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What is a Polynomial Matrix? s B

Strathclyde

Engineering

» A polynomial matrix is a polynomial with matrix-valued
coefficients, e.g.:

A(z):[_i _;]Jr“ _1:|Z_1+|:_1 _?]z_Z (1)

» a polynomial matrix can equivalently be understood a matrix with
polynomial entries, i.e.

A(2) = [ (2)

T+zt—272 1427142272
142 4272 27172

» polynomial matrices could also contain rational polynomials, but
the notation would not be as easily interchangeable as (1) and (2).
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Where Do Polynomial Matrices Arise? ”5"{‘;;'{'.;;([%%

Engineering

» A multiple-input multiple-output (MIMO) system could be made
up of a number of finite impulse response (FIR) channels:

x1[n)

xa[n)

> writing this as a matrix of impulse responses:

h11 [n] h12 [TL] ]

3
h21 [n] h22 [TL] ( )

H[n| = [
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Transfer Function of a MIMO System ”g{‘;;‘;‘.:’c%%
Engineering
» Example for MIMO matrix H[n] of impulse responses:
1 1
— 05 — 05
= o P ? % ore T ? ©
< l l <
-0.5 -0.5
0 1 2 3 4 0 1 2 3 4
1 1
— 0.5 ~— 05
= | = il I -
= -0.5 l = -0.5 l
0 1 2 3 4 0 1 2 3 4

discrete time index n discrete time index n

» the transfer function of this MIMO system is a polynomial matrix:

H(z) = Z H[n]z ™! or H(z) e—o H[n| (4)
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Analysis Filter Bank

» Critically decimated K-channel analysis filter bank:

o Hi(2) —{(K)
Hy(2) (F)

Hg (2) @

> equivalent polyphase representation:

Universityof "

Strathclyde

Engineering

Hicxc(2)
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Polyphase Analysis Matrix usng.r;:,&%%

Engineering

» With the K-fold polyphase decomposition of the analysis filt€

K
Hi(z) = Z Hk,n(ZK)z_n+1
n=1

(5)

] T { K=4
?iiD9TY ]Tge*lﬁn
» the polyphase analysis matrix is a polynomial matrix:
Hyi(2) Hia(2) ... Hig(2)
e H2,:1(Z) Hg,:g(z) - HZ,:{(Z) o
HK,.l(Z) HK,IQ(Z) HK;K(Z)
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Synthesis Filter Bank

» Critically decimated K-channel synthesis filter bank:

AR ——{ G1(2)
AR—— Ga(2) |—=

4K) G ()

> equivalent polyphase representation:

A

—

&
Universityof x

Strathclyde

Engineering

/74
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Polyphase Synthesis Matrix ”s“{",;‘i'ﬁ'c

Engineering

» Analoguous to analysis filter bank, the synthesis filters G (z) can
be split into K polyphase components, creating a polyphse
synthesis matrix

Gi11(2) Giglz) ... Gik(2)
Q) = Ggl(z) GQ’?(Z) GQJ:{(Z) ™)
Gri(z) Gral?) ... Crx(2)
» operating analysis and synthesis back-to-back, perfect
reconstruction is achieved if
G(z)H(z) =1; (8)

> i.e. for perfect reconstruction, the polyphase analysis matrix must
be invertible: G(z) = H™(2).
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Space-Time Covariance Matrix ”s";‘;;‘;'.;'c

Engineering

» Measurements obtained from M sensors are collected in a
vector x[n] € CM:

xT[

n| = [x1[n] z2[n] ... zym[n]] ; (9)

» with the expectation operator £{-}, the spatial correlation is
captured by R = &{x[n|x"[n]};

» for spatial and temporal correlation, we require a space-time
covariance matrix

R[] = E{X[n]xH[n — 7']} (10)

> this space-time covariance matrix contains auto- and
cross-correlation terms, e.g. for M = 2

B e | A C T
RI=1 e fanlnlagin - sy | (Y

10/74
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Cross-Spectral Density Matrix

» example for a space-time covariance matrix R[] € R?*2:

Ve 9 I ? e i 9 T

7'1111 [T}
Ty, (1]

Ty, (1]
o
o
—e
Q
Tayay (1]
o
o o
4
— o
—o

lag 7 lag 7

» the cross-spectral density (CSD) matrix
R(z) o—e R|[7]

is a polynomial matrix.

Universityof
Strathclyde

Engineering

(12)

11/74
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Parahermitian Operator ”s"{"rS‘E'ﬁ'c

Engineering

> A parahermitian operation is indicated by {N} and compared
the Hermitian (= complex conjugate transpose) of a matrix
additionally performs a time-reversal;

> example:
1 1
o T ) ) R PR | e o
05 & s 05 1
A(Z) — 0 1 2 3 4 0 1 2 3 4
1 1
0 | o os e ¥
-0.5 $ ® -0.5 & 6
0 1 2 3 4 0 1 2 3 4
> parahermitian A(z) = AP (z71):
1 1
e ) T e o 1
- -05 L S -05 ® S
A( Z) — 4 3 2 1 0 4 3 2 1 0
1 1
P P . 0 P e f
-0.5 l -0.5 ® &
-4 -3 -2 -1 0 -4 -3 -2 -1 0

12 /74
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Parahermitian Property g;gg.;’c
> A polynomial matrix A(z) is parahermitian if A(z) = A(z);
» this is an extension of the symmetric (if A € R) or or Hermitian
(if A € C) property to the polynomial case:
transposition, complex conjugation and time reversal (in any
order) do not alter a parahermitian A(z);
» any CSD matrix is parahermitian;
> example:
et toe ? T
, 3 !
R(z) = S st | =R(2)

13/74
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Ullwersitvof

Paraunitary Matrices Strathclyde

Engineering

» Recall that A € C (or A € R) is a unitary (or orthonormal)
matrix if AAH = AHA =T,

» in the polynomial case, A(z) is paraunitary if
A(2)A(z) = A(2)A(z) =1 (13)

» therefore, if A(z) is paraunitary, then the polynomial matrix

inverse is simple: }
A7l (z) = A(2) (14)

» example: polyphase analysis or synthesis matrices of perfectly
reconstructing (or lossless) filter banks are usually paraunitary.

