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Anomalies? Outliers?

Clouds of points (multi-dimensional)

Complex Network
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Anomalism Concept of Anomaly

What is Anomaly?

[CBKO9]

Anomaly Definition

Anomaly is a pattern in the data that does not conform to the expected
behavior.

@ Anomalies are often related to significant real life entities
o Cyber/Network intrusions, Image Processing / Video surveillance
o Insurance/Credit card fraud
o Industrial damage
e Novel topic in text mining, Customer segmentation
@ When an anomaly occurs, its consequences can be quite dramatic and

quite often in a negative sense.

Why do we try to detect anomalies?

@ Prevention (crime, device failure, production optimization, etc.)
o Novelty detection (technology trends, opinion)

e Knowledge extension (differences from known principles, laws)
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Anomalism Concept of Anomaly

Anomaly Basic Characteristics

Observations

Pattern ... repeated

@ Expected ... “expected value" - extremal values, rare occurrences
@ Expected behavior ... subsets, temporally repeated
°

Conform .. .simillarity, difference, distance, measurable

An anomaly as a data object (or a group of objects) that is "™

@ Rare ...e.g. a rare combination of categorical attribute values,
o Isolated ...e.g. far-away point in n-dimensional space,

@ Surprising ...e.g. data instances do not fit well in a
mental /statistical model.

@ It requires too many bits to describe
under the Minimum Description Length (MDL) principle

[Ris78, Gru05]
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Anomalism Concept of Anomaly

Simple Example - Multidimensional Space “****

14
01
12 .
@ Ni and Ny are regions of 10
‘i ”n - O
normal” behavior 6 0, .72
@ Points 01 and 09 are anomalies ne . N
a . 2
@ Points in region O3 are , : ¥
anomalies .

Normal behavior

e Normal distribution ... N(y,0).
Further, it will be referred as Gaussian distribution

e Normal behavior/pattern .. .it is expected, not anomalous.
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Anomalism Concept of Anomaly

[CBKO9]

Key Challenges

Defining a representative normal region is challenging
e The boundary between normal and anomalous behavior is often not
precise
e The exact notion of an outlier is different for different application
domains

Availability of labeled data for training/validation

Data might contain noise
o Normal data - noise - anomaly

@ Normal behavior keeps evolving, i.e. it is not static
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Anomalism Anomaly Types

[CBKO9]

Anomaly Types

e Point/Global Anomalies

o An individual data instance is anomalous w.r.t. the data
@ Contextual Anomalies

e An individual data instance is anomalous within a context

e Requires a notion of context
" . WJIR
o Also referred to as conditional anomalies BW!R07]

@ Collective Anomalies

o A collection of related data instances is anomalous
e The individual instances within a collective anomaly are not anomalous
by themselves
e Requires a relationship among data instances
o Sequential Data
o Spatial Data
o Graph Data

@ Online Anomaly Detection

@ Distributed Anomaly Detection
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Anomalism Anomaly Types

[CBKO9]

Point Anomaly Types Taxonomy

@ Classification based

Rule based

Bayesian Networks based Statistical
Neural Networks based @ Statistica .
SVM based o Parametric

o Gaussian model
@ Regression model

@ Nearest Neighbor Based

o With respect to each instance local
neighborhood
o Density Based

o Local Outlier Factor (LOF)

o Non-parametric

o Histogram based
o Kernel function based

o Connectivity-based Outlier Factor o Others
(COF) o Information Theory
o Distance Based o Spectral Decomposition

o Clustering Based o Visualization Based

o With respect to the cluster each
instance belongs to
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Anomalism Anomaly Detection

[Agel7]

Input Data

o Data Quality

@ Record data e Data Fusion

o Univariate e Data Cleansing

o Multivariate o Consistency maintenance
@ Attributes @ Processing

e Binary/Boolean o Online/Offline processing

o Categorical o Distributed processing

e Continuous e Analysis x Production

e Hybrid o Feature/Property
@ Relations searching/selection

o Sequential o Selected features detection

o Temporal e Data Volume

o Spatial o Dense/Sparse

o Spatio-temporal o Low/High dimensions

e Long range correlations o Low/Large volumes

o Graph o Big data

o Internet of Things
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Anomalism Anomaly Detection

