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Modelling: Why bother?

Good models ...

• make Bayesian filtering feasible to compute

• help to estimate the target state more accurately

• can represent information concisely with only a few parameters
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Modelling: Why bother?

Multi-object filtering using the PHD filter
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Modelling: Why bother?

Challenges:

• Localisation: inaccurate sensors, different object behaviours

• Association: which measurement belongs to which object?

• Cardinality : # objects ←→ # measurements
g
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Modelling: Why bother?

Probabilistic solution: Probability Hypothesis Density (PHD) filter [Mah03, VM06]

• Localisation: uncertainty in position through spatial distribution s

• Association: association likelihood `(z|x) g

• Cardinality : Point processes for detection, survival, clutter, and persisting
and new-born targets
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Modelling: Why bother?

Choice of the PHD filter: Poisson model
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Modelling: Why bother?

Properties

• The Poisson model is easy:

– one parameter only

– mean equals variance

– easy equations, exponential form

• Poisson behaviour is found in many applications
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Modelling: Why bother?

Non-Poisson noise: an example

Total Internal Reflection Microscopy (TIRF)
Pixel width/height: 106 nm
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Modelling: Why bother?

Non-Poisson noise: an example

PHD filter assumes Poisson noise
→ cannot cope with bursts of clutter!
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Different point processes

Different point processes

Three examples:

• Bernoulli point process

• Poisson point process

• Negative binomial point process
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Different point processes

Definition: Point process

• Goal: describe a population of points in a target space X

• Both the target number and locations are random

• Point process Φ: assigns probabilities to any number and configuration of
targets in X : (

Ω,F ,P
) Φ−→

(
EX ,B(EX )

)
(1)

where (Ω,F ,P) is a probability space and
(
EX ,B(EX )

)
a measurable

space
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Different point processes

Definition: Probability Generating Functionals (PGFLs)

Describe the probability density function pΦ of the point process Φ for any object
number n by an infinite sum:

GΦ(h) =
∑
n≥0

∫
Xn

[
n∏
i=1

h(xi)
]
pΦ(x1:n)d(x1:n) (2)

where h is any test function.
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Different point processes

Bernoulli Point Process (parameter p, spatial distribution s)

• Binary point process: either no target or one target

• Target exists with probability p, distributed according to s(·)

• PGFL:
GBernoulli(h) = (1− p)︸ ︷︷ ︸

no target

+ p

∫
X
h(x)s(x)dx︸ ︷︷ ︸
one target

(3)
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Different point processes

Poisson Point Process (intensity µ)

• Poisson distributed target number with parameter µ(X )

• Targets independently and identically distributed (i.i.d.) according to the
normalised intensity µ(·)

µ(X )

• PGFL:
GPoisson(h) = exp

(∫
X

[h(x)− 1]µ(x)dx
)

(4)
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Different point processes

Negative Binomial Point Process (parameters α, β, spatial
distribution s)

• Negative binomial distributed target number with parameters α, β ∈ R+

• Targets i.i.d. according to s(·)

• PGFL:

GNB(h) =
(

1 + 1
β

∫
X

[1− h(x)]s(x)dx
)−α

(5)

• Target number is characterised by mean µ and variance var:

µ = α

β
, var = µ

(
1 + 1

β

)
. (6)
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Different point processes

Poisson vs. negative binomial distribution
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Different point processes

NB → Poisson!
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The PHD filter

The PHD filter [Mah03, VM06]

Filter assumptions

• All observations are made independently

• Survival and detection processes are Bernoulli processes

• Predicted and false alarm processes are Poisson processes
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The PHD filter

The recursion at time k → k + 1 in terms of PGFLs

Prediction PGFL:
Gk+1|k(h) = Gk

(
Gs(h)︸ ︷︷ ︸
Bernoulli

)
Gb(h) (7)

