separation using the independent component assumption.

This problem can only be solved by parametrically modelling the source signal and channel, and

using parameter estimation techniques to determine the appropriate parameter values.

1.5.3 Blind Signal Separation

New slide An extremely broad and fundamental problem in signal processing is BSS, and an important special

case is the separation of a mixture of audio signals in an acoustic environment. Typical applications

include the separation of overlapping speech signals, the separation of musical instruments,

enhancement of speech recordings in the presence of background sounds, or any variation of the

three. In general, a number of sounds at discrete locations within a room are filtered due to room

acoustics and then mixed at the observation points; for example, a microphone will pick up a number

of reverberant sounds simultaneously (see Figure 1.15).

A very powerful paradigm within which signal separation can be achieved is the assumption that the

source signals are statistically independent of one another; this is known as independent component

analysis (ICA). Figure 1.21 demonstrates a separation algorithm based on ICA; an “unmixing” system

is chosen that has minimal statistical correlation (a sufficient but not necessary condition for statistical

independence, as will be seen later in this course) of the hypothesised separated signals, thereby

matching the statistical characteristics of the original signals. This algorithm then uses standard

convex optimisation algorithms to solve the minimisation problem.

It is clear, then, that this approach to ICA requires good estimates of the correlation functions from a

limited amount of data.

1.5.4 Data Compression

New slide Three basis principles of data compression for communication systems include:

Mathematically Lossless Compression This principle looks for mathematical coding schemes that

reduce the bits required to represent a signal. For example, long runs of 0’s might be

replaced by a shorter representation. This method of compression is used in computer

file compression systems.

Lossy compression by removing redundant information This approach is often performed in a

transform domain, such as the frequency domain. There might be many Fourier
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(a) The digital

versitile disc-audio

(DVD-A) logo.

(b) The super-audio

CD (SACD) logo.

Figure 1.22: High-quality audio formats.

coefficients that are small, and do not significantly contribute to the representation

of the signal. If these small coefficients are not transmitted, then compression is

achieved.

Lossless compression by linear prediction If it is possible to predict the current data sample from

previous data samples, then it would not be necessary to transmit the current data

symbol. Typically, however, the prediction is not completely accurate. However, by

only transmitting the difference between the prediction and the actual value, which is

typically a lot smaller than the actual value, then it turns out a fewer number of bits

need to be transmitted, and thus compression achieved. The trick is to design a good

predictor, and this is where statistical signal processing comes in handy.

1.5.5 Enhancement of Signals in Noise

High quality digital audio has in recent years dramatically raised expectations about sound quality.

For example, high quality media such as:

• compact disc

• digital audio tape

• digital versitile disc-audio and super-audio CD.

Audio degradation is any undesirable modification to an audio signal occurring as the result of, or

subsequent to, the recording process. Disturbances or distortions such as

1. background noise,

2. echoes and reverberation,

3. and media noise.

must be reduced to adequately low levels. Ideal restoration reconstructs the original sound exactly as

would be received by transducers (microphone etc.,) in the absence of noise and acoustic distortion.

Interest in historical material led to restoration of degraded sources including

1. wax cylinders recordings,
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☞ ✌ ✄ ✍ ✁
✎ ✏ ✑ ✒ ✓ ✔ ✕ ✖ ✔ ✗ ✘ ✙ ✚ ✛ ✜ ✙ ✘ ✚ ✛ ✢ ✣ ✤ ✥ ✚

✦ ✧ ★ ✩ ✧ ✪ ✫ ✬ ✭ ✮ ✯

☞ ✌ ✄ ✍ ✁

Figure 1.23: Passive source localisation and BSS.

2. disc recordings (78rpm, etc.),

3. and magnetic tape recordings.

Restoration is also required in contemporary digital recordings if distortion too intrusive. Note that

noise present in recording environment, such as audience noise at a musical performance, considered

part of performance. Statistical signal processing is required in such applications.

1.6 Passive and Active Target Localisation

New slide This section presents a standard application in signal processing, namely passive target localisation.

Active target localisation will be considered during the day as well, but this section will focus on

the passive scenario. The aim of this section is to present, briefly, solutions to this problem, without

restricting the notation used. If the mathematics is somewhat alien, then great, as the rest of this

tutorial will explain the terms and concepts used here. An expanded version of this section, with a

focus on acoustic source localisation, is included at the end of this handout.

A number of signal processing problems rely on knowledge of the desired source position, for

example:

1. Tracking methods and target intent inference.

2. Mobile sensor node geometry.

3. Look-direction in beamforming techniques (for example in speech enhancement).

4. Camera steering for audio-visual BSS (including Robot Audition).

5. Speech diarisation.
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Sensors
(microphones)

Sound

Source

s n[ ]

m1

m2
m3

m4

x n3[ ] x n4[ ]x n2[ ]x n1[ ]

Direct

paths

Figure 1.24: Ideal free-field model.

1.7 Passive Target Localisation Methodology

New slide• In general, most passive target localisation (PTL) techniques rely on the fact that an impinging

wavefront reaches one acoustic sensor before it reaches another.

• Most PTL algorithms are designed assuming there is no multipath or reverberation present, the

free-field assumption.