Input Data - The Old Kingdom of Egypt ™

e Continuous .. .tomb @ Multivariate ... people, titles, tombs

dimensions e Temporal ...dynasties, king reigns

o Categorical ... titles @ Spatio-temporal .. .location of tombs in

@ Binary, boolean ... titles time
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Anomalism Anomaly Detection

[CBKO9]

Output of Anomaly Detection

@ Score

o Each test instance is assigned an anomaly score
o E.g. Euclidean, Mahalanobis, Frobenius norms
o Allows the output to be ranked

@ Requires an additional threshold parameter

o Label

o Each test instance is given a normal or anomaly label
e This is especially true of classification-based approaches
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Anomalism Anomaly Detection

[HAO04]

Data Supervision

Availability of class labels reflected by data processing
@ Supervised Anomaly Detection
o Labels available for both normal data and anomalies
= machine learning
= the classification problem is often highly imbalanced
@ Semi-supervised Anomaly Detection
@ Labels available only for normal data
=—> one-class learning, thresholding
@ Labels available only for anomalous data
= one-class learning
= highly tuned commercial tools for network monitoring and
analysis
@ Unsupervised Anomaly Detection
o No labels assumed
o Often based on the assumption that anomalies are very rare compared
to normal data
= clustering
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Anomalism Outliers of a Statistical Distribution

What is an outlier? < "t

Hawkins (1980) ")

An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different
mechanism.

Barnett and Lewis (1994) 4

An outlying observation, or outlier, is one that appears to deviate
markedly from other members of the sample in which it occurs.

@ Statistics-based intuition

@ Normal data objects follow a “generating mechanism”, e.g. some
given statistical process

@ Abnormal objects deviate from this generating mechanism
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Anomalism Outliers of a Statistical Distribution

Grubbs's Test € cel

To detect a single outlier in a univariate data set that follows an
approximately Normal (Gaussian) distribution

Also known as the maximum normed residual test

@ The test considers the maximum absolute difference between observations
x;and the mean Z, normalised with respect to the sample standard deviation s:

T — T

Grax = max |
1

@ And considers the chance of such an extreme value occurring given the
number of observations, given that the data are Normally distributed.
o Hy: The observation is not different than the sample population.
e H,: The observation is different than the sample population.

Test statistics

@ Significance level a

@ Critical region: for the two-sided test, the hypothesis of no outliers is rejected if

G >

(N-1 (ta/(2N), N —2)
VN /N -2+ (t./(2N),N - 2)2

with ¢, /(2N), N — 2 denoting the critical value of the ¢ distribution with (N — 2)
degrees of freedom and a significance level of «/(2N).
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Anomalism Outliers of a Statistical Distribution

[Gru50, Gru69, HA04]

Grubbs's Test - Example

o n=93,7=>522s=1.38 Gnax = (57.0 — 52.2)/1.38 = 3.49

@ From the G table at n = 93 and a = 0.05 the critical value is 3.18.
@ Since 3.49 > 3.18, reject Hy.

@ The observation is from a different population (Gs.49,p < 0.025).

@ The test gives false results for 101
some especially asymmetric 5]
distributions.

@ A significant gap between the
data produced by the normal 0 2000 4000 6000 8000 10000
bounded generating process and
the level at which observations
are treated as outliers.

e N(0,3) truncated by [—5, 5]

@ Significance level a = 0.05

@ An outlier detected above 11.55
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Anomalism Outliers of a Statistical Distribution

[Mar17b]

Thresholds based Extreme Value Theory

o Let Xy,..., Xy be a (discrete) sequence of independent random
variables having a common distribution function F' that is unknown.

@ A given volume (block) of n observations to which we relate
occurrences of extremal values

@ The distribution of block maxima is created.