Update PGFL:
Gk+1(g, h) = Gk+1|k︸ ︷︷ ︸

Poisson

(
Gd(h)︸ ︷︷ ︸
Bernoulli

)
Gc(g)︸ ︷︷ ︸
Poisson

(8)
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The PHD filter

The recursion at time k → k + 1 in terms of intensity

PHD filter prediction:

µk+1|k(x) =
∫
X
ps(y)fk+1|k(x|y)µk(y)dy + µb(x) (9)

PHD filter update:

µk+1(x|Z) = (1− pd(x))µk+1|k(x)

+
∑
z∈Z

pd(x)`(z|x)µk+1|k(x)∫
X pd(y)l(z|y)µΦ(y)dy + µc(z)

(10)
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The PHD filter

Limitation

• All observations are made independently

• Survival and detection processes are Bernoulli processes

• Predicted and false alarm processes are Poisson pro-
cesses

→ does not work in the example!
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A PHD filter alternative

A PHD filter alternative [SDHC16]

Filter assumptions

• All observations are made independently

• Survival and detection processes are Bernoulli processes

• Predicted process is a Poisson process

• The false alarm process is a negative binomial process
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A PHD filter alternative

The recursion at time k → k + 1 in terms of PGFLs

Prediction PGFL:
Gk+1|k(h) = Gk

(
Gs(h)︸ ︷︷ ︸
Bernoulli

)
Gb(h) (11)

Update PGFL:
Gk+1(g, h) = Gk+1|k︸ ︷︷ ︸

Poisson

(
Gd(h)︸ ︷︷ ︸
Bernoulli

)
Gc(g)︸ ︷︷ ︸
NB!

(12)

Isabel Schlangen | Heriot-Watt University | 28/06/2016 25/36



A PHD filter alternative

The recursion at time k → k + 1 in terms of intensity

Prediction (the same as for the PHD filter):

µk+1|k(x) =
∫
X
ps(y)fk+1|k(x|y)µk(y)dy + µb(x) (13)

New update intensity:

µk+1(x|Z) = (1− pd(x))µk+1|k(x)

+
∑
z∈Z

pd(x)`(z|x)µk+1|k(x)
sc(z) l(Z \ {z})

(14)
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A PHD filter alternative

Both filters in comparison (update)
PHD filter update:

µk+1(x|Z) = (1− pd(x))µk+1|k(x)

+
∑
z∈Z

pd(x)`(z|x)µk+1|k(x)∫
X pd(y)l(z|y)µΦ(y)dy + µc(z)

New filter update:

µk+1(x|Z) = (1− pd(x))µk+1|k(x)

+
∑
z∈Z

pd(x)`(z|x)µk+1|k(x)
sc(z) l(Z \ {z})
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Experiments

Experiments
Simulation settings:

• Field of view: (50m)2

• ps = 0.99, acceleration noise q = 0.01ms−2

• i.i.d. targets, standard deviation of initial target velocity: 0.5ms−1

• pd = 0.9, measurement noise per dimension: 0.5m

• Birth intensity: Poisson, µb = 0.5
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Experiments

Scenario 1:

• 100 Monte Carlo runs, 15 time steps

• 9 clutter points at times 1–14

• varying number of clutter points at time 15: 0,1,2,...130

• Poisson PHD: µc = 9.5 and 50

• Negative binomial PHD: µc = 9.5 and varc = 190
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Experiments

The distributions
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Experiments

Scenario 1
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Experiments

Scenario 2:

• 500 Monte Carlo runs, 100 time steps

• NB distributed clutter points with mean 9.5 and variance 190

• Poisson PHD: µc = 9.5 and 50

• Negative binomial PHD: µc = 9.5 and varc = 190
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Experiments

Scenario 2
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Conclusion

Conclusion

• Good models are important because they facilitate Bayesian filtering

• Restrictive models cannot cope with out-of-model behaviour

• Negative binomial model generalises Poisson model
→ more flexibility to describe noise
→ more robustness against outliers in clutter cardinality
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Questions?
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