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Modelling: Why bother?
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Good models ...
e make Bayesian filtering feasible to compute
e help to estimate the target state more accurately

e can represent information concisely with only a few parameters
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Modelling: Why bother?
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Challenges:

e [ocalisation: inaccurate sensors, different object behaviours

e Association: which measurement belongs to which object?

e Cardinality: # objects <— # measurements
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Probabilistic solution: Probability Hypothesis Density (PHD) filter [Mah03, VMO06]

e [ocalisation: uncertainty in position through spatial distribution s
e Association: association likelihood ¢(z|z)

e Cardinality: Point processes for detection, survival, clutter, and persisting
and new-born targets
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Choice of the PHD filter: Poisson model

x
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Poisson probability density function (pdf) for different means
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Modelling: Why bother?

Properties

e The Poisson model is easy:
— one parameter only
— mean equals variance
— easy equations, exponential form

e Poisson behaviour is found in many applications

Isabel Schlangen | Heriot-Watt University | 28/06/2016 9/36



A HERIOT
EIWAIT

UNIVERSITY

Modelling: Why bother?

Non-Poisson noise: an example

Total Internal Reflection Microscopy (TIRF)
Pixel width/height: 106 nm
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Modelling: Why bother?

Non-Poisson noise: an example

PHD filter assumes Poisson noise
— cannot cope with bursts of clutter!
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Different point processes

Different point processes
Three examples:

e Bernoulli point process

e Poisson point process

o Negative binomial point process
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Definition: Point process

e Goal: describe a population of points in a target space X
e Both the target number and locations are random

e Point process ®: assigns probabilities to any number and configuration of

targets in A
(QaF)IP) 3) (EXaB(EX)) (1)

where (92, F,P) is a probability space and (EX,B(EX)) a measurable
space
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Different point processes

Definition: Probability Generating Functionals (PGFLs)

Describe the probability density function pg of the point process ® for any object
number n by an infinite sum:
Ga(h) =3 / [1‘[ h(xi)] Po (710 (T1:0) ?)

n>0 1=

where h is any test function.
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Different point processes

Bernoulli Point Process (parameter p, spatial distribution s)

e Binary point process: either no target or one target

e Target exists with probability p, distributed according to s(-)

e PGFL:
CTVBernouIIi(h) = (1 - p) +p/ h(:c)s(x)dx (3)
S—— X
no target s ——
one target
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Different point processes

Poisson Point Process (intensity 1)

e Poisson distributed target number with parameter u(X)

e Targets independently and identically distributed (i.i.d.) according to the

normalised intensity i(%

o PGFL:
Groisonh) = exD ( / [h(w)—l]u(x)dw> (4)
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Different point processes

Negative Binomial Point Process (parameters o, [, spatial
distribution s)

e Negative binomial distributed target number with parameters a, 5 € R

e Targets i.i.d. according to s(-)

= (11 [ woas) © o

e Target number is characterised by mean p and variance var:

,u:%, varzu(l—i—%). (6)

e PGFL:
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Poisson vs. negative binomial distribution

—— Poisson: y =5
0.4 ——NB: p = 5, var = 100
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NB — Poisson!

0.87

—e—var = 55

——var =10
—e—var =15.5
—o—var = 5.05
—e—var = 5 (Poisson)

pdf
o
o

Negative binomial distributions with mean ¢ = 5 and decreasing variance
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The PHD filter [Mah03, VMO06]

Filter assumptions

e All observations are made independently
e Survival and detection processes are Bernoulli processes

e Predicted and false alarm processes are Poisson processes
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The recursion at time &£ — k£ 4 1 in terms of PGFLs

Prediction PGFL:
Gry1je(h) = G ( Gs(h) )Gy(h) (7)
——
Bernoulli
Update PGFL:

Gr1(g,h) = Grr1|k (Gd(h) ) Ge(9) (8)

Poisson  Bernoulli  Poisson
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The recursion at time £ — k + 1 in terms of intensity

PHD filter prediction:
pe(a) = [ 2 (el o)y + po(a) ©)
PHD filter update:

pr1(zZ) = (1 = pa(x )):uk+1|k( )

U(z|2) g1 () (10)
+Z§ fxpd Iy)u@( )y + pie(2)
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Limitation

e All observations are made independently
e Survival and detection processes are Bernoulli processes

e Predicted and false alarm processes are Poisson pro-
cesses

— does not work in the example!
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A PHD filter alternative

A PHD filter alternative [SDHC16]

Filter assumptions

o All observations are made independently
e Survival and detection processes are Bernoulli processes
e Predicted process is a Poisson process

e The false alarm process is a negative binomial process

Isabel Schlangen | Heriot-Watt University | 28/06/2016 24/36



A PHD filter alternative V%&%%

& UNIVERSITY

The recursion at time &£ — k£ 4 1 in terms of PGFLs

Prediction PGFL:
Gry1je(h) = G ( Gs(h) )Gy(h) (11)
——
Bernoulli
Update PGFL:

Gr1(g,h) = Grr1|k (Gd(h) ) Ge(9) (12)

Poisson  Bernoulli NB!
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The recursion at time k£ — k£ + 1 in terms of intensity

Prediction (the same as for the PHD filter):

(&) = /X Do) sl ek () dy + o () (13)

New update intensity:

prt1(z]Z) = (1 - pa(x ))Nk+1\k( z)
+Z pa(x Z|~”U P 1k (T ) U2\ (=) (14)

z€Z )
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Both filters in comparison (update)

PHD filter update:

p1(2]Z) = (1 — pa(z ))Hk+1|k( )

I Z |37)Nk+1|k( )

& Jaraly |y)M<1>( )y + pie(2)

New filter update:

pr1(z]Z) = (1 _pd(x)),“k+1\k(x)

+3 pd(x)f(Zlf()$k+1|k(x)l(Z \ {z})

z€EZ
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Experiments

Simulation settings:

e Field of view: (50m)?

2

ps = 0.99, acceleration noise ¢ = 0.0l ms™

1

i.i.d. targets, standard deviation of initial target velocity: 0.5ms™

e pq = 0.9, measurement noise per dimension: 0.5m

Birth intensity: Poisson, up = 0.5
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Scenario 1:

e 100 Monte Carlo runs, 15 time steps

9 clutter points at times 1-14

e varying number of clutter points at time 15: 0,1,2,...130

Poisson PHD: pu. = 9.5 and 50

Negative binomial PHD: p. = 9.5 and var, = 190
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The distributions

0.15
—— Poisson, puc = 9.5
—— Poisson, p. = 50
—~ 0.1 —— Negative binomial
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Scenario 1
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—— PHD with Poisson clutter, p. = 9.5
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Scenario 2:
e 500 Monte Carlo runs, 100 time steps
o NB distributed clutter points with mean 9.5 and variance 190
e Poisson PHD: p. = 9.5 and 50

o Negative binomial PHD: p. = 9.5 and var, = 190
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Scenario 2

—— PHD with Poisson clutter, p. = 9.5
—— PHD with Poisson clutter, p. = 50
10| — PHD with NB clutter

e ——
0 10 20 30 40 50 60 70 80 90 10
time step

cardinality error
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Conclusion

e Good models are important because they facilitate Bayesian filtering
e Restrictive models cannot cope with out-of-model behaviour
e Negative binomial model generalises Poisson model

— more flexibility to describe noise
— more robustness against outliers in clutter cardinality
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