@ We set a threshold 7 as a robust estimate of the upper bound of
signal values

T = P0.975,n + iqr,

o where n is a sufficiently large block size depending on the application
problem and its setup,

e percentile P0.975,n

e iqr,, is the interquartile range used instead of the standard deviation.

iqr,, = Po.75,n — Po.25,n
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Anomalism Outliers of a Statistical Distribution

Extreme Value Theory (EVT) '«

{X1, X5, X3,...} is a sequence of iid random variables

The block maxima Z,, ; = max(X;,...X,),t=1,...,m

A random variable Z is said to have

a generalised extreme value distribution (GEV) with

scale parameter o > 0, location parameter i and shape parameter &,
if its cumulative distribution function is

G(2) = exp{—[1 + £(C=L) 7/} (1)

defined on the set {z : 1 +&(z — ) /o > 0}
where the parameters satisfy —co < p < 00, 0 >0, —00 < £ < ©
The shape parameter £ split the GEV family into three subfamilies
e £ >0 ...the Frechet family which density decays polynomially and
Z4 = OQ.
o The limit of G(z) for & — 0 leads the Gumbel family which density
decays exponentially and z4 = oo.
e £ <0 ...the Weibull family, z; is finite, the threshold

[Jen55)
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Anomalism Outliers of a Statistical Distribution

Example - EVT based Threshold

1500 A

1000 -

500 1

—500 1

Raw/Maximum difference value

—1000 -

Q Q
o o

o o
K K QU'O .00"6
A A : Ab

b5
time [H:M:S]

Linear optical sensor stream data,
@ Blue - the subsampled raw signal, Orange - block maxima,
o Green - the threshold
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Complex Networks Practical Examples

Conservation within the global metabolic networ

k [PASP09]

(20) Phenylalanine, tyrosine and ~ (21) Nitrogen  (22) Pantothenate and CoA
ryplophan biosynthesis metabolism  biosynthesis

(19) Pyrimidine
metabolism

(18) Purine
metabolism

(17) Thiamine
metabolism

(16) Urea cycle
and metabolism
of amino groups

(15) Glycine,
serine and
threonine
metabolism

(14) Fatty acid (13) Lysine biosynthesis and
biosynthesis pathway | degradation

dek Ma¥ik (radek.marik@fel.cvut.c

(23) Riboflavin  (24) Galactose (25) Porphyrin and cholorophyll
metabolism metabolism biosynthesis

(12) Glutathione metabolism (1) Diterpenoid biosynthesis

omaly Detection M

Superclass membership : Node color
Garbotyarate metabotsm [

Muitlo superciassos.
Multle painvays v oger
in same suporclass

Conservation : Node size

ity consorved (=140 goromes) O
Loso vl consaed (<140 gmed) @

Pathway examples
(1) Blood group glycolipid and ganglioside
biosynthesis; globoside metabolism

(2) Aminosugars biosynthesis

(3) Fructose and mannose metabolism
(4) N-glycan metabolism

(5) Alkaloid biosynthesis |

(6) Flavanoids, stilbene and lignin
biosynthesis

(7) Inositol phosphate metabolism
(8) Prostaglandin and leukotriene metabolism
(9) Folate metabolism

(10) Penicilln and cephaloporin biosynthesis



Complex Networks Practical Examples

Link Analysis of the Al Qaeda Terrorist Network ™
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Complex Networks Practical Examples

Internet map in 1995 ®***
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Complex Networks Complex Network Introduction

h [Weh13]

Grap

A graph is a set of vertices and a set of lines between pairs of vertices.

@ Actor - vertex, node, point
st o Relation - line, edge, arc, link, tie
A = o Edge = undirected line, {c,d}
c and d are end vertices
o Arc = directed line, (a,d)
a is the initial vertex, (source, start)
d is the terminal vertex, (target, end)
o Parallel (multiple) arcs/edges are
only allowed in multigraphs with

looy
opposite b | e
arcs

vertex isolated

vertex more than one relation (set of lines).
e Loop (self-choice)

We focus on simple graphs!

A simple undirected graph has no loops and no parallel edges.
A simple directed graph has no parallel arcs.
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Complex Networks Complex Network Introduction

Network ™

Network

A network consists of a graph and additional information on the vertices or
the lines of the graph.

Formally, a network A" = (V, £, P, W) consists of:

e A graph G = (V, L), where
e V is the set of vertices,
A is the set of arcs,
& is the set of edges, and
L =EUA is the set of lines.

