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An Inspiring Paradigm…
This presentation largely follows the notation and development originally presented in 

the seminal J. Ward's technical report on STAP:

[0] J. Ward, “Space-Time Adaptive Processing for Airborne Radar”, Technical Report 

1015, Lincoln Laboratory, MIT, Dec. 1994.

All MatLab files used for this lecture may be downloaded from:

http://www.mathworks.com/matlabcentral/fileexchange/47750-space-time-adaptive-processing-

for-airborne-radar-by-j-ward--tech-report-1015-

Please do not forget to provide your rating and/or comments/feedback about this coding effort.

http://www.mathworks.com/matlabcentral/fileexchange/47750-space-time-adaptive-processing-for-airborne-radar-by-j-ward--tech-report-1015-
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Space-Time Adaptive Processing (STAP)
What it really is?

Figure adopted from [1]



STAP Fundamentals – General Architecture 

 A STAP processor is defined as a linear filter that combines all the samples from

the range gate of interest to produce a scalar output.

 Alternatively, it utilizes the spatial samples from the array antenna elements and

the temporal samples provided by the successive pulses of a multiple-pulse

waveform.

 It is represented by an MN-dimensional complex weight vector w:

𝑧 = 𝐰𝐻𝛘

is the scalar processor output.



STAP Fundamentals – General Architecture 



STAP Fundamentals – General Architecture 



 The weight vector must be determined in a data-adaptive way from radar returns.

 The goal of the training strategy is to obtain the best estimate of the interference that 

exists at the range gate under test. Data from several range gates near the gate of 

interest are used. 

 The training set must be updated in accordance with the non-stationarity of interference.

STAP Fundamentals – General Architecture 

Figure Adopted from [6]



Clutter Suppression by STAP 

Region I: The Mainlobe Doppler Region.

The detection scenario often assumes that the target is in the mainlobe direction,
but has a different Doppler frequency from the mainlobe clutter. Therefore, the
detection in this Doppler region is either not considered, or alternatively the target
signal has to be so strong to exceed the mainlobe clutter so that it can be
detected. [7]



Clutter Suppression by STAP
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Target signals in this region only encounter competition with thermal noise. The

detection is relatively easy, and a standard windowed discrete Fourier transform

(DFT) processing is generally sufficient. [7]



Clutter Suppression by STAP

Region III: The Sidelobe Clutter Region

All detection algorithms for airborne radars focus at this region to improve the subclutter

visibility (SCV). Algorithms such as STAP are able to fully suppress the clutter in this region if

all conditions STAP requires are met, and hence detect target signals embedded in the

clutter. As shown in the figure, a target embedded in clutter that would not be detectable

without clutter suppression, becomes detectable once the clutter is suppressed. [7]



Why STAP “Works as Advertised”

 The detection subspace and the clutter subspace

are well separated on the azimuth-Doppler plane,

and the overlay only happens at the point where

the target has the same Doppler as the mainlobe

clutter (the detection direction). [7]

 Therefore, if we can design a processor that

suppresses clutter at a specific spatial frequency,

then targets having the same Doppler frequency

and different spatial frequency will no longer be

masked by the clutter and become detectable. [7]



STAP Fundamentals – Critical Issues [7]

I) Demands a significant number of training samples to estimate the interference

+ noise covariance matrix in a real environment (non-stationary).

II) STAP requires the inverse of the covariance matrix for construction of the

optimal weights. The number of operational counts for matrix inversion is in an

order of the cube of the dimension of the matrix. Current airborne radars

collect a CPI dwell in a fraction of a second, which means that the real-

time radar has to process the data at the same rate. The current

computer is generally not capable for such a fast response.

III) The sample data is supposed to be target-free. Without prior knowledge, it is

difficult in real-time to satisfy this criterion. If sample data is contaminated, the

performance of STAP degrades significantly.



 Classic, Fully Adaptive STAP

 Reduced Dimension (or Partially Adaptive) STAP

 Rank-Reduced STAP

 Principle Component Method

 Multistage Wiener Filter (MWF)

 Parametric Adaptive Matched Filter (PAMF)

 Adaptive Displaced Center Antenna (ADPCA)

 Knowledge-Aided STAP (KA-STAP) (rather an architecture than an algorithm)

 Pseudo-STAP Variants

 Pre-Built STAP

 Eigencanceller

 3D-STAP Data Processing

STAP Fundamentals – Algorithm Taxonomy [7]
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STAP Fundamentals – Algorithm Taxonomy [7]



Brennan and Reed [2] proved in a 1973 paper that the optimum space-time filter is:

𝐰 = 𝛾𝐑𝑢
−1𝐯𝑡

Where 𝐑𝑢 = 𝐸{𝛘𝑢𝛘𝑢
𝐻} is the interference-plus-noise covariance matrix.