14 /74
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[f 2
Universityof x

Attempt of Gaussian Elimination Sirathlyde

Engineering

» System of polynomial equations:

O el Rg - Rg ] e

» modification of 2nd row:

Aq1(z Aja(z z B
A I A

Ann(2) 425 Ag(2) Xo(2)

» upper triangular form by subtracting 1st row from 2nd:

A (2) A1a(2) Xi1(2) | [ Bi(2)
0 A11(z)A22(j)21—(f;‘)12(3)A21(z) ] ) [ X;(z) ] = [ B;(z) ]
(17)

> penalty: we end up with rational polynomials.

15/74
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[f 2
Universityof x

Polynomial Eigenvalue Decomposition
[McWhirter et al., IEEE TSP 2007]

» Polynomial EVD of the CSD matrix
R(z) = Q(2) A(z) Q(2) (18)

» with paraunitary Q(z), s.t. Q(2)Q(z) =1,
» diagonalised and spectrally majorised A(z):

i
20 2 ’
i
1ol 10
Kl o o 96 S o g i
10f q
w 40 “
2 % 2 <
EE 20 2 = 5 3
10 1 P 1ol g
ki g o 56 o o g i of 1
w 40 w0
2 % Y sk 1
2| 2

20

Strathclyde

Engineering

101011y / [aB)

o o1 02 03 04 05 06 07 08 09 1
normalised angular frequency 2

> approximationwin (18) can be close with an FIR Q(z) of
sufficiently high order [lcart & Comon 2012].

16 /74



Overview PART | Basics PEVD lIter. Toolbox PART Il MIMO AoA MVDR Material
PEVD Ambiguity g*,é‘d{'.:'c

Ineering
[Corr et al., EUSIPCO 2015]

» We believe diagonalised and spectral majorised A(z) is unique;
» but there is ambiguity w.r.t. the paraunitary matrix Q(z);
» set Q(z) = Q(2)I'(2), with a diagonal allpass I'(z

):
R(z) = Q(2)A(2)Q(2) = Q(2)T(2)A(=)T(2)
= Q(2)A(:)T(2)L(2)Q(2) = Q(2)A(2)

» example for Q(z) — note different orders:

(2)

Q
Qk) (19

06 06 08 06 06 06 06 08
0 0s 0t m;];\ 04 04 04 0
?le T it 97 lo P17
o
o 10 20 3 0 10 20 30 0 10 2 3 0 10 20 3 o 2 4 o 2 4 § o 2 4 & o 2 4 6
08 06 06 06 06 06 06 06
04 04 04 04 04 04 04 04
] 9 o] ®
020 20 20 A 20 o 2 48§ o 2 4% o 2 4§ o 2 a8
08| 06 08| 06 06 06 06 08|
04 04 04 04 04 04 04 04
02 02 02 02 02 02 T 02 T 02| T
vt olal®o FEERPY o719 027110
7 T oz 4 o 2 4 s o 2 4 6 o 2 4 6
R o203 02 w0 o203
0.6 06 0.6 06 06 06 06 08|
04 04 04 04 04 04 04 04
02| 02 02 02 02 T 02T 9 02 ° ? 02, %
Ple ? ?re 9
20 20 a0 2 0 20 a0 0z 4 s 0z 4 o 2 4 6 o 2 4 6
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lterative PEVD Algorithms ”s"{"rS‘E'ﬁ'c

Engineering

» Second order sequential best rotation (SBR2, McWhirter 208
> iterative approach based on an elementary paraunitary operation:

SO = R(z)

SV () = HV (8O HHD ()

» H® (z) is an elementary paraunitary operation, which at the ith
step eliminates the largest off-diagonal element in 8(2_1)(,2);
> stop after L iterations:

L
A)=8P(z)  , Q&) =]][H"()
i=1

» sequential matrix diagonalisation (SMD) and
» multiple-shift SMD (MS-SMD) will follow the same scheme ...

18/74
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&
Universityof x

Elementary Paraunitary Operation Sirathlyde

Engineering

v

An elementary paraunitary matrix [Vaidyanathan] is defined as
HO(2) =1 —vOyOH =150 y0).0 , v@e =1
» we utilise a different definition:
HY(z) = DY (2)QW
» DU (2) is a delay matrix:
DY (z) =diag{1 ... 12771 ... 1}

» Q@(z) is a Givens rotation.

19/74
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Sequential Best Rotation Algorithm (McWhirter) ”S"r,;;',;'c%%

Engineering

» At iteration ¢, consider S(i_l)(z) o—e S(=1) [7]

20/74
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Sequential Best Rotation Algorithm (McWhirter) [RSsries

Engineering

» DY(2)8-1 () DO (2)

20/74
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[f 2
Universityof x

Sequential Best Rotation Algorithm (McWhirter) [RSsries

Engineering

> D(i)(z) advances a row-slice of S(i_l)(z) by T’

20/ 74
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[f 2
Universityof x

Sequential Best Rotation Algorithm (McWhirter) [RSsries

Engineering

> the off-diagonal element at —7" has now been translated to
zero

20/ 74



Overview PART | Basics PEVD Iter. Toolbox PART Il MIMO AoA MVDR Material

Sequential Best Rotation Algorithm (McWhirter) [RSsries

Engineering

» D (z) delays a column-slice of ¢~ (z) by T

20/74
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Sequential Best Rotation Algorithm (McWhirter)

» the off-diagonal element at —7" has now been translated to #8
zero

20/74
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Sequential Best Rotation Algorithm (McWhirter) [RSsries

Engineering

> the step pY (z)S(i_l)(z)D(i) (2) has brought the largest
off-diagonal elements to lag 0.