1.7.1 Source Localization Strategies

New slideExisting source localisation methods can loosely be divided into three generic strategies:

1. those based on maximising the steered response power (SRP) of a beamformer:

• location estimate derived directly from a filtered, weighted, and sum version of the signal

data received at the sensors;

2. techniques adopting high-resolution spectral estimation concepts:

• any localisation scheme relying upon an application of the signal correlation matrix;

3. approaches employing time-difference of arrival (TDOA) information:

• source locations calculated from a set of TDOA estimates measured across various

combinations of sensors.
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Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Figure 1.25: Geometry assuming a free-field model.

1.7.2 Geometric Layout

New slideSuppose there is a:

• sensor array consisting of N nodes located at positions mi ∈ R
3, for i ∈ {0, . . . , N − 1}, and

• M talkers (or targets) at positions xk ∈ R
3, for k ∈ {0, . . . ,M − 1}.

The TDOA between the sensor node at position mi and mj due to a source at xk can be expressed as:

T (mi, mj , xk) , Tij (xk) =
|xk −mi| − |xk −mj |

c
(1.6)

where c is the speed of the impinging wavefront.

1.7.3 Ideal Free-field Model

New slide • In an anechoic free-field environment, as depicted in Figure 1.24, the signal from source k,

denoted sk(t), propagates to the i-th sensor at time t as:

xik(t) = αik sk(t− τik) + bik(t) (1.7)

where bik(t) denotes additive noise.

• Note that, in the frequency domain, this expression becomes:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω) (1.8)

On the assumption of geometrical wave propagation, which assumes high frequencies, a point

source of single frequency ω, at position xk in free space, emits a pressure wave P(xk,mi), t(ω)
at time t and at position mi:

P(xk ,mi)(ω, t) = P0
exp [jω(r/c− t)]

r
(1.9)

where t ∈ R is time, and r = |xk −mi|.
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• The additive noise source is assumed to be uncorrelated with the source and noise sources at

other sensors.

• The TDOA between the i-th and j-th sensor is given by:

τijk = τik − τjk = T (mi, mj , xk) (1.10)

1.8 Indirect TDOA-based Methods

New slideThis is typically a two-step procedure in which:

• Typically, TDOAs are extracted using the generalised cross correlation (GCC) function, or an

adaptive eigenvalue decomposition (AED) algorithm.

• A hypothesised spatial position of the target can be used to predict the expected TDOAs (or

corresponding range) at the sensor.

• The error between the measured and hypothesised TDOAs is then minimised.

• Accurate and robust TDOA estimation is the key to the effectiveness of this class of PTL

methods.

• An alternative way of viewing these solutions is to consider what spatial positions of the target

could lead to the estimated TDOA.

1.8.1 Hyperbolic Least Squares Error Function

New slide

KEYPOINT! (Underlying Concept). Suppose that for each pair of sensors, i and j, a TDOA

corresponding to source k is somehow estimated, and this is denoted by τijk. One approach to ASL is

to minimise the total error between the measured TDOAs and the TDOAs predicted by the geometry

given an assumed target position.

• If a TDOA is estimated between two sensor nodes i and j, then the error between this and

modelled TDOA is given by:

ǫij(xk) = τijk − T (mi, mj , xk) (1.11)

where the error is considered as a function of the source position xk.

• The total error as a function of target position

J(xk) =

N
∑

i=1

N
∑

j 6=i=1

ǫij(xk) =

N
∑

i=1

N
∑

j 6=i=1

(τijk − T (mi, mj , xk))
2

(1.12)

where

T (mi, mj , xk) , Tij (xk) =
|xk −mi| − |xk −mj |

c
(1.13)

• Unfortunately, since T (mi, mj , xk) is a nonlinear function of xk, the minimum least-squares

estimate (LSE) does not possess a closed-form solution.
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1.8.2 TDOA estimation methods

New slideTwo key methods for TDOA estimation are using the GCC function and the adaptive eigenvalue

decomposition (AED) algorithm.

GCC algorithm most popular approach assuming an ideal free-field movel. It has the advantages

that

• computationally efficient, and hence short decision delays;

• perform fairly well in moderately noisy and reverberant environments.

However, GCC-based methods

• fail when multipath is high;

• focus of current research is on combating the effect of multipath.

AED Algorithm Approaches the TDOA estimation approach from a different point of view from the

traditional GCC method.

• adopts a multipath rather than free-field model;

• computationally more expensive than GCC;

• can fail when there are common-zeros in the channel.

Note that both methods assume that the signals received at the sensors arise as the result of a single

source, and that if there are multiple sources, the signals will first need to be separated into different

contributions of the individual sources.

1.8.2.1 GCC TDOA estimation

New slide The GCC algorithm proposed by Knapp and Carter is the most widely used approach to TDOA

estimation.

• The TDOA estimate between two microphones i and j is obtained as the time lag that maximises

the cross-correlation between the filtered versions of the microphone outputs:

τ̂ij = argmax
ℓ

rxi xj
[ℓ] (1.14)

where the signal received at microphone i is given by xi[n], and where xi should not be confused

with the location of the source k, which is denoted by xk = [xk, yk, zk]
T .