STAP Fundamentals – Fully Adaptive STAP

Criterion Mathematical Formulation Constant Value

Maximum SINR
max
𝐰

𝐰𝐻𝐯 2

𝐰𝐻𝐑𝐰

𝛾 ≠ 0

Maximum PD

while maintaining

CFAR PFA

max
𝐰

𝑃𝐷 𝐰 subject to 𝑃𝐹𝐴 = 𝑐𝑜𝑛𝑠𝑡.
𝛾 =

1

(𝐯𝐻𝐑−1𝐯)1/2

Minimum output

power subject to

unit gain constraint

in look direction

min
𝐰

𝐰𝐻𝐑𝐰 subject to 𝐰𝐻𝐯 = 1
𝛾 =

1

𝐯𝐻𝐑−1𝐯



 Suboptimum fully adaptive STAP processor: 

𝐰 = 𝐑𝑢
−1𝐠𝑡

 𝐠𝑡 is not the target steering vector but a desired weight vector that includes 

tapering to obtain low sidelobes.

 𝐭𝑎 is an N×1 vector containing the desired low-sidelobe angle response.

 𝐭𝑏 is an M×1 vector containing the desired Doppler response.

 𝐭 = 𝐭𝑏⨂𝐭𝑎 is a separable space-time window sequence.

 The desired vector 𝐠𝑡 = 𝐭 ⨀𝐯𝒕 is not strictly optimum in any sense.

 This processor is termed as “Tapered Fully Adaptive”. 

STAP Fundamentals – Fully Adaptive STAP



 Fully Adaptive STAP requires the solution of an MN-dimensional linear system.

STAP Fundamentals – Fully Adaptive STAP

• Dimensionality of problem MN can be 

very large: 102 to 105.

• Interference Covariance Matrix is 

unknown a priori and therefore it must 

be estimated from data in real-time!

• Also target steering vector not known 

a-priori, therefore there is a very large 

search space of all possible azimuth 

angles and Doppler frequencies.



 The Adaptive Pattern is the two-dimensional frequency response of a STAP filter 

(processor) as a function of angle and Doppler frequency:

𝑃𝐰 𝜗,𝜛 = 𝐰𝐻𝐯 𝜗,𝜛 2 = 𝐯𝑡
𝐻(𝜗𝑡 , 𝜛𝑡)𝐑𝑢

−1𝐯 𝜗,𝜛
2

 By its definition the pattern is the squared modulus of a 2D-Inverse Fourier Transform 

of the weight vector.

 Ideally, it presents nulls in the directions of interference (clutter & jamming) and 

high gain at the presumed Doppler frequency and angle of the target.

STAP Fundamentals – Performance Metrics



STAP Fundamentals – Performance Metrics

Adapted Pattern for the Untapered, Fully Adaptive Case



STAP Fundamentals – Performance Metrics
Tapered Fully Adapted Pattern.

Application of a spatial 30-dB Chebyshev and a temporal 40-dB Chebyshev tapers.



 Divide the output signal into target and interference-plus-noise components:

𝑧 = 𝑧𝑡 + 𝑧𝑢 = 𝑎𝑡𝐰
𝐻𝐯𝑡 + 𝐰𝐻𝛘𝑢

 Signal-to-Interference-plus-Noise Ratio (SINR):  SINR =
𝑝𝑡

𝑝𝑢
=

𝜎2𝜉𝑡 𝐰
𝐻𝐯𝑡

2

𝐰𝐻𝐑𝑢𝐰

𝑝𝑡 = 𝐸{ 𝑧𝑡
2} is the output target power.

𝑝𝑢 = 𝐸{ 𝑧𝑢
2} is the output interference-plus-noise power.