20/74
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Sequential Best Rotation Algorithm (McWhirter) [RSsries

Engineering

» Jacobi step to eliminate largest off-diagonal elements by Q(®

20/74
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Sequential Best Rotation Algorithm (McWhirter) [RSsries

Engineering

> iteration ¢ is completed, having performed

SO (z) = QD (2)8¢ () DV (2)Q1) (2)

20/74
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SBR2 Outcome ”s"{"rS‘E'ﬁ'c

Engineering

> At the ith iteration, the zeroing of off-diagonal elements achieved
during previous steps may be partially undone;

» however, the algorithm has been shown to converge, transfering
energy onto the main diagonal at every step (McWhirter 2007);

» after L iterations, we reach an approximate diagonalisation
A(z) = S(2) = Q(2)R(2)Q(2)
with

HD(Z Q(z

» diagonalisation of the previous 3 x 3 polynomial matrix ...

21/74
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SBR2 Example — Diagonalisation

40 40 40
30 30 30
20 20 20
10 10 10
o ¢?|%e o o
-10 0 10 -10 0 10 -10 0 10
40 40 40
30 30 30
=20 20 20
10 10 10
o 0 VVWT%WWVW
-10 0 10 -10 0 10 -10 0 10
40 40 40
30 30 30
20 20 20
10 10 10
0 0 R AN AN N
-10 0 10 -10 0 10 -10 0 10
lat 7

22 /74
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Universityof

SBR2 Example — Spectral Majorisation Sirathclyde

Engineering

» The on-diagonal elements are spectrally majorised

20

o

g
T
@ =
!

o
T

101logy, |Ts| / [dB]
&)

I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

normalised angular frequency Q/(27)

23/74
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SBR2 — Givens Rotation ”s"{"rZ‘E'rfc

Engineering

» A Givens rotation eliminates the maximum off-diagonal ele
once brought onto the lag-zero matrix;

» note I: in the lag-zero matrix, one column and one row are
modified by the shift:

» note Il: a Givens rotation only affects two columns and two rows
in every matrix;

» Givens rotation is relatively low in computational cost!

24 /74
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SBR2 — Givens Rotation ”s"{"rZ‘E'rfc

Engineering

» A Givens rotation eliminates the maximum off-diagonal ele
once brought onto the lag-zero matrix;

» note I: in the lag-zero matrix, one column and one row are
modified by the shift:

» note Il: a Givens rotation only affects two columns and two rows
in every matrix;

» Givens rotation is relatively low in computational cost!

24 /74
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Ull'o‘erl"vﬂf

Sequential Matrix Diagonalisation (SMD) e
[Redif et al., IEEE Trans SP 2015] .
» Main idea — the zero-lag matrix is diagonalised in every step;
» initialisation: diagonalise R[0] by EVD and apply modal matrix to
all matrix coefficients —» S
» at the ith step as in SBR2, the maximum element (or column
with max. norm) is shifted to the lag-zero matrix:

> an EVD is used to re-diagonalise the zero-lag matrix;
» a full modal matrix is applied at all lags — more costly than
SBR2. 2574
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Unwerllhwf

Sequential Matrix Diagonalisation (SMD) e
[Redif et al., IEEE Trans SP 2015] .
» Main idea — the zero-lag matrix is diagonalised in every step;
» initialisation: diagonalise R[0] by EVD and apply modal matrix to
all matrix coefficients —» S
» at the ith step as in SBR2, the maximum element (or column
with max. norm) is shifted to the lag-zero matrix:

> an EVD is used to re-diagonalise the zero-lag matrix;
» a full modal matrix is applied at all lags — more costly than
SBR2. 2574
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Multiple Shift SMD (SMD) oA

Engineering

» SMD converges faster than SBR2 — more energy is
transfered per iteration step;

» SMD is more expensive than SBR2 — full matrix multiplication at
every lag;

» this cost will not increase further if more columns / rows are
shifted into the lag-zero matrix at every iteration

» MS-SMD will transfer yet more off-diagonal energy per iteration;
» because the total energy must remain constant under paraunitary
operations, SBR2, SMD and MS-SMD can be proven to converge. /4
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Multiple Shift SMD (SMD) oA

Engineering

» SMD converges faster than SBR2 — more energy is
transfered per iteration step;

» SMD is more expensive than SBR2 — full matrix multiplication at
every lag;

» this cost will not increase further if more columns / rows are
shifted into the lag-zero matrix at every iteration

» MS-SMD will transfer yet more off-diagonal energy per iteration;
» because the total energy must remain constant under paraunitary
operations, SBR2, SMD and MS-SMD can be proven to converge. /4
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Multiple Shift SMD (SMD) oA

Engineering

» SMD converges faster than SBR2 — more energy is
transfered per iteration step;

» SMD is more expensive than SBR2 — full matrix multiplication at
every lag;

» this cost will not increase further if more columns / rows are
shifted into the lag-zero matrix at every iteration

» MS-SMD will transfer yet more off-diagonal energy per iteration;
» because the total energy must remain constant under paraunitary
operations, SBR2, SMD and MS-SMD can be proven to converge. /4
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Multiple Shift SMD (SMD) oA

