
Direction-of-Arrival Estimation in the Low-SNR
Regime via a Denoising Autoencoder

Mathini Sellathurai, Georgios K. Papageorgiou

Heriot-Watt University, School of Engineering and Physical Sciences, Edinburgh, UK

UDRC Themed Meeting on Signal Processing for the Electromagnetic
Environment
UDRC 3

The research was funded by UK EPSRC grant EP/P009670/1 and MBDA



Outline

1 Signal Model for Uniform and Sparse Linear Arrays

2 Relation to Manifold Learning

3 Learning the Manifold with a Denoising Autoencoder (DAE)

4 DoA Prediction-estimation with a Denoising Autoencoder (DAE)

5 Numerical Results

6 Conclusions

Papageorgiou and Sellathurai (HWU) DoA Estimation in the Low-SNR Regime UDRC November 25th, 2020 2 / 24



Case 1: Signal Model - Uniform Linear Arrays (ULA)

We consider an N -element half-wavelength spaced ULA for the direction-
of-arrival (DoA) estimation ofK far-field, distinct and uncorrelated sources.

Received Signal

x(t) =

K∑
k=1

a(θk)sk(t) + e(t) = A(f)s(t) + e(t), t = 1, . . . , T,

where A(f) = [a(f1),a(f2), . . . ,a(fK)] is the N × K array manifold
matrix with columns a(fk) = [1, fk, f

2
k , . . . , f

N−1
k ]T , fk = ejπ sin θk and

θk are the DoAs for k = 1, . . . ,K. The transmitted signal is s(t) =
[s1(t), . . . , sK(t)]T and e(t) ∼ CN (0, σ2eIN ) is the noise vector.

Additional Assumptions:

The additive noise values are i.i.d. zero-mean white circularly-symmetric
Gaussian and uncorrelated from the sources.

There is no temporal correlation between the snapshots.

Papageorgiou and Sellathurai (HWU) DoA Estimation in the Low-SNR Regime UDRC November 25th, 2020 3 / 24



Case 1: Signal Model - Uniform Linear Arrays (ULA)

We consider an N -element half-wavelength spaced ULA for the direction-
of-arrival (DoA) estimation ofK far-field, distinct and uncorrelated sources.

Received Signal

x(t) =

K∑
k=1

a(θk)sk(t) + e(t) = A(f)s(t) + e(t), t = 1, . . . , T,

where A(f) = [a(f1),a(f2), . . . ,a(fK)] is the N × K array manifold
matrix with columns a(fk) = [1, fk, f

2
k , . . . , f

N−1
k ]T , fk = ejπ sin θk and

θk are the DoAs for k = 1, . . . ,K. The transmitted signal is s(t) =
[s1(t), . . . , sK(t)]T and e(t) ∼ CN (0, σ2eIN ) is the noise vector.

Additional Assumptions:

The additive noise values are i.i.d. zero-mean white circularly-symmetric
Gaussian and uncorrelated from the sources.

There is no temporal correlation between the snapshots.

Papageorgiou and Sellathurai (HWU) DoA Estimation in the Low-SNR Regime UDRC November 25th, 2020 3 / 24



Subspace-based DoA Estimation

Under these assumptions the source covariance matrix is Rs = E[s(t)sH(t)] =
diag(p1, . . . , pK) and the received signal’s covariance matrix is:

Covariance Matrix of the Received Signal

Rx = E[x(t)xH(t)] = A(f)RsA
H(f) + σ2eIN .

Facts and Challenges:

Conventional subspace-based approaches, such as Multiple Signal Clas-
sification (MUSIC), rely on the eigendecomposition Rx = UΣUH for
the signal and noise subspace separation.

In practice, Rx is unknown and estimation is performed via its sample
estimate R̃x = 1

T

∑T
t=1 x(t)xH(t), for a number of snapshots T .