 Substitution of the optimum weight vector 𝐰 = 𝐑𝑢
−1𝐯𝑡 leads to the optimum SINR:

SINR𝑜 = 𝜎2𝜉𝑡𝐯𝑡
𝐻𝐑𝑢

−1𝐯𝑡

 Substitution of the tapered fully adaptive processor 𝐰 = 𝐑𝑢
−1𝐠𝑡 produces a suboptimum SINR :   

SINR𝑠𝑢𝑏 =
𝜎2𝜉𝑡 𝐠𝑡

𝐻𝐑𝑢
−1𝐯𝑡

2

𝐠𝑡
𝐻𝐑𝑢

−1𝐠𝑡

STAP Fundamentals – Performance Metrics



 Since the target’s velocity is unknown a priori, the interest in SINR performance is a 

function of target’s Doppler frequency. 

 We hold the target’s angle fixed and vary the target’s Doppler frequency and compute 

a new adaptive weight vector for each Doppler frequency.

 Substitution of the optimum weight vector 𝐰(𝜛) = 𝐑𝑢
−1𝐯𝑡(𝜛) leads to the optimum SINR:

SINR𝑜(𝜛) = 𝜎2𝜉𝑡𝐯𝑡
𝐻(𝜛)𝐑𝑢

−1𝐯𝑡(𝜛)

 Substitution of the tapered fully adaptive processor 𝐰(𝜛) = 𝐑𝑢
−1𝐠𝑡(𝜛) produces a 

suboptimum SINR :             SINR𝑠𝑢𝑏(𝜛) =
𝜎2𝜉𝑡 𝐠𝑡

𝐻(𝜛)𝐑𝑢
−1𝐯𝑡(𝜛)

2

𝐠𝑡
𝐻(𝜛)𝐑𝑢

−1𝐠𝑡(𝜛)

STAP Fundamentals – Performance Metrics



STAP Fundamentals – Performance Metrics

SINR for the Optimum and Tapered Fully Adaptive STAP.

• The input SNR is taken to be 0 dB.

• In the presence of interference optimum fully 

adaptive provides near maximum gain on target 

while suppressing both clutter and jamming well 

below the thermal noise.

• When the target is near 0Hz  or 300Hz the SINR is 

very low because in those cases the target is 

close to the mainlobe clutter both in Doppler and 

angle. 

• Naturally performance degrades as the target 

falls into the response null that the processor 

places on mainlobe clutter.

• The tapered fully adaptive performance is 1.8 dB 

lower than the optimum.



 In a noise only environment the optimum processor is the space-time matched filter:

𝐰 = 𝐯𝑡

 The optimum output signal-to-noise ratio SNRo is: SNR𝑜 = 𝑀𝑁𝜉𝑡

 The SINR loss LSINR of a space-time processor is defined to be its performance 

compared to this matched filter SNR in an interference-free environment:

 It is useful because it incorporates many of the performance loss factors in a single 

quantity.

STAP Fundamentals – Performance Metrics

L𝑆𝐼𝑁𝑅(𝜛) =
𝑆𝐼𝑁𝑅(𝜛)

𝑆𝑁𝑅𝑜



 The SINR Improvement Factor (IFSINR) is defined as:

Where 𝑆𝐼𝑁𝑅𝑖𝑛 =
𝜉𝑡

1+𝜉𝑐+𝜉𝑗
is the SINR on a single element for a single pulse.

 𝑆𝐼𝑁𝑅𝑖𝑛 is usually a very small quantity.

 The IFSINR is typically large and increases as the interference becomes stronger.

 The IFSINR includes the amount of interference rejection and the coherent gain 

on target due to receive beamforming and Doppler filtering.

 When interference is strong and the STAP performs optimally the following holds:

IF𝑆𝐼𝑁𝑅 𝜛 = 𝑀𝑁 1 + 𝜉𝑐 + 𝜉𝑗 ≅ 𝑀𝑁 𝜉𝑐 + 𝜉𝑗

STAP Fundamentals – Performance Metrics

IF𝑆𝐼𝑁𝑅(𝜛) =
𝑆𝐼𝑁𝑅𝑜𝑢𝑡(𝜛)

𝑆𝐼𝑁𝑅𝑖𝑛



STAP Fundamentals – Performance Metrics

• Over the center of the Doppler space the 

optimum SINR achieves an IFSINR of 72.2 dB.

• The input interference-to-noise ratio
𝜉𝑖 = 𝜉𝑐 + 𝜉𝑗 is 47.1 dB with CNR = 46.66 dB and

JNR = 37.58 dB.