• The cross-correlation function is given by

rxi xj
[ℓ] = F−1

(

Ψx1x2

(

ejωTs
))

(1.15)

= F−1
(

Φ
(

ejωTs
)

Px1x2

(

ejωTs
))

(1.16)

where the cross-power spectral density (CPSD) is given by

Px1x2

(

ejωTs
)

= E
[

X1

(

ejωTs
)

X2

(

ejωTs
)]

(1.17)

The cross-power spectral density (CPSD) can be estimated in a variety of means. The choice

of the filtering term or frequency domain weighting function, Φ
(

ejωTs
)

, leads to a variety of

different GCC methods for TDOA estimation.
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• For the free-field model, it can be shown that:

∠Pxixj
(ω) = −jω T (mi, mj , xk) (1.18)

In otherwords, all the TDOA information is conveyed in the phrase rather than the amplitude

of the CPSD. This therefore suggests that the weighting function can be chosen to remove the

amplitude information.

1.8.2.2 GCC Processors

New slideThe most common choices for the GCC weighting term are listed in the table below. In particular, the

phase transform (PHAT) is considered in detail.

Processor Name Frequency Function

Cross Correlation 1

PHAT
1

|Px1x2
(ejωTs)|

Roth Impulse Response
1

Px1x1
(ejωTs)

or
1

Px2x2
(ejωTs)

SCOT
1

√

Px1x1
(ejωTs)Px2x2

(ejωTs)

Eckart
Ps1s1

(

ejωTs
)

Pn1n1
(ejωTs)Pn2n2

(ejωTs)

Hannon-Thomson or ML

∣

∣γx1x2

(

ejωTs
)
∣

∣

2

|Px1x2
(ejωTs)|

(

1− |γx1x2
(ejωTs)|2

)

where γx1x2

(

ejωTs
)

is the normalised CPSD or coherence function is given by

γx1x2

(

ejωTs
)

=
Px1x2

(

ejωTs
)

√

Px1x1
(ejωTs)Px2x2

(ejωTs)
(1.19)

The PHAT-GCC approach can be written as:

rxi xj
[ℓ] =

∫ π
Ts

− π
Ts

Φ
(

ejωTs
)

Px1x2

(

ejωTs
)

ejℓωT dω (1.20)

=

∫ π
Ts

− π
Ts

1

|Px1x2
(ejωTs)| |Px1x2

(

ejωTs
)

|ej∠Px1x2(ejωTs) ejℓωT dω (1.21)

=

∫ π
Ts

− π
Ts

ej(ℓωT+∠Px1x2(ejωTs)) dω (1.22)

= δ
(

ℓ Ts + ∠Px1x2

(

ejωTs
))

(1.23)

= δ(ℓ Ts − T (mi, mj , xk)) (1.24)

• In the absence of reverberation, the GCC-PHAT (GCC-PHAT) algorithm gives an impulse at a

lag given by the TDOA divided by the sampling period.
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Figure 1.26: Normal cross-correlation and GCC-PHAT functions for a frame of speech.

1.9 Direct Localisation Methods

New slide• Direct localisation methods have the advantage that the relationship between the measurement

and the state is linear.

• However, extracting the position measurement requires a multi-dimensional search over the

state space and is usually computationally expensive.

1.9.1 Steered Response Power Function

New slide

KEYPOINT! (Underlying Concept). The steered beamformer (SBF) or SRP function is a measure

of correlation across all pairs of microphone signals for a set of relative delays that arise from a

hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a spatial position x̂k such that

τ̂pk = |x̂−mp|, using the notation in Equation 7.8, is given by:

S (x̂) =

∫

Ω

∣

∣

∣

∣

∣

N
∑

p=1

Wp

(

ejωTs
)

Xp

(

ejωTs
)

ejω τ̂pk

∣

∣

∣

∣

∣

2

dω (1.25)

Expanding, rearranging the order of integration and summation, taking expectations of both sides and

setting Φpq

(

ejωTs
)

= Wp

(

ejωTs
)

W ∗
q

(

ejωTs
)

gives

E [S (x̂)] =
N
∑

p=1

N
∑

q=1

rxi xj
[τ̂pqk] (1.26)

≡
N
∑

p=1

N
∑

q=1

rxi xj

[ |xk −mi| − |xk −mj |
c

]

(1.27)

In other words, the SRP is the sum of all possible pairwise GCC functions evaluated at the time delays

hypothesised by the target position.
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Figure 1.27: SBF response from a frame of speech signal. The integration frequency range is 300
to 3500 Hz (see Equation 7.84). The true source position is at [2.0, 2.5]m. The grid density is set to

40 mm.

Figure 1.28: An example video showing the SBF changing as the source location moves.
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34 Aims and Objectives

1.9.2 Conclusions

New slide To fully appreciate the algorithms in PTL, we need:

1. Signal analysis in time and frequency domain.

2. Least Squares Estimation Theory.

3. Expectations and frequency-domain statistical analysis.

4. Correlation and power-spectral density theory.

5. And, of course, all the theory to explain the above!
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2
Review of Basic Probability Theory

All knowledge degenerates into probability.

David Hume

This handout gives a review of the fundamentals of probability theory. The idea is to motivate the

definitions of cumulative distribution functions (cdfs) and probability density functions (pdfs) in the

next handouts.