P vertex value functions / properties: p:V — A

@ W line value functions / weights: w : L — B

e Long range dependencies vs. multidimensional space
e Specific topological properties

o Large/Huge volumes of sparse data records
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Complex Networks Complex Network Introduction

Networks Focused on Relations ™

RELATIONS MATTER!

Contrasted with both an atomistic perspective or a whole-group
perspective

Social Network Analysis (SNA)

@ Humanities and social science
@ Activities and structures tied with people

e Shopping basket analysis, targeted advertising
o Enterprise processes analysis(people cooperation, good distribution)

Complex Network Analysis (CNA)
@ Uses the same method as SNA

@ Applied to all domains of human acting

@ Biology, military, computer network, citations, telecommunication

A,
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Complex Networks Complex Network Introduction

[Weh13]

Vertex Degree

o Degree of vertex i,
deg(i) =d; =k; =377 Ay
= the number of lines with i as end-vertex,
(end-vertex is both initial and terminal)

e Indegree of vertex i, indeg(i), deg™ (4)
= k" = >_1_; Aij the number of lines with
v as terminal vertex

o Outdegree of vertex j, outdeg(j),deg™(j)
= kUt = 71, A;j the number of lines with
j as |n|t|al vertex.

Example 2
n =12, m = 23, deg*(e) = 3, deg(e) = 5, deg(e)

Zdeg Zdeg v) = |A| +2|€|

veY vEY

=6
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Complex Networks Complex Network Introduction

Network Fundamental Matrices ™ =

@ The adjacency matrix A of a simple graph is the matrix with
element A;; such that

A — 1 if there is an edge between vertices ¢ and 7,
1 0 otherwise

@ The adjacency matrix of a directed network has matrix elements

A — 1 if there is an edge from j to ¢,
71 0 otherwise

@ The graph Laplacian is the matrix

L=D-A
where
kk 0 O
0 k O
D=

0 0 ks
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Complex Networks Complex Network Introduction

[Weh13]

Degree Heterogeneity

@ Not all nodes show the same activity (degree) in networks.
@ Some nodes show an astounding activity.

@ Degree is most of all a question of tie formation cost.

o Preferential attachment
o Fitness model

p(k) 10

plk) *
.
1
210 o
= .
2 .
g -
S
c 10 S
] -
: -
I = 10
k k L)
<k> moon o
10

Gaussian
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Complex Networks Complex Network Introduction

[Roc12]

Centrality Measures - Importance of Nodes

@ Low — middle — high values
@ A Degree centrality,
o Node Activity
@ B Closeness centrality,
e Distance to other nodes
o C Betweenness centrality,
o Intermediate Position
e D Eigenvector centrality,

e Important nodes have important
friends

o E Katz centrality,
o The relative influence of a node
within a network
F Alpha centrality

e Important nodes have important
friends for asymmetric relations e
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Complex Networks Complex Network Introduction

[DM15]

Egypt Data - Family Formation

Ny-wsr-R< (0.647
Hmrr-nbty (0.424
Nwb-ib-nbty [0.351
Snh-wi-Pth [0.290
R-hw.f1 0.180
Re-nfr.f [0.139
shty-htp TIT [0.139
Pth-3pss  0.082
Ph-r-nfr T |0.048
Srt-nbty T 0.048

People with
eople wi 100 ; ‘l"l"ll l-,ll II I,I u a

the top 10 highest betweenness ;

10

Extended family size distribution
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Complex Networks Complex Network Introduction

Random Graphs

@ Basic idea
o Edges are added at random between a fixed number N of vertices
e Each instance is a snapshot at a particular time of a stochastic process,
starting with unconnected vertices and for every time unit adding a
new edge
@ Four basic models of complex networks
o Regular lattices (meshes) and trees
o Erdds-Renyi Random Graphs (ER)
@ A disconnected set of nodes that are paired with a uniform probability.
o Watts-Strogatz Models 5% (SW)

o Small-world networks
o Connections between the nodes in a regular graph were rewired with a
certain probability
o Barabiési-Albert Model B4 (SF)
o Scale-free networks characterized by a highly heterogeneous degree
distribution, which follows a “power-law”

Pk) ~ k™"
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Complex Networks Complex Network Introduction

[GDZzt15]

Complex Network Models

(a) Regular lattice (» = 0)

»

-

() Small-world (p = 0.01)
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Complex Networks Community Detection

[New06, Weh13, CRTVO07, HK13]

Summary of Approaches

@ The density of graph is the proportion of present lines to the
maximum possible number of lines.

o Clustering coefficient is a measure of the degree to which nodes in
a graph tend to cluster together

t [HK13]

Global clustering coefficien

the ratio of the total number of triangles to the total number of connected
triplets.