Engineering

» SMD converges faster than SBR2 — more energy is
transfered per iteration step;

» SMD is more expensive than SBR2 — full matrix multiplication at
every lag;

» this cost will not increase further if more columns / rows are
shifted into the lag-zero matrix at every iteration

» MS-SMD will transfer yet more off-diagonal energy per iteration;
» because the total energy must remain constant under paraunitary
operations, SBR2, SMD and MS-SMD can be proven to converge. /4
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SBR2/SMD/MS-SMD Convergence Shrathelyde

Engineering

» Measuring the remaining normalised off-diagonal energy
over an ensemble of space-time covariance matrices:

0 T T
— —o— SBR2
2 8 —%—SMD
= 57 MS-SMD H

—6— C-MS-SMD
gﬁ — — -95% conf. intervals
= -10
<]
=
<]
= -151
=
&
& -20F
'-? ~
o
= a
o _o51 \\O\ oo ,z\\@\ Nl
= < ~o_ L~ H
) ~ T hs
kot SN S~
= -80r ~ol E
= -351 o 4
-40 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

iteration index

27/ 74
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SBR2/SMD/MS-SMD Application Cost 1 A

Engineering

» Ensemble average of remaining off-diagonal energy vs. orde
of paraunitary filter banks to decompose 4x4x16 matrices:

0 T
. —— SBR2
m —#— SMD
% MS-SMD
N -5r : : —6— C-MS-SMD ]
80
-
&
T 1ot .
=
=}
&
s -15F 1
<
o
o]
o —20f .
[
= =
g é’g
Sl = 1
S| ?..3
“e
_30 I I I e
0 5 10 15 20 25

paraunitary filter bank order

28/74
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SBR2/SMD/MS-SMD Application Cost 2 ”s"?,;'{'.:'ci‘%

Engineering

» Ensemble average of remaining off-diagonal energy vs. orde
of paraunitary filter banks to decompose 8x8x64 matrices:

0

510810 M{ B} /[dB]

= = =SMDv2

= SMD

_30L= T T ! ! ! ! ! ! ! !
10 15 20 25 30 35 40 45 50 55 60

paraunitary filter bank order

29 /74
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MATLAB Polynomial EVD Toolbox

> The MATLAB polynomial EVD toolbox can be downloaded
pevd-toolbox.eee.strath.ac.uk

olynomial EVD To

& [ pevd-toolbox.eee.strath.ac.uk =
PEVD Toolbox Index Polynomial EVD Toolbox
Overview This toolbox contains a number of Matlab implementations of iterative algorithms to approximate the polynomial
(EVD) of a matrix. Parahermitian matrices arise e.g. when formulating
» About this toolbox covariance matrices for broadband array signals, and the term parahermitian hints as an extension of the
» PEVD and iterative algorithms || (narrowband) Hermitian property to an generalised symmetry property of the polynomial matrix case.
+ Licence
« Download The toolbox files are organised in four subdirectories:
« Acknowledgements .
« Feedback and contact + "General" contains a number of utility functions to generate, manipulate and display polynomial matrices;
« "Decompositions” contains the two decomposition algorithms, SBR2 and SMD; these algorithms continue to
Directories evolve with various options, and are provided within this toolbox as p-code, i.e. are executable but cannot be
viewed;

4. Decompositions "Demos" provides a number of examples of how to apply the PEVD algorithms to a number of applications;

4 Demos » "Docs" contains an auto-generated html documentation of the tool box. This manual can be navigated using
4 General the lower menuin the left sidebar.
To find out more about the PEVD, the contained algorithms, the toolbox license and related issues, please follow
Generated by m2html © 2005 the links provided on the left.

We hope that you find this toolbox useful, and we look forward to any comments or feedback.

Stephan Weiss, Jamie Corr and Keith Thompson (University of Strathclyde, Glasgow, Scotland)
John G. McWhirter (Cardiff University, Wales)
lan K. Proudler (Loughborough University, England)

> the toolbox contains a number of iterative algorithms to calculate

an approximate PEVD, related functions, and demos. 20 /74
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Narrowband MIMO Communications Stratheiyde

Engineering

> a narrowband channel is characterised by a matrix C containing
complex gain factors;

» problem: how to select the precoder and equaliser?

» overall system;

31/74
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Narrowband MIMO Communications ”5";‘;;‘;'.:;

Engineering

» a narrowband channel is characterised by a matrix C contai
complex gain factors;
» problem: how to select the precoder and equaliser?

» the singular value decomposition (SVD) factorises C into two
unitary matrices U and V and a diagonal matrix 3;

31/74
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Narrowband MIMO Communications ”s"r,;‘;',:'c

Engineering

» a narrowband channel is characterised by a matrix C contai
complex gain factors;
» problem: how to select the precoder and equaliser?

» we select the precoder and the equaliser from the unitary matrices
provided by the channel’'s SVD;

> the overall system is diagonalised, decoupling the channel into
independent single-input single-output systems by means of
unitary matrices. 31/74
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Broadband MIMO Channel ”s“?,;‘{'ﬁ'cﬁ?e

Engineering

» The channel is now a matrix of FIR filters; example for a 3 X 4
MIMO system C|n]:

(il 1@@?;T@;?T

0 0

o 1 2 3 o 1 2 3 0o 1 2 3 0o 1 2 3
e 2 2 2 2
)
<o 1 1TT1T
S
Q
SR O N A ¢ 1 I
o 1 2 3 o 1 2 3 o 1 2 3 0o 1 2 3
2 2 2 2

oo JUTTdh 10,

0 1 2 3 0 1 3 0 1 2 3 0

N
w

discrete time index n

» the transfer function C(z) e—o C|n] is a polynomial matrix;