2.1 Introduction

New slideThe theory of probability deals with averages of mass phenomena occurring sequentially or

simultaneously; in signal processing and communications, this might include radar detection, signal

detection, anomaly detection, parameter estimation, and so forth.

How does one start considering the notion and meaning of probability, and how can it be extended to

model signals? To address this, it is first important to consider the probability of individual events.

It has been observed in many fields that certain averages approach a constant value as the number

of observations increases, and this value remains the same if the averages are evaluated over any

subsequence (of observations) specified before the experiment is performed. In a coin experiment,

35
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for example, the percentage of heads approaches 0.5 or some other constant, and the same average is

obtained if every fourth, sixth, or arbitrary selection of tosses is chosen. Note that the notion of an

average is not in-itself a probabilistic term.

The purpose of the theory of probability is to describe and predict these averages in terms of

probabilities of events. The probability of an event A is a number Pr (A) assigned to this event.

This number could be interpreted as follows:

If an experiment is performed n times, and the event A occurs nA times, then with a high

degree of certainty, the relative frequency nA/n is close to Pr (A), such that:

Pr (A) ≈ nA

n
(2.1)

provided that n is sufficiently large.

Note that this interpretation and the language used is all very imprecise, and phrases such as high

degree of certainty, close to, and sufficiently large has no clear meaning. These terms will be more

precisely defined as concepts are introduced throughout this course.

2.2 Classical Definition of Probability

New slide For several centuries, the theory of probability was based on the classical definition, which states that

the probability Pr (A) of an event A is determine a priori without actual experimentation. It is given

by the ratio:

Pr (A) =
NA

N
(2.2)

where:

• N is the total number of outcomes,

• and NA is the total number of outcomes that are favourable to the event A, provided that all

outcomes are equally probable.

This definition, however, has some difficulties when the number of possible outcomes is infinite, as

illustrated in the following example in Section 2.2.1.

2.2.1 Bertrand’s Paradox

New slide Consider a circle C of radius r; what is the probability p that the length ℓ of a randomly selected cord

AB is greater than the length, r
√
3, of the inscribed equilateral triangle?

KEYPOINT! (Recalling Geometry!). To fully appreciate this problem, it is perhaps worth being

aware of the geometry of this problem. The idea of the geometry is to keep simple geometric shapes,

rather than to play on some obscure geometric properties. Therefore, note that if three tangents to a

circle of radius r/2 are drawn at angular intervals of 120 degs, then the resulting equilateral triangle

fits inside a larger circle of radius r, as shown in Figure 2.1. The length of the sides of one of this

equilateral triangle is r
√
3.

Using the classical definition of probability, three reasonable solutions can be obtained:
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Sidebar 1 The Venice Water-Taxi Problem

Understanding probability and statistics helps understand simple, but important, questions related to

estimating the parameters of a sampling distribution from a small sample size.

On a recent trip to Venice, it was observed that the water taxis were numbered in sequential order

from number 1 up-wards (a water-taxi with the number 1 on the side was observed, and only positive

integer valued taxi designations).

Assuming that all taxis are in service, suppose we wanted to guess the number N of water taxis in

Venice, based purely on the taxi numbers observed. Let’s assume we observed a taxi with the number

304 on the side. What is our best guess of N?

The solution will be discussed in detail in Chapter 5, but now is a good time to think about it in

advance of learning the techniques that will help us answer the question. Moreover, suppose we

observe more taxis, perhaps with the numbers 157, 202, 11, 248; how will our estimate change?

This problem might seem rather academic, but has actually in the past been far from it, as discussed

in Chapter 5 as well.

October 11, 2016 – 18 : 39
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r

A

B

Circle C

l

(a) Basic problem: line placed

across circle at random, resulting in

the cord AB.

r/2

r

(b) The problem definition

is setup so that the nice

geometrical properties of the

equilateral triangle can be

used.

Figure 2.1: Bertrand’s paradox, problem definition.

A

B

M

(a) The midpoint method.

A

BD

E

(b) The endpoint method.

A B
R

(c) The radius method.

Figure 2.2: Different selection methods.
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2.2. Classical Definition of Probability 39

1. In the random midpoints method, a cord is selected by choosing a point M anywhere in the full

circle, and two end-points A and B on the circumference of the circle, such that the resulting

chord AB through these chosen points has M as its midpoint. This is shown graphically in

Figure 2.2a.

It is reasonable, therefore, to consider as favourable outcomes all points inside the inner-circle

of radius r/2, and to consider all possible outcomes as points inside the outer-circle of radius r.

Therefore, using as a measure of these outcomes the corresponding areas, it follows that:

p =
π
(

r
2

)2

πr2
=

1

4
(2.3)

2. In the random endpoints method, consider selecting two random points on the circumference

of the (outer) circle, A and B, and drawing a chord between them. This is shown in Figure 2.2b,

where the point A has been drawn to coincide with the particular triangle drawn. If B lies on

the arc between the two other vertices, D and E, of the triangle whose first vertex coincides

with A, then AB will be longer than the length of the side of the triangle.

The favourable outcomes are now the points on this arc, and since the angle of the arc DE is
2π
3

radians, a measure of this outcome is the arc length 2πr
3

. Moreover, the total outcomes are

all the points on the circumference of the main circle, and therefore it follows:

p =
2πr
3

2πr
=

1

3
(2.4)

3. Finally, in the random radius method, a radius of the circle is chosen at random, and a point

on the radius is chosen at random. The chord AB is constructed as a line perpendicular to the

chosen radius through the chosen point. The construction of this chord is shown in Figure 2.2c.