_ 2211'11 ¢
—
ZiNzl di(di - 1)

@ Modularity ...is - up to a normalization constant - the number of
edges within communities ¢ minus those for a null model
e "A good division of a network into communities is not merely one in
which there are few edges between communities; it is one in which
there are fewer than expected edges between communities”.
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Complex Networks Community Detection

Modula Y [sm8s, (e, (il

@ The modularity is, up to a multiplicative constant, the number of
edges falling within groups minus the expected number in an
equivalent network with edges placed at random, but with the same
node degree distribution.

@ A weighted network

@ ¢; ...a community of a given node ¢

1 did;
— %Z [A” — Zm} d(ci, ¢j)

@ where

A;j ... weight of the edge between i and j, adjacency matrix

d; = Zj A;; ... degree of ¢

m =43, Aij ... total weight

d;dj/2m ...the expected number of edges between vertices d; and d;
d(u,v) is 1 if w = v and 0 otherwise

Q € [_17 ]-]
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Complex Networks Community Detection

Belgian Mobile Phone Network - Louvain Method

@ 2.6 millions
customers

@ Language:
Dutch, English,
French, German,

@ 6.3 millions links

o Weights
...number of
call + sms

@ Red ...French,

e > 93%
segregated,

@ The center
... Brussels

Radek Maf¥ik (radek.marik@fel.cvut.cz) Anomaly Detection ML 28 June 2017 43 / 78



Community-based Node Roles

Complex Networks

Community Detection

[STEO7]

) (G
<& 4,

/ 6\9 d“%‘ ‘
] “\ % |
=Y — _/
[
[a]
e | -
= I
o /
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@ An authority ... how much

knowledge, information, etc. held
by a node on a topic.

@ A hub ...how well a node 'knows'

where to find information on a
given topic.

@ An ambassador has links to many

nodes from different communities

@ A big fish has links only to other

nodes in the same community

@ A bridge .. .serves as bridges

between a small number of
communities

@ A Loner ...a low relative degree

and low community score.
28 June 2017
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Complex Networks Network Volume and Visualization

NETFLOW Primary Statistics

o Netflow
e Condensed records on a packet flow
o Several packets are merged into one netflow record
o Only 14-20 aggregated metrics

An enterprise traffic as a netflow sample taken during 9 days:

] Statistics \ Value ‘
Total transported data volume | 13,995,690,457,765 [B|
Packet count 20,131,367,095
Netflow count 617,326,053
IP address count 686,168
Source IP address count 614,150
Destination IP address count 392,881
Different P2P connections count 2,412,481
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Complex Networks Network Volume and Visualization

Top Level IP Network Projection - Data Sparsity

0 50 100 150 200 250
0
PO S
i i 108
2 : i
g i i ’
5 50 i i 10
E H H
a H 108
8 H i
.é 100 1 H 0
kT c
1] i 3
a i 100 3
5 150 i i
[ . 1]
g - : 10°
I R S B .
3 200 H 1
3 i
5
= 10!
250 100

Top level octet of Source IP address

Focused on the network of source and destination IP addresses
Top level octets of IP addresses (160.30.29.17 — 160)
A very sparse space

A rather restricted source domain of IP addresses (as expected) W
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Complex Networks Network Volume and Visualization

Port Scanning from xxx.xxx.18.120 - Logical Time Progress

0 5000 10000 15000 20000 25000 30000
A nc time

@ 617,326,053 netflows ~ 60,000 samples x sample size 10.000

e — 60,000 samples might be still visualized with difficulties
@ — 1.000 events can be easily missed with 10,000 sample size
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Complex Networks Network Volume and Visualization

[RP13, Weh13]

Masters of Social Network Analysis

@ US National Security Agency

@ Maintains large programs in social
network analysis

@ Believed to process 2 x 10'° node
and tie updating events per day

@ Result:
" Better Person Centric Analysis”

e 94 entity/node types
(phone numbers, e-mail addresses, IP addresses, etc.)