» an SVD can only diagonalise C[n] for one particular lag n.
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Standard Broadband MIMO Approaches ”s"{‘;;‘{i:'c

Engineering

» OFDM (if approximate channel length is known):
1. divide spectrum into narrowband channels;
2. address each narrowband channel independently using
narrowband-optimal techniques;
drawback: ignores spectral coherence across frequency bins;
» optimum filter bank transceiver (if channel itself is known):
1. block processing;
2. inter-block interference is eliminated by guard intervals;
3. resulting matrix can be diagonalised by SVD;
» both techniques invest DOFs into the guard intervals, which are
generally not balanced against other error sources.
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Ullwersitvof

Polynomial Singular Value Decompositions Stratheiyde

Engineering

> lterative algorithms have been developed to determine a
polynomial eigenvalue decomposition (EVD) for a parahermitian
matrix R(z) = R(z) = RY(z71):

R(z) ~ H(2)I'(2)H(z)

» paraunitary H(z)H (z) = I, diagonal and spectrally majorised

I'(z);
» polynomial SVD of channel C(z) can be obtained via two EVDs:
C(2)C(2) =U()ZH(2)2 (2)U(2)
C(2)C(2) = V()2 (2)=T(2)V (2)
finally:
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MIMO Application Example ”s"?,;‘{'ﬁ'cﬁ?,

Engineering

» Polynomial SVD of the previous C(z) € C3** channel matr

4 4 4 4
2 i 2 2 2
o 00?9 o o o
0 5 10 0 5 10 0 5 10 0 5 10
= 4 4 4 4
Y
2 2 2 2
e
L, . i RS ,
0 5 10 0o 5 10 0o 5 10 0 5 10
4 4 4 4
2 2 2 2
o o o 2Pea®o0sd
0 5 10 0 5 10 0 5 10 0 5 10

discrete time index n

» the singular value spectra are maiorised:

@ 1ol \/—-
> =
2 2% ]
o X5 (™)
-10 T T 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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Unwersitvof@

Narrowband Source Model Strathclyde

Engineering

» Scenario with sensor array and far-field sources:

] ® >>> O—— z1[n]
O—— x3[n]
O—— x3[n]

O—— xn(n]
» for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector

» data model:
x[n] =
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Engineering

» Scenario with sensor array and far-field sources:
/

S e aln)

» for the narrowband case, the source signals arrive with delays,
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O—— zun]
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Narrowband Source Model Strathclyde

Engineering

> Scenario with sensor array and far-field sources:

s1[n] .>> DR ol

\ \ \ \
\ \
L ]
\ \ \
\ \
N SEMARN
\ \

Voot

\
SQ[n] ® )) \\ \\ \ \\
\ VL \
» for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector si, so

» data model:
x[n] = s1[n] - s1 + s1[n] - s2
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Engineering

» Scenario with sensor array and far-field sources:

81[n] ® >>> O——— $1[nj
O——— x3n
saln] .)>> o o

san] @ )>>
O—— zun]

» for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector si, so
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Narrowband Source Model Strathclyde

Engineering

» Scenario with sensor array and far-field sources:

5] >>> L O—— @[N]

O

» for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector si, so, ...Sg;
» data model:

R
x[n] = s1[n] - s1 + s1[n] -s2 + -+ + sg[n]-sp = Zsr[n] - Sy
r=1
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Steering Vector Strathclyde

Engineering

» A signal s[n| arriving at the array can be characterised by
the delays of its wavefront (neglecting attenuation):

xo[n] s[n — 7o g[n — 79
w1.[n] _ s[n — 1] _ [n — 1] csln] o—e 219(2)S(2)
Tar—1[n] s[n — Tar—1] d[n — Tar—1]

> if evaluated at a narrowband normalised angular frequency €2;, the
time delays 7,,, in the broadband steering vector ay(z) collapse to
phase shifts in the narrowband steering vector ay g,
e~ I8
e_jTlQi
ay,0, = ay(2)|,—cin; =
eI —18
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Data and Covariance Matrices ”s"{"rS‘E'rfc

Engineering

» A data matrix X € CM*L can be formed from L measurem&
X=[x[n] xn+1] ... xn+L-1] ]

» assuming that all x,,[n], m = 1,2,... M are zero mean, the
(instantaneous) data covariance matrix is

R = &{x[n]x"[n]} ~ %XXH

where the approximation assumes ergodicity and a sufficiently
large L;

» Problem: can we tell from X or R (i) the number of sources and
(i) their orgin / time series?

» w.r.t. Jonathon Chamber’s introduction, we here only consider the
underdetermined case of more sensors than sources, M > K, and
generally L > M.
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SVD of Data Matrix

» Singular value decomposition of X:

X = U > VH

» unitary matrices U = [uj...uy] and V = [vy...vL];
» diagonal X contains the real, positive semidefinite singular values
of X in descending order:

or 0 0 0 0
5 — 0 g9
0
0 0 om O 0

with o9 > 09 > --- > oy > 0.