The favourable outcomes are the points on the radius that lie inside of the inner-circle, or a

measure of this outcome is given by the diameter of the inner-circle, r. The total outcomes

are the points on the diameter of the outer-circle, and a measure of that respective length is 2r.

Therefore, the probability is given by

p =
r

2r
=

1

2
(2.5)

There are thus three different but reasonable solutions to the same problem. Which one is valid?

2.2.2 Using the Classical Definition

The difficulty with the classical definition in Equation 2.2, as seen in Bertrand’s Paradox, is in

determining N and NA.

October 11, 2016 – 18 : 39
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Figure 2.3: Two red dice: https://commons.wikimedia.org/wiki/File:Two_red_dice_01.sv

Example 2.1 (Rolling two dice). Two dice are rolled (see Figure 2.3); find the probability, p, that the

sum of the numbers shown equals 7. Consider three possibilities:

1. The possible outcomes total 11 which are the sums {2, 3, . . . , 12}. Of these, only one (the sum

7) is favourable. Hence, p = 1
11

.

This is, of course, wrong, and the reason is that each of the 11 possible outcomes are not equally

probable.

2. Similarly, writing down the possible pairs of shown numbers, without distinguishing between

the first and second die. There are then 21 pairs, (1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6), of

which there are three favourable pairs (3, 4), (5, 2) and (6, 1). However, again, the pairs (3, 4)
and (6, 6), for example, are not equally likely.

3. Therefore, to count all possible outcomes which are equally probable, it is necessary to could

all pairs of numbers distinguishing between the first and second die. This will give the correct

probability.

2.2.3 Difficulties with the Classical Definition

New slide The classical definition in Equation 2.2 can be questioned on several grounds, namely:

1. The term equally probable in the definition of probability is making use of a concept still to

be defined!

2. The definition can only be applied to a limited class of problems.

In the die experiment, for example, it is applicable only if the six faces have the same

probability. If the die is loaded and the probability of a “4” equals 0.2, say, then this cannot be

determined from the classical ratio in Equation 2.2.

3. If the number of possible outcomes is infinite, then some other measure of infinity for

determining the classical probability ratio in Equation 2.2 is needed, such as length, or area.

This leads to difficulties, as discussed in Bertrand’s paradox.

https://commons.wikimedia.org/wiki/File:Two_red_dice_01.svg
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2.3 Axiomatic Definition

New slide
The axiomatic approach to probability is based on the following three postulates and on nothing else:

1. The probability Pr (A) of an event A is a non-negative number assigned to this event:

Pr (A) ≥ 0 (2.6)

2. Defining the certain event, S, as the event that occurs in every trial, then the probability of the

certain event equals 1, such that:

Pr (S) = 1 (2.7)

3. If the events A and B are mutually exclusive, then the probability of one event or the other

occurring separately is:

Pr (A ∪ B) = Pr (A) + Pr (B) (2.8)

or more generally, if A1, A2, . . . is a collection of disjoint events, such that Ai ∩Aj = ∅ for all

pairs i, j satisfying i 6= j, then:

Pr

(

∞
⋃

i=1

Ai

)

=

∞
∑

i=1

Pr (Ai) (2.9)

Note that Equation 2.9 does not directly follow from Equation 2.8, even though it may appear

to. Dealing with infinitely many sets requires further insight, and here the result of Equation 2.9

is actually an additional condition known as the axiom of infinite additivity.

These axioms can be formalised by defining measures and fields as appropriate, but the level of detail

is beyond this course.

These axioms, once formalised, are known as the Kolmogorov Axioms, named after the Russian

mathematician. Note that an alternative approach to deriving the laws of probability theory from a

certain set of postulates was developed by Cox. However, this won’t be considered in this course.

2.3.1 Set Theory

New slideSince the classical definition of probability details in total number of outcomes, as well as events, it

is necessary to utilise the mathematical language of sets to formulise precise definitions.

A set is a collection of objects called elements. For example, “car, apple, pencil” is a set with three

elements whose elements are a car, an apple, and a pencil. The set “heads, tails” has two elements,

while the set “1, 2, 3, 5”, has four. It is assumed that most readers will have come across set theory

to some extent, and therefore, it will be used throughout the document as and when needed.

Some basic notation, however, includes the following:

Unions and Intersections Unions and intersections are commutative, associative, and distributive,

such that:

A ∪ B = B ∪ A, (A ∪B) ∪ C = A ∪ (B ∪ C) (2.10)

AB = BA, (AB)C = A(BC), A(B ∪ C) = AB ∪ AC (2.11)

October 11, 2016 – 18 : 39
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Event
A

Certain Event
S Event

A

Figure 2.4: The complement A of A ⊂ S is the set of all elements of S not in A.

Complements The complement A of a set A ⊂ S is the set consisting of all elements of S that are

not in A. Note that:

A ∪A = S and A ∩A ≡ AA = {∅} (2.12)

This is shown graphically using a Venn diagram, as shown in Figure 2.4.