@ 164 relationship types to build "community of interest” profiles
(travelsWith, hasFather, sentForumMessage, employs, etc.)
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Complex Networks Network Volume and Visualization

Egypt Data - Family Recognition

A family:
@ Using family

designation

e husband,
wife, son, etc.

@ A connected graph
component

@ Sparse data
assumed

@ Transformed into
family tree using
marriage nodes

ut (YEd)

circular layo
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Complex Networks Network Volume and Visualization

[Mar17a]

Family Trees

@ Taxonomic information ITIS on plants,
animals, fungi, and microbes,

multitree-like tree driven @ A phylogenetic tree with 945.352 nodes

layout, Graphviz o multitree-like tree driven layout /"
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Complex Networks Network Volume and Visualization

Dependancy of External Symbols

in Mainframe Assembly Software

@ A software product ...over
10.000.000 lines of code

@ Over 400 modules ... red
o External symbols ... green

@ Thick line ...the definition
of a symbol

@ Thin line ...a reference to a
symbol

o Where should the developer

Fruchterman-Reingold force-driven - _
start with a bug analysis?

layout
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Complex Networks Network Volume and Visualization

Assembly Software - Recovered Architecture

double-circular layout - yEd R
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Complex Networks Network Volume and Visualization

Approach to Complex Networks

@ One needs to distinguish between analysis and production phases

@ Some phenomena appear only with sufficiently large data volumes
(emergent events)

@ Volume

o A number of suitable tools ... HDF5, ElasticSearch, Clouds
o Capable to operate with terabytes of data

@ Visualization

Critical if anomaly features are not known

At present, there is no obvious choice of a tool and a network layout
given a particular problem.

Tools do not often scale with data volumes

(> 10.000 nodes, 10° edges)

GGobi, Pajek, NetworkX, SNAP, Tulip, Gephi, Cytospace, yEd, D3.js
Aspects: data volume, interactions with the user
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Graph Based Anomalies

[ATK15]

Network Anomalies

@ Structured graph data

o Features/properties attached to nodes and edges
o Long-range correlations (data objects exhibit inter-dependencies)
°

Specific topological patterns

v
Various settings of a general framework

@ Unsupervised vs. (semi-)supervised approaches,

Statis vs. dynamic graphs,
Attributed vs. plain graphs.
Effectiveness, scalability, generality, and robustness aspects.

Class imbalance and asymmetric error (rare abnormal x normal)

Root cause analysis: Why is it anomalous?

A,
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Anomalies in Static Plain Graphs

Graph Based Anomalies
[ATK15]

@ Structure based methods
o Feature based approaches

Extract features and used outlier detection graph-centric features
Node-level features (centralities, local clustering coefficient)
Node-group-level features (compactness, density, modularity)
Global measures (number of connected components, principal
eigenvalue)

Egonet (1-step neighborhood around a node) (OddBall)

o Proximity based approaches

Measure closeness/proximity of objects
Importance of nodes (PageRank, Personalized PageRank, SimRank)

o Community based methods
e Search for “bridge” nodes/edges that do not directly belong to any
community
@ How to find the community of a given node?
@ How to quantify the level of the given node to be a bridge node?
e Matrix Factorization
e Boolean/Binary Matrix Factorization (BMF)
o Non-negative Matrix Factorization (NMF)
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Graph Based Anomalies

[ATK15]

Anomalies in Static Attributed graphs

@ Structure based methods
o Identify substructures that are rare structurally
e Connectivity, attributes

o Community based methods

e Aim to identify community outliers (nodes)
o CODA ...an unsupervised learning algorithm
e GOutRank ...searches for a subset of relevant attributes

@ Relational learning based methods

o Exploit the relationships between the objects to assign them into classes
o Naive Bayes models for local attributes
o Probabilistic relational models (PRMs)

Radek Maf¥ik (radek.marik@fel.cvut.cz) Anomaly Detection ML 28 June 2017 57 /78



Graph Based Anomalies

[ATK15]