39/74



Overview PART | Basics PEVD lIter. Toolbox PART Il MIMO AoA MVDR Material

Singular Values e

Strathclyde

Engineering

> If the array is illuminated by R < M linearly independent so#
the rank of
the data matrix is
rank{X} = R
» only the first R singular values of X will be non-zero;
» in practice, noise often will ensure that rank{X} = M, with

M — R trailing singular values that define the noise floor:
1 T

0.8 i
0.6 i
S
0.4r- b

0.2 T

0 ) Q @ o o
1 2 3 4 5 6 7 8 9 10
ordered index m

> therefore, by thresholding singular values, it is possible to estimate
the number of linearly independent sources R.
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[f 2
Universityof x

Subspace Decomposition St yde
Engineering
» If rank{X} = R, the SVD can be split:

cwul 3 2[4

0o X

» with U, € CM*R and VI € CR*L corresponding to the R
largest singular values;

» U, and V! define the signal-plus-noise subspace of X:

X = E amumv g amumv

» the complements U,, and V,I;I,
U?Un — 0 ) VS‘V?I’_LI =

define the noise-only subspace of X.
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SVD via Two EVDs ”s"{"rS’E'ri'c

Engineering

» Any Hermitian matrix A = A™ allows an eigenvalue
decomposition
A = QAQ"
with Q unitary and the eigenvalues in A real valued and positive
semi-definite;
» postulating X = UXVH | therefore:

xxt = (uzvi)veiul) =uaut (20)
xix = (viut)(uzvl) =vavl (21)

» (ordered) eigenvalues relate to the singular values: \,, = 02 ;
» the covariance matrix R = %XX has the same rank as the data
matrix X, and with U provides access to the same spatial

subspace decomposition.
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Ullwersltvof

Narrowband MUSIC Algorithm Sirathclyde

Engineering

» EVD of the narrowband covariance matrix identifies
signal-plus-noise and noise-only subspaces
As 0 ] [ Ul ]
0 A, || UH
» scanning the signal-plus-noise subspace could only help to retrieve
sources with orthogonal steering vectors;
» therefore, the multiple signal classification (MUSIC) algorithm
scans the noise-only subspace for minima, or maxima of its
reciprocal

R-[U. U|

1

Smusic(¥) = ——5
D) = Crava?

Swusic(9) /[dB]
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Narrowband Source Separation ”s“{",;‘i'ﬁ'c

Engineering

» Via SVD of the data matrix X or EVD of the covariance matrix
R, we can determine the number of linearly independent sources
R;

» using the subspace decompositions offered by EVD/SVD, the
directions of arrival can be estimated using e.g. MUSIC;

> based on knowledge of the angle of arrival, beamforming could be
applied to X to extract specific sources;

» overall: EVD (and SVD) can play a vital part in narrowband
source separation;

» what about broadband source separation?

44 /74



Overview PART | Basics PEVD lIter. Toolbox PART Il MIMO AoA MVDR Material

Broadband Array Scenario Strathclyde

Engineering
\}D—» xo[n]
// // /(/

’

s1[n] /

O— x1[n]

7

/' /,D—' .Z‘Mfl[n]

» Compared to the narrowband case, time delays rather than phase
shifts bear information on the direction of a source.
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Broadband Steering Vector Strathclyde

Engineering

» A signal s[n| arriving at the array can be characterised by
the delays of its wavefront (neglecting attenuation):

xo[n] s[n — 7o g[n — 79
w1.[n] _ s[n — 1] _ [n — 1] csln] o—e 219(2)S(2)
Tar—1[n] s[n — Tar—1] d[n — Tar—1]

> if evaluated at a narrowband normalised angular frequency €2;, the
time delays 7,,, in the broadband steering vector ay(z) collapse to
phase shifts in the narrowband steering vector ay g,
e~ I8
e_jTlQi
ay,0, = ay(2)|,—cin; =
eI —18
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Space-Time Covariance Matrix St yde

Engineering

» If delays must be considered, the (space-time) covariance
matrix must capture the lag 7:

R[7] = S{X[n] . xH[n — 7']}

» R|[7] contains auto- and cross-correlation sequences:

20 20 20
15 15 15
10 10 10
N i : T T N
0 0 0
-2 0 2 -2 0 2 -2 0 2
20 20 20
15 15 15

x

=10 10 10
[T A b
0 0 0 ? ?
-2 0 2 -2 0 2 -2 0 2
20 20 20
15 15 15

10 10 10
e T T d td .

Sl 7 ° °

-2 0 2 -2 0 2 -2 0 2

lat 7 47 /74
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[f 2
Universityof x

Cross Spectral Density Matrix Sirathclyde

Engineering

» z-transform of the space-time covariance matrix is given by

R[r] = E{x,x,_,} o—e R(2)= Z Si(2)ay, (2)ag, (2)+oi1
1

with 19; the direction of arrival and Sj(z) the PSD of the ith
source;

» R(z) is the cross spectral density (CSD) matrix;

» the instantaneous covariance matrix (no lag parameter 7)

R = &{x,x; } = R[0]
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Polynomial MUSIC (PMUSIC) _—

Strathclyde

Engineering

[Alrmah, Weiss, Lambotharan, EUSIPCO (2011)]

» Based on the polynomial EVD of the broadband covariance matrix

R(2) %w[ As(gZ) A,?(z) ] [ 828 ]
Q(z)

A(z)

> paraunitary Q(2), s.t. Q(2)Q(z) =T;

» diagonalised and spectrally majorised A(z):

E 30| 20
20

|
838 3
Ologg 1| / (8]
E LT
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PMUSIC cont'd ”s"{"rg‘i'ﬁ'c%?*e

Engineering

» Idea — scan the polynomial noise-only subspace @, (z) with
broadband steering vectors

[(z,9) = a9(2)Qn(2)Qn(2)ag(2)
» looking for minima leads to a spatio-spectral PMUSIC
Spss—music (9, Q) = (I(z,9)],—e0) "

» and a spatial-only PMUSIC

Sps wusic () = <27r 7{ T(z,0)],_u0 dQ) o =[]

with Ty[7] o—e I'(2,9).
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Simulation | — Toy Problem ”s"?,;‘{'ﬁ'c%%