Partitions A partition U of a set S is a collection of mutually exclusive subsets Ai of S whose

union equations S, such that:

∞
⋃

i=1

Ai = S, Ai ∩ Aj = {∅}, i 6= j ⇒ U = [A1, . . . , An] (2.13)

De Morgan’s Law Using Venn diagrams, it is relatively straightforward to show

A ∪ B = A ∩B ≡ AB and A ∩ B ≡ AB = A ∪B (2.14)

As an application of this, note that:

A ∪ BC = ABC = A
(

B ∪ C
)

(2.15)

=
(

AB
)

∪
(

AC
)

(2.16)

= A ∪ B ∪A ∪ C (2.17)

⇒ A ∪ BC = (A ∪ B) (A ∪ C) (2.18)

This result can easily be derived by using Venn diagrams, and it is worth checking

this result yourself. This latter identity will also be used later in Section 2.3.2.

2.3.2 Properties of Axiomatic Probability

New slide Some simple consequences of the definition of probability defined in Section 2.3 follow immediately:

Impossible Event The probability of the impossible event is 0, and therefore:

Pr (∅) = 0 (2.19)

Complements Since A ∪ A = S and AA = {∅}, then using Equation 2.8, Pr
(

A ∪ A
)

= Pr (A) +

Pr
(

A
)

= Pr (S) = 1, such that:

Pr
(

A
)

= 1− Pr (A) (2.20)
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Sum Rule The addition law of probability or the sum rule for any two events A and B is given

by:

Pr (A ∪ B) = Pr (A) + Pr (B)− Pr (A ∩ B) (2.21)

Example 2.2 (Proof of the Sum Rule). Prove the result in Equation 2.21.

SOLUTION. To prove this, separately write A ∪ B and B as the union of two mutually exclusive

events (using Equation 2.18 and the fact A ∪A = S and S B = B).

• First, note that

A ∪ B =
(

A ∪A
)

(A ∪ B) = A ∪
(

AB
)

(2.22)

and that since A
(

AB
)

=
(

AA
)

B = {∅}B = {∅}, then A and AB are mutually exclusive

events.

• Second, note that:

B =
(

A ∪A
)

B = (AB) ∪
(

AB
)

(2.23)

and that (AB) ∩
(

AB
)

= AAB = {∅}B = {∅} and are therefore mutually exclusive events.

Using these two disjoint unions, then:

Pr (A ∪ B) = Pr
(

A ∪
(

AB
))

= Pr (A) + Pr
(

AB
)

(2.24)

Pr (B) = Pr
(

(AB) ∪
(

AB
))

= Pr (AB) + Pr
(

AB
)

(2.25)

Eliminating Pr
(

AB
)

by subtracting these equations gives the desired result:

Pr (A ∪ B)− Pr (B) = Pr
(

A ∪
(

AB
))

= Pr (A)− Pr (AB) (2.26)

�

Example 2.3 (Sum Rule). Let A and B be events with probabilities Pr (A) = 3/4 and Pr (B) = 1/3.
Show that 1/12 ≤ Pr (AB) ≤ 1/3.

SOLUTION. Using the sum rule, that:

Pr (AB) = Pr (A) + Pr (B)− Pr (A ∪ B) ≥ Pr (A) + Pr (B)− 1 =
1

12
(2.27)

�

which is the case when the whole sample space is covered by the two events. The second bound

occurs since A ∩ B ⊂ B and similarly A ∩ B ⊂ A, where ⊂ denotes subset. Therefore, it can be

deduced Pr (AB) ≤ min{Pr (A) , Pr (B)} = 1/3.

2.3.3 Countable Spaces

If the certain event, S, consists of N outcomes, and N is a finite number, then the probabilities of all

events can be expressed in terms of the probabilities Pr (ζi) = pi of the elementary events {ζi}.

October 11, 2016 – 18 : 39
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44 Probability Theory

Example 2.4 (Cups and Saucers). Six cups and saucers come in pairs: there are two cups and

saucers which are RED, two which are GREEN, and two which are BLUE. If the cups are placed

randomly onto the saucers (one each), find the probability that no cup is upon a saucer of the same

pattern.

SOLUTION. • Lay the saucers in order, say as RRGGBB.

• The cups may be arranged in 6! ways, but since each pair of a given colour may be switched

without changing the appearance, there are 6!/(2!)3 = 90 distinct arrangements.

By assumption, each of these are equally likely.

• The arrangements in which cups never match their saucers are:

GGBBRR, GBRBGR, BGRBGR, BBRRGG

GBBRGR, BGBRGR

GBRBRG, BGRBRG

GBBRGR, BGBRGR

(2.28)

�

• Hence, the required probability is 10/90 = 1/9.

2.3.4 The Real Line

New slide If the certain event, S, consists of a non-countable infinity of elements, then its probabilities cannot

be determined in terms of the probabilities of elementary events. This is the case if S is the set of

points in an n-dimensional space.

Suppose that S is the set of all real numbers. Its subsets can be considered as sets of points on the real

line. To construct a probability space on the real line, consider events as intervals x1 < x ≤ x2, and

their countable unions and intersections.

To complete the specification of probabilities for this set, it suffices to assign probabilities to the

events {x ≤ xi}.