Up to K ≤ N − 1 distinct DoAs can be estimated with guarantees in
the noiseless case. In the presence of noise, no conditions guarantee
the DoA estimation, which depends on both T and the signal-to-
noise-ration (SNR).
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Case 2: Signal Model for Sparse Linear Arrays

Sparse Linear Arrays (SLAs) are a class of nonuniform linear arrays
(NLAs). Typically, SLAs comprise a small number of sensors from a
larger aperture Uniform Linear Array (ULA). The subset of sensors
selected depends on the type of the SLA:

Minimum Redundancy Arrays (MRAs) - (M. Ishiguro, 1980)

Maximizes the number of consecutive virtual sensors in the difference
coarray.
No closed-form expressions exist for a) the sensor locations and b)
the number of achievable degrees-of-freedom (DoF).

Nested Arrays - (P. Pal and P. Vaidyanathan, 2010)

Closed-form expressions exist and can provide O(N2) DoF with N
physical sensors.
The number of DoF is smaller than that of the MRA.
Higher level of nesting can increase the DoFs but the difference
coarray is not necessarily a hole-free ULA.
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Case 2: Signal Model for Sparse Linear Arrays (cont.)

Types of arrays (continued):

Co-prime Arrays - (P. Pal and P. P. Vaidyanathan, 2011)

The mutual coupling effects between elements is reduced compared
to the nested arrays.
The number of DoF is smaller than that of the nested arrays (for the
same number of sensors).

Augmented Nested Arrays (ANA) - (J. Liu et al., 2017)

Higher number of DoF.
more effective against mutual coupling but hole-free under certain
complicated conditions.

Maximum Inter-element Spacing Constraint (MISC) Arrays - (Z.
Zheng et al., 2019)

Reduced mutual coupling.
Closed-form expressions for the locations and achievable DoFs.
It has been proved that the difference coarray is always hole-free.
Increased number of DoFs on the virtual array.
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Maximum Inter-element Spacing Constraint Array

MISC Array

For an arbitrary number of sensors N with N ≥ 5 they are constructed
based on the maximum inter-element spacing P = 2bN4 c+ 2, which
determines the following inter-element spacing set:

AMISC(N) = {1, P − 3, P, . . . , P︸ ︷︷ ︸
N−P

, 2, . . . , 2︸ ︷︷ ︸
P−4
2

, 3, 2, . . . , 2︸ ︷︷ ︸
P−4
2

}.

Figure: An example of the MISC array with N = 6 (thus, P = 4) elements as a
sparse version of a larger ULA (57% fewer elements). Inter-element spacing
defined by the set: AMISC(6) = {1, 1, 4, 4, 3} and locations by the set
SMISC(6) = {0, 1, 2, 6, 10, 13}d. The dashed elements correspond to missing
sensors. It can also be viewed as an efficient way to sample the array domain.
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Direction-of-Arrival (DoA) Estimation with SLAs

DoA estimation of K targets/sources with N physical sensors:

Overdetermined case (K < N): Conventional covariance-based
techniques, e.g., Multiple SIgnal Classification (MUSIC).

Underdetermined case (K ≥ N): First perform Spatial Smoothing
(SS) and then use a covariance-based technique.

Despite having N = 6 physical
sensors the number of the (uniform)
DoFs for the virtual array is
Nv = 27, enabling the DoA
estimation of a larger number of
targets/sources.
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Manifold Learning for Covariance Matrix

Sample Covariance Matrix

R̃x = Rx + ∆R,

where ∆R = A(f)∆RsA
H(f)+A(f)R̃se+R̃H

seA
H(f)+∆Re, R̃se is the

signal-noise sample cross-covariance matrix, ∆Rs = R̃s − Rs, ∆Re =
R̃e−σ2eIN and R̃s, R̃e are the signal and noise sample covariance matrices,
respectively.

For T → ∞, R̃s → Rs, R̃sη → O and R̃η → σ2ηIN leading to
∆R→ O.