Engineering

» Linear uniform array with critical spatial and temporal samp

» broadband steering vector for end-fire position:
ar2(2) = [1 PR z_MH]T
> covariance matrix
1 2! 7M1
- z1 1
R(Z) = a7r/2(z)a7r/2(z) =
z_MH 1
» PEVD (by inspection)
Q(z) = Tpprdiag{1 27t ... z_M+1} ; A(z) =diag{10 --- 0

v

simulations with M =4 ...
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Simulation | — PSS-MUSIC ”s"?’;ﬁ?ﬁ'cﬁ%

Engineering

Spss (9, €?)/[dB]

Saisr (0, €7) /[dB]
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[f 2
Universityof x

Simulation Il Strathclyde
. . S
» M = 8 element sensor array illuminated by three sources;
» source 1: ¥; = —30°, active over range () € [3—”; |;
» source 2: Y9 = 20°, active over range ) € [3; 7;
> source 3: 3 = 40°, active over range Q) € [F; IZ]; and

0 s

NIE

-90 -60 -30 0 20 40 60 90

/(]

» filter banks as innovation filters, and broadband steering vectors
to simulate AoA;

> space-time covariance matrix is estimated from 10* samples. s
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Simulation Il — PSS-MUSIC

Spss (9, €?)/[dB]

Sar(d,€’)/[dB]

()

40 LT |
20 AL ! “1‘1‘1‘ mm mﬁ«llh'“‘;;i,\i""'

; mm»wmmmmuumm

-80

19/0
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PS-MUSIC Comparison

» Simulation | (toy problem): peaks normalised to

Toolbox PART Il

MIMO AoA MVDR Material

Universityof x

Strathclyde

Engineering

unity:

1

0.8

T T
— — — AF-MUSIC (9 = 7/2)
—— AF-MUSIC (integrated)
—— PS-MUSIC (SBR2)

0.6

0.4

0.2r-

normalised spectrum

0

— — — PS-MUSIC (ideal)

90
d/o

92 93

» Simulation II: inaccuracies on PEVD and broadband steering

vector

normalised spectrum / [dB]
&
o

sources
— — — AF-MUSIC
PS-MUSIC

20

40
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AoA Estimation — Conclusions ”s";‘;;‘;',:'c

» We have considered the importance of SVD and EVD for -
narrowband source separation;

» narrowband matrix decomposition real the matrix rank and offer
subspace decompositions on which angle-of-arrival estimation
alhorithms such as MUSIC can be based;

» broadband problems lead to a space-time covariance or CSD
matrix;

» such polynomial matrices cannot be decomposed by standard

EVD and SVD;

» a polynomial EVD has been defined;

iterative algorithms such as SBR2 can be used to approximate the
PEVD;

this permits a number of applications, such as broadband angle of
arrival estimation;

broadband beamforming could then be used to separate

broadband sources.
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[f 2
Universityof x

Narrowband Minimum Variance Distortionless e
Engineering
Response Beamformer

» Scenario: an array of M sensors receives data x[n], containing a
desired signal with frequency )5 and angle of arrival ¥, corrupted
by interferers;

» a narrowband beamformer applies a single coefficient to every of
the M sensor signals:

x1[n] -
) [TL] O—W e[n]
zp[n] L
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Narrowband MVDR Problem s

Strathclyde

Engineering

» Recall the space-time covariance matrix:
Rlr] = E{X[n]xH[n —7]}

» the MVDR beamformer minimises the output power of the
beamformer:

n£n5{|e[n]|2} = m“i,n wiR[0]w (22)
st al(¥, Q)w =1, (23)

> this is subject to protecting the signal of interest by a constraint
in look direction ¥;

> the steering vector ay_ o, defines the signal of interest’s
parameters.

58 /74



Overview PART | Basics PEVD lIter. Toolbox PART Il MIMO AoA MVDR Material

Broadband MVDR Beamformer Strathclyde

Engineering

» Each sensor is followed by a tap delay line of dimension L, giving
a total of ML coefficients in a vector v.€ CML
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Broadband MVDR Beamformer ”s";‘;;‘;'.;'c
Engineering
» A larger input vector x,, € CML is generated, also including lags;
> the general approach is similar to the narrowband system,
minimising the power of e[n] = vlix,;
» however, we require several constraint equations to protect the
signal of interest, e.g.
C = [s(¥s,Q0), s(Vs, 1) ... s(¥s,021-1)] (24)
» these L constraints pin down the response to unit gain at L
separate points in frequency:
Ccllv=1; (25)
» generally C € CMEXL byt simplifications can be applied if the

look direction is towards broadside.
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Generalised Sidelobe Canceller Uénfiﬁfc
» A quiescent beamformer v, = (CH)T 1 € CML picks the

signal of interest;

» the quiescent beamformer is optimal for AWGN but generally
passes structured interference;

» the output of the blocking matrix B contains interference only,
which requires [BC] to be unitary; hence B € CMLx(M-1)L.

(M—1)L

» an adaptive noise canceller v, € C aims to remove the

residual interference:

ol (2) dfn]

X1 o - /4
e L S
- (

» note: all dimensions are determined by {M, L}.
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Polynomial Matrix MVDR Formulation Strathclyde

» Power spectral density of beamformer output:

Re(z) = w(z) R(z)w(z)
» proposed broadband MVDR beamformer formulation:

m(h% Re(z)% (26)
w(z \z\:l z
st. a(Vs, 2)w(z) = F(z) . (27)

» precision of broadband steering vector, |a(Vs, 2)a(Vs, z) — 1|,
depends on the length T of the fractional delay filter:

—T=50

~10H = = = T=100

20log, o | (e?)]