This notion leads to cumulative distribution functions (cdfs) and probability density functions

(pdfs) in the next handout.

2.4 Conditional Probability

New slide To introduce conditional probability, consider the discussion about proportions in Section 2.1. If an

experiment is repeated n times, and on each occasion the occurrences or non-occurrences of two

events A and B are observed. Suppose that only those outcomes for which B occurs are considered,

and all other experiments are disregarded.

In this smaller collection of trials, the proportion of times that A occurs, given that B has occurred,

is:

Pr
(

A
∣

∣B
)

≈ nAB

nB

=
nAB/n
nB/n

=
Pr (AB)

Pr (B)
(2.29)

provided that n is sufficiently large.
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The conditional probability of an event A assuming another event B, denoted by Pr
(

A
∣

∣B
)

, is

defined by the ratio:

Pr
(

A
∣

∣B
)

=
Pr (A ∩B)

Pr (B)
(2.30)

It can be shown that this definition satisfies the Kolmogorov Axioms.

Example 2.5 (Two Children). A family has two children. What is the probability that both are boys,

given that at least one is a boy?

SOLUTION. The younger and older children may each be male or female, and it is assumed that each

is equally likely.

There are four possibilities for the gender of the children, namely:

S = {GG, GB, BG, BB} (2.31)

where the four possibilities are equally probable:

Pr (GG) = Pr (GB) = Pr (BG) = Pr (BB) =
1

4
(2.32)

The subset of S which contains the possibilities of one child being a boy is at SB = {GB, BG, BB},

and therefore the conditional probability:

Pr
(

BB
∣

∣SB

)

=
Pr (BB ∩ (GB ∪ BG ∪ BB))

Pr (SB)
(2.33)

Note that {BB∩(GB ∪BG ∪BB)} = {BB}, and that Pr (SB) = 1−Pr (SB) = 1−Pr (GG) = 3
4
.

Therefore:

Pr
(

BB
∣

∣SB

)

=
Pr (BB)

1− Pr (GG)
=

1/4
3/4

=
1

3
(2.34)

�

Note that the question is completely different if it were what is the probability that both are boys,

given that the youngest child is a boy, in which case the solution is 1/2. This is since information has

been provided about one of the children, thereby distinguishing between the children.

Example 2.6 (Two Children (Variant)). A family has two children. One of the children is a boy

born in an even month, where even months are defined as Feburary, April, June, August, October, and

December, while odd months are defined as January, March, May, July, September, and November.

What is the probability that both are boys?

SOLUTION. The younger and older children may each be male or female, and it is assumed that

each is equally likely. Moreover, the month in which each child is born is assumed to be equally

likely. Denoting the first child as C1, and the second by C2, there are 16 different but equally likely

possibilities, which are denoted given by:

October 11, 2016 – 18 : 39
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46 Probability Theory

C1 C2 Outcome

Gender Month Gender Month Relevant? Desired?

B O B O

B O B E X X

B E B O X X

B E B E X X

G O B O

G O B E X

G E B O

G E B E X

B O G O

B O G E

B E G O X

B E G E X

G O G O

G O G E

G E G O

G E G E

Count 7 3

�

Therefore, the number of favourable outcomes to the question in hand is 3/7 = 0.428, which is getting

closer to one half than a third.

The example in Example 2.5 might seem a little abstract to signal processing, but there are other ways

of phrasing exactly the same problem. Using an example taken from [Therrien:2011], it could be

phrased as follows:

A compact disc (CD) selected from the bins at Simon’s Surplus are as likely to be good

as they are bad. Simon decides to sell these CDs in packages of two, but guarantees that

in each package, at least one CD will be good. What is the probability that when you buy

a single package, you get two good CDs?

It should be apparent that this is the same problem as in Example 2.5. One further problem to consider

is given below in Example 2.7.

A further example discussed in the lectures covers mobile phones; a company sells mobile phones in

boxes, and are equally likely to be broken (B) or working (W). You are given two boxes and told that

in one of the boxes there is a working phone. What is the probability that the other box also contains

a working phone? Suppose now that all phones are manufactured by four companies: A, E, N , and

S. You are told that one of the boxes contains a working phone manufactured by company S. What

is the probability that the other box contains a working phone?

Finally, to extend the discussion further, suppose all the phones are made between the years 1997 and

2016, and by the four companies above. One of the boxes contains a working phone made in 2007
by manufacturer A. What is the probability the other box contains a working phone? It should be

apparent that by giving more information about one of the phones, the probability of the other box

containing a working phone approaches a half.
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2.4. Conditional Probability 47

Example 2.7 (Prisoner’s Paradox). Three prisoners, A, B and C, are in separate cells and sentenced

to death. The governor has selected one of them at random to be pardoned. The warden knows which

one is pardoned, but is not allowed to tell. Prisoner A begs the warden to let him know the identity of

one of the others who is going to be executed.

If B is to be pardoned, give me C’s name, and vice-versa. And if I’m to be pardoned, flip

a coin to decide whether to name B or C.