The values of ∆R depend on both T and the SNR. In the low-SNR
regime even a large (but finite) number of snapshots cannot reduce
these error values significantly.

Papageorgiou and Sellathurai (HWU) DoA Estimation in the Low-SNR Regime UDRC November 25th, 2020 9 / 24



Manifold Learning

vt(·) = [vtr(·)T , vti(·)T ]T maps the Hermitian matrix to a composite
real-valued vector and the reverse operator, uvt(·), maps the N2 × 1
real-valued vector back into the complex-valued Hermitian matrix.

For example, the Hermitian matrix

R =

 a1 a2 + ja3 a4 + ja5
a2 − ja3 b1 b2 + jb3
a4 − ja5 b2 − jb3 c1

 of C3×3 with

{a1, . . . , a5, b1, b2, b3, c1} ∈ R has:

vtr(R) = [a1, a2, b1, a4, b2, c1]
T and vti(R) = [a3, a5, b3]

T . Hence,

vt(R) = [a1, a2, b1, a4, b2, c1, a3, a5, b3]
T ∈ R9×1.

Applying the vt(·) operator to the sample covariance matrix leads to
r̃ = r + ∆r, where r̃ = vt(R̃x), r = vt(Rx) and ∆r = vt(∆R).
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Manifold Learning

Objective: Learn r from r̃ = r + ∆r

For sufficient number of snapshots T the sample covariance estimate
is statistically optimal in the high-SNR regime.

However, in many practical applications, the signal is buried in noise
(low-SNR regime) and the data in r̃ lie far away from the true unknown
manifold (data points in r). As a result, the majority of the estimators
fail to accurately estimate the DoAs in such cases.

Proposed solution: train a
Denoising Autoencoder (DAE) to
“learn” the unknown manifold.
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Learning Hermitian Matrices

Figure: The proposed DL-based prediction scheme. The Denoising Autoencoder
(DAE) learns to predict r̂, which is then mapped to a Hermitian matrix R̂x.
The latter matrix can then be used by one/any of the covariance-based methods
for DoA estimation available in the literarure.
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DAE for Learning Hermitian Matrices

Denoising Autoencoder Loss

{ϑ∗, ϑ′∗} = arg min
ϑ,ϑ′

{
1

D

D∑
d=1

L
(

r(d), gϑ′
(
fϑ
(
r̃(d)
)))

+
λ

2D

(
M∑
m=1

‖Wm‖2F +
L∑
`=1

‖W′
`‖2F

)}
,

where L(·) is the MSE loss and λ is a regularization parameter.

Weights-biases: ϑ = {ϑm}Mm=1 with ϑm = {Wm,bm}, ϑ′ = {ϑ′`}L`=1

with ϑ′` = {W′
`,b
′
`}.

Functions: fϑ = fϑM ◦ fϑM−1
· · · fϑ1 with fϑm(x) = φfm(bm + Wmx)

is the encoder with activation function φfm at the m-th layer and gϑ′ =
gϑ′L ◦ gϑ′L−1

· · · gϑ′1 with gϑ′`(x) = φg`(b
′
` + W′

`x) is the decoder with
activation function φg` at the `-th layer.
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DAE Layout

Figure: The proposed DAE architecture follows the standard bottleneck
structure. The encoded dimension (of the latent space) is 100, whereas the
input and output dimensions are N2. In total, the DAE comprises six fully
connected (FC) layers.
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Fast DoA Prediction-estimation Scheme

Figure: The proposed fast covariance matrix prediction scheme for DoA
estimation. The noisy covariance matrix R̃x is passed to the DAE, which
predicts R̂x. For the underdetremined case using MISC, spatial smoothing is
applied to the vectorized form. The DoA estimation is performed on R̂ẑ using a
covariance-based technique, such as MUltiple SIgnal Classification (MUSIC).
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Simulation Setup and Numerical Evaluation for
Overdetermined Case K < N − 1 with ULA

Simulation Setup:

ULA with N = 20 elements.