0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.05 0.1 0.15
normalised angular frequency Q/(27)
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Generalised Sidelobe Canceller )

Strathclyde

Engineering

> Instead of performing constrained optimisation, the GSC projects
the data and performs adaptive noise cancellation:

() "
x[n] — #
B(z) P, (o) P eln]
(/

> the quiescent vector wq(2) is generated from the constraints and
passes signal plus interference;

» the blocking matrix B(z) has to be orthonormal to w(z) and
only pass interference.
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Ullwersltvof

Design Considerations Strathclyde

Engineering

» The blocking matrix can be obtained by completing a parau
matrix from wg(2);
» this can be achieved by calculating a PEVD of the rank one

matrix wq(2)Wq(2);
> this leads to a block matrix of order N that is typically greater

than L;
» maximum leakage of the signal of interest through the blocking
matrix:
-25 T T T T
truncation le-4, N = 164
_30H = = =truncation le-3, NV = 140 i

20log; |E2(€j9)|

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

normalised ancular frequency Q/(27) 64 /74
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Computational Cost ”s"{"rZ‘E'rfc

Engineering

» With M sensors and a TDL length of L, the complexity of a
standard beamformer is dominated by the blocking matrix;

> in the proposed design, w, € CM~1 has degree L;
> the quiescent vector wq(2) € CM has degree T
> the blocking matrix B(z) € CM=DXM has degree N;

» cost comparison in multiply-accumulates (MACs):

GSC cost
component polynomial ‘ standard
quiescent beamformer MT ML
blocking matrix M(M-1)N | M(M-1)L?
adaptive filter (NLMS) | 2(M-1)L 2(M-1)L
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Example s

Strathclyde

Engineering

» We assume a signal of interest from 9 = 30°;
» three interferers with angles 9J; € {—40°, —10°,80°} active over
the frequency range Q = 27 - [0.1; 0.45] at signal to interference
ratio of -40 dB;
T ™

Q

0 —
—-90° —40° —10° 0° 30° 80° 90°
» M = 8 element linear uniform array is also corrupted by spatially
and temporally white additive Gaussian noise at 20 dB SNR;
> parameters: L = 175, T'= 50, and N = 140;
» cost per iteration: 10.7 kMACs (proposed) versus 1.72 MMACs
(standard).
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Quiescent Beamformer ”s"{”rg‘i'ﬁ'cé?e

Engineering

> Directivity pattern of quiescent standard broadband beamformer:

-30 —

201log |A(79»6j9)| / [dB]
T

-40 —|

-50 —

40
20 0 20 .40 50 5

angle of arrival ¥ /[°]
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Quiescent Beamformer e

Engineering

> Directivity pattern of quiescent proposed broadband beamformer:

201log |A(79»6j9)| / [dB]
T

40
20 0 20 .0 0 N

angle of arrival ¥ /[°]
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M niversi ¥‘
Adaptation ”s{“m:'.:'cﬁ?e

Engineering

» Convergence curves of the two broadband beamformers, showing

the residual mean squared error (i.e. beamformer output minus
signal of interest):

E T T T T
S 0 Wit standard broadband GSC [
S~ v .

= polynomial GSC
(0]

o Sr

[0

—

g -1of

c

3

£ -151

discrete time index n
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Universityof

Adapted Beamformer Strathclyde

> Directivity pattern of adapted proposed broadband beamformer:

201log |A(79»6j9)| / [dB]

Engineering

angle of arrival ¥ /[°]
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Universityof

Adapted Beamformer Strathclyde

> Directivity pattern of adapted standard broadband beamformer:

201log |A(79»6j9)| / [dB]

Engineering

angle of arrival ¥ /[°]
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Gain in Look Direction ”s"{"réi‘{'ﬁ'c

Engineering

» Gain in look direction ¥g = 30° before and after adaptation:

normalised angular frequency €/(2)

» due to signal leakage, the standard broadband beamformer after
adaptation only maintains the point constraints but deviates
elsewhere.

N 2 LU I B B B B B ™
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Broadband Beamforming Conclusions Stratheiyde

Engineering

» Based on the previous AoA estimation, beamforming can help to
extract source signals and thus perform “source separation”;

» broadband beamformers usually assume pre-steering such that the
signal of interest lies at broadside;

> this is not always given, and difficult for arbitary array geometries;

> the proposed beamformer using a polynomial matrix formulation
can implement abitrary constraints;

» the performance for such constraints is better in terms of the
accuracy of the directivity pattern;

» because the proposed design decouples the complexities of the
coefficient vector, the quiescent vector and block matrix, and the
adaptive process, the cost is significantly lower than for a
standard broadband adaptive beamformer.
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Additional Material ”s"{"rZ‘E'rfc

Engineering

> Key papers:

1 J.G. McWhirter, P.D. Baxter, T. Cooper, S. Redif, and J. Foster:
“An EVD Algorithm for Para-Hermitian Polynomial Matrices,”
IEEE Trans SP, 55(5): 2158-2169, May 2007.

2 S. Redif, J.G. McWhirter, and S. Weiss: “Design of FIR
Paraunitary Filter Banks for Subband Coding Using a Polynomial
Eigenvalue Decomposition,” IEEE Trans SP, 59(11): 5253-5264,
Nov. 2011.

3 S. Redif, S. Weiss, and J.G. McWhirter: “Sequential matrix
diagonalisation algorithms for polynomial EVD of parahermitian
matrices,” |IEEE Trans SP, 63(1): 81-89, Jan. 2015.

> If interested in the discussed methods and algorithms, please
download the free Matlab PEVD toolbox from
pevd-toolbox.eee.strath.ac.uk
» for questions, please feel free to ask:

e Stephan Weiss (stephan.weiss@strath.ac.uk) or

e Jamie Corr (jamie.corr@strath.ac.uk)

e Fraser Coutts (fraser.coutts@strath.ac.uk)
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