The warden tells A that B is to be executed. Prisoner A is pleased because he believes that his

probability of surviving has gone up from 1/3 to 1/2, as it is now between him and C. Prisoner A
secretly tells C the news, who is also pleased, because he reasons that A still has a chance of 1/3 to be

the pardoned one, but his chance has gone up to 2/3. What is the correct answer?
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3
Scalar Random Variables

This handout introduces the concept of a random variable, its probabilistic description in terms of

pdfs and cdfs, and characteristic features such as mean, variance, and other moments. It covers the

probability transformation rule and characteristic functions.

3.1 Abstract

• Deterministic signals are interesting from an analytical perspective since their signal value or

amplitude are uniquely and completely specified by a functional form, albeit that function might

be very complicated. Thus, a deterministic signal is some function of time: x = x(t).

• In practice, this precise description cannot be obtained for real-world signals and, moreover, it

can be argued philosophically that real-world signals are not deterministic but, rather, they are

inherently random or stochastic in nature.

• Although random signals evolve in time stochastically, their average properties are often

deterministic, and thus can be specified by an explicit functional form.

• This part of the course looks at the properties of stochastic processes, both in terms of an exact

probabilistic description, and also characteristic features such as mean, variance, and other

moments.

3.2 Definition Random Variables

New slide A random variable (RV) X (ζ) is a mapping that assigns a real number X ∈ (−∞, ∞) to every

outcome ζ from an abstract probability space. This mapping from ζ to X should satisfy the following

two conditions:

1. the interval {X (ζ) ≤ x} is an event in the abstract probability space for every x ∈ R;

2. Pr (X (ζ) = ∞) = 0 and Pr (X (ζ) = −∞) = 0.

48
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R

Abstract
sample space, S

X( )z1

X( )z2

X( )z3

X( )z
k

R

R

R

Outcome

z1

Outcome

z2

Outcome

z3

Outcome

z
k

real number line

Physical
Experiment

Pr( )z1

Pr( )z2

Pr( )z3

Pr( )z
k

x1

x2

x3

x
k

Figure 3.1: A graphical representation of a random variable.

The second condition states that, although X is allowed to take the values x = ±∞, the outcomes

form a set with zero probability.

KEYPOINT! (Nature of Outcomes). Note that the outcomes of events are not necessarily numbers

themselves, although they should be distinct in nature. Hence, examples of outcomes might be:

• outcomes of tossing coins (head/tails); card drawn from a deck (King, Queen, 8-of-Hearts);

• characters or words (A-Z); symbols used in deoxyribonucleic acid (DNA) sequencing (A, T, G,

C);

• a numerical result, such as the number rolled on a die.

A more graphical representation of a discrete RV is shown in Figure 3.1. In this model, a physical

experiment can lead to a number of possible events representing the outcomes of the experiment.

These outcomes may be values, or they may be symbols, or some other representation of the event.

Each outcome (or event), ζk, has a probability Pr (ζk) assigned to it. Each outcome ζk then a real

number assigned to that outcome, xk. The RV is then defined as the collection of these three values;

an outcome index, the probability of the outcome, and the real value assigned to that outcome, thus

X (ζ) = {ζk, Pr (ζk) , xk.

A more specific example is shown in Figure 3.2 in which the experiment is that of rolling a die, the

outcomes are the colors of the dies, each event is simply each outcome, and the specific user-defined

values assigned are the numbers shown.

Example 3.1 (Rolling die). Consider rolling a die, with six outcomes {ζi, i ∈ {1, . . . , 6}}. In this

experiment, assign the number 1 to every even outcome, and the number 0 to every odd outcome.

Then the RV X (ζ) is given by:

X (ζ1) = X (ζ3) = X (ζ5) = 0 and X (ζ2) = X (ζ4) = X (ζ6) = 1 (3.1)

⋊⋉
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50 Scalar Random Variables

R

Abstract
sample space, S

X( )z1

X( )z2

X( )z3 R

R

Outcome

z1=“Red”

Outcome

z2=“Green”

Outcome
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real number line
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Experiment

Pr( )z1

Pr( )z2

Pr( )z3

x1=1

x2=2

x3=4

Green

Blue

Red

Figure 3.2: A graphical representation of a random variable.

x

F
X
( )x

x1

Pr( )X�< x1

x2

Pr( )X�< x2

Figure 3.3: The cumulative distribution function.

Example 3.2 (Letters of the alphabet). Suppose the outcome of an experiment is a letter A to Z,

such that X (A) = 1, X (B) = 2, ..., X (Z) = 26. Then the event X (ζ) ≤ 5 corresponds to the

letters A, B, C, D, or E.

3.2.1 Distribution functions

New slide Random variables are fundamentally characterised by their distribution and density functions. These

concepts are considered in this and the next section.

• The probability set function Pr (X (ζ) ≤ x) is a function of the set {X (ζ) ≤ x}, and therefore

of the point x ∈ R.

• This probability is the cumulative distribution function (cdf), FX (x) of a RV X (ζ), and is

defined by:

FX (x) , Pr (X (ζ) ≤ x) (M:3.1.1)

It is graphically shown in Figure 3.3.

• It hence follows that the probability of being within an interval (xℓ, xr] is given by:

Pr (xℓ < X (ζ) ≤ xr) = Pr (X (ζ) ≤ xr)− Pr (X (ζ) ≤ xℓ) (3.2)

= FX (xr)− FX (xℓ) (3.3)

• For small intervals, it is clearly apparent that gradients are important.
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