K = 2 sources with p1 = p2 = 1 and the two DoAs in [−80◦,−5◦]
and [5◦, 80◦], respectively.

SNR in [-20,-5] dB, where SNR = 10 log10
(
min{p1, p2}/σ2e

)
.

DAE Training:

Training with D = 2M data using Tmin = 1000 snapshots.

Testing with Dt = 100K data using T ≥ Tmin.

SNR random.

Evaluation Metric:
Root-mean-squared-error (RMSE):

RMSE =

√√√√ 1

DtK

K∑
k=1

Dt∑
d=1

(θ
(d)
k − θ̂

(d)
k )2.
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Case K < N − 1 with ULA: RMSE vs SNR
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Figure: The RMSE (logarithmic scale) vs the SNR in the DoA estimation of two
sources. The dashed lines correspond to the DoA estimation with the sample
estimate, while the solid ones with the matrix predicted by the proposed DAE.
The relative improvement is up to 95% (low-SNR).
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Case K < N − 1 with ULA: RMSE vs T
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Figure: The RMSE (logarithmic scale) vs the number of snapshots T for the
estimation of two DoAs at -20 dB. Notice that the increase in the number of
snapshots has a greater impact on the DoA estimation with the predicted matrix
R̂x than with the conventional sample estimate R̃x.
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Underdetermined case K > N − 1: Parameters

Table: Layers of the DAE

Layer Size Activation
Fully Connected 1000 RELU
Fully Connected 800 RELU
Fully Connected 300 RELU
Fully Connected 100 RELU
Fully Connected 300 RELU
Fully Connected 800 RELU
Fully Connected 1000 RELU
Fully Connected N2 LINEAR

Table: Parameters used for the
numerical evaluation

Parameter Value
Sensors N 6
Sources K 6

Train data D 500K
Test data Dt 75K

λ 10−4
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Case K > N − 1: Probability of Detection for On-grid
Angles
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Figure: The probabilities of detection of K = 6 targets using N = 6 physical
sensors with MUSIC vs the SNR for angles on a discrete grid. For T = 16 the
angles can only be resolved with the use of the proposed DAE.
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Case K > N − 1: RMSE for Off-grid Angles
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Figure: The RMSE in the estimation of K = 6 targets using N = 6 physical
sensors with MUSIC vs the SNR for randomly selected angles. For T = 16 the
angles are not resolved by the conventional approach.
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Conclusions

We presented a novel deep learning approach for DoA estimation for
1) low SNR, 2) small number of snapshots T , and we focused on
the overdetermined (K < N − 1) and underdetermined case
(K ≥ N) using the ULA and MISC arrays, respectively.

The problem is formulated as a manifold learning task and a (deep)
denoising autoencoder architecture is trained for the prediction of
the true (unknown) manifold. The DoA estimation follows with the
use of a conventional covariance-based technique.

The adopted approach demonstrates significant performance gains
in DoA estimation and is able to resolve angles with RMSE ' 0.5◦

in cases where the conventional approach fails (T = 16).

One of the main advantages is that for the DoA estimation the
method is not limited to the use of MUSIC. Any other estimator can
be used, e.g., Root-MUSIC, a classification neural network, etc.
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THANK YOU AND QUESTIONS TIME

For further questions or any other inquiries please send us an email:
m.sellathurai@hw.ac.uk

Papageorgiou and Sellathurai (HWU) DoA Estimation in the Low-SNR Regime UDRC November 25th, 2020 24 / 24


	Signal Model for Uniform and Sparse Linear Arrays
	Relation to Manifold Learning
	Learning the Manifold with a Denoising Autoencoder (DAE)
	DoA Prediction-estimation with a Denoising Autoencoder (DAE)
	Numerical Results
	Conclusions