Anomaly Detection in Dynamics Graphs

o Feature based events

e ‘“graph footprints” and metrics,

o Maximum Common Subgraph (MCS)

e Graph Edit Distance (GED)

e Hamming distance
o Decomposition based events
matrix or tensor decomposition of the time-evolving graphs
Singular Value Decomposition (SVD)
Non-negative Matrix Factorization (NMF)
Compact Matrix Decomposition (CMD)
Streaming Tensor Analysis (STA)
e Community/cluster based events

e graph communities over time

o clustering, community detection, co-clustering

e MDL-based, Bayesian anomaly detection method
@ Window based events

e “moving window analysis”

e k-step neighborhood
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Anomalies in Dynamic Networks The Old Kingdom of Egypt Administration Development

Rebel I ion [Eps02, Wil04, Wil99]

@ This project models the rebellion
of a subjugated population
against a central authority.

o If the level of population
wanders grievance against the
central authority is high enough,
and their perception of the risks
involved is low enough, they
openly rebel.

@ The cops wander around
randomly and arrest people who
are actively rebelling.

@ Punctuated equilibrium —
periods of quiescence followed
by periods of rebellion.
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Titles of Viziers - Jaccard, Single Linkag
Clustering

[DMBC17, JD88]
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Anomalies in Dynamic Networks The Old Kingdom of Egypt Administration Development

Hidden Markov Model on Titles """

@ A sequence of viziers

@ A sequence of appearances for each title
@ A general model of title life (2 states)

e Focus on title occurrence change (red)

@ A model of a title subset change
@ lIdentification of periods when with a higher
probability
e A subset of titles started to appear
e A subset of titles stopped to appear
o ldentification of titles contributing to
changes
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The Old Kingdom Administration Rise

30
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06104
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Probabilty
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@ Probability means of join changes in title occurrences
e Non-informative titles threshold (feature selection)

@ Top — vanishing titles

@ Bottom — rising titles

@ Epochs match conclusions of Egyptologists
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Anomalies in Dynamic Networks Concurrent Communication Detection

Exemplar (Viber) Environment ™

Other Services
Server } { Server }{ Server }{ Server }{ Server }

Cloud Services
Server Services 2

Local
Services 1 Sy

Server

Server

Server

Server

{
{
{

Server

Client 1 Client 2
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Example Capture Characteristics - Message

[MBKK15]

Sequences

= @ 138882 PCAP
blocks

@ 1788 transport
H sessions

L [ [ [ [T [][]]

I = MR @ 2 clients

AEERRENNNN AN ARARNN NN @ 22 viber.com
servers

@ 150 peers of 2
clients

@ 5660 possible
concurrent
sessions

I
1
I

= = o o
\\\\\\\

e I @ How to analyze?!
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[MBKK15]

Concurrent Communication Detection

Selection of IP nodes

@ viber.com servers — viber clients — other Viber servers

o Classified based on entropy based characteristics of TCP/IP
distributions

cient 1 [N [  1 A E1 E E L
Server 1 EEEEENPOEEE.

AfpEEN FEEEEm

...Other

cient2 [N [ N 1 I N A 1 0 1 EEEN
Server 2 O[] | B
R

Z\ﬁ,j:ta [i]—ty[J]<R R/(ta M — 1t [J])

s(a,b) =
D Vijitalil—tolj]<R 1

In our experiments: R = 50ms, s(a,b) > 0.001
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UDP Packet Sequence Concurrency as a Complex
Network ™

o Captures with two clients

o Communities of
concurrent sessions

@ Some clusters related to
only one client

@ Interesting clusters consist
of nodes of both clients
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[MBKK15]

UDP Packet Sequence Concurrency - Packet Timing
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Conclusions

A brief introduction to anomaly and outlier detection,

Complex networks introduced as a representation of data with

o Large-range dependencies,
e Specific types of dependency topologies,
o Large/huge volume of data.

@ Anomalies might be detected using traditional machine learning
methods with

Adjustments to huge data,

e Special null models,

e Special graph/network topological features

o Community detection (topology/relation based x clustering)

Applicable to many diverse domains
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