• Also, 10log(MN) = 25.1 dB.

• Therefore: 72.2 = 47.1 + 25.1 and the 

approximate relation applies.

SINR Improvement Factor for the Optimum and 

Tapered Fully Adaptive STAP.



 SINR performance can be used to derive performance metrics that describe the

velocity coverage provided by a STAP algorithm.

 Define the acceptable SINR performance as a SINR loss of LSINR = x = L0.

 The minimum detectable velocity (MDV) is defined as the velocity closest to that

mainlobe clutter at which acceptable SINR loss is achieved.

 If 𝑀𝐷𝐷−(𝑥) and 𝑀𝐷𝐷+(𝑥) are the Doppler frequencies below and above the

mainlobe clutter Doppler at which the acceptable SINR loss is achieved, the

Minimum Detectable Doppler (MDD) is defined as:

𝑀𝐷𝐷(𝑥) =
1

2
(𝑀𝐷𝐷+ 𝑥 − 𝑀𝐷𝐷−(𝑥)),       𝑀𝐷𝑉(𝑥) =

𝜆

2
𝑀𝐷𝐷(𝑥)

STAP Fundamentals – Performance Metrics



STAP Fundamentals – Performance Metrics

Image adopted from [3], 

Ch. 9, page 537.



 In practice 𝐑𝑢 must be estimated from a finite set of available data.

 In the SMI approach, 𝐑𝑢 is replaced by its sample covariance matrix estimate  𝐑𝑢:

 𝐑𝑢 =
1

𝐾
 

𝑘=1

𝐾

𝛘𝑘𝛘𝑘
𝐻

 The training samples 𝛘𝑘 arise from range gates before and after the range gate of 

interest.

 The SMI weight vector is computed by:

𝐰 =  𝐑𝑢
−1𝐠𝒕

 Because the covariance matrix is estimated, the SMI weight vector is suboptimum.

STAP Fundamentals – Sample Matrix Inversion



 We have already defined the SINR assuming perfectly Known Covariance Matrix (KC):

SINR𝐾𝐶 =
𝜎2𝜉𝑡 𝐠𝑡

𝐻𝐑𝑢
−1𝐯𝑡

2

𝐠𝑡
𝐻𝐑𝑢

−1𝐠𝑡

 The SINR obtained with the SMI weight vector is:

SINR𝑆𝑀𝐼 =
𝜎2𝜉𝑡 𝐠𝑡

𝐻 𝐑𝑢
−1𝐯𝑡

2

𝐠𝑡
𝐻 𝐑𝑢

−1𝐑𝑢
 𝐑𝑢
−1𝐠𝑡

Which is a RV which depends heavily on the number of snapshots K used for the covariance matrix 

estimation.

 Define a new RV to be the loss of performance due to covariance estimation: 𝜌 =
SINR𝑆𝑀𝐼

SINR𝐾𝐶

 It was found by Boroson [4] and Kelly [5] that with a matched steering vector 𝐠𝑡 = 𝐯𝑡, ρ is 

a beta RV with expected value:

𝐸{𝜌} =
𝐾 + 2 − N𝑑𝑜𝑓

𝐾 + 1

STAP Fundamentals – Sample Matrix Inversion



 Therefore, the expected loss of performance is independent of the interference

scenario and depends only on the number of samples K and the weight vector

dimension.

 From previous equation it is evident that for effective performance in a stationary

environment, we need 2Ndof to 5Ndof independent snapshots for covariance

estimation.

 This theory can be used to include effects of covariance estimation in any of the

SINR-derived performance metrics. For example the SINR loss equation:

may be modified as:

STAP Fundamentals – Sample Matrix Inversion

L𝑆𝐼𝑁𝑅(𝜛) =
𝑆𝐼𝑁𝑅(𝜛)

𝑆𝑁𝑅𝑜



STAP Fundamentals – Sample Matrix Inversion

 L𝑆𝐼𝑁𝑅 𝜛,𝐾 = 𝐸
𝑆𝐼𝑁𝑅𝑆𝑀𝐼

𝑆𝑁𝑅𝑜
= 𝐸

𝑆𝐼𝑁𝑅𝑆𝑀𝐼

𝑆𝑁𝑅𝐾𝐶

𝑆𝐼𝑁𝑅𝐾𝐶

𝑆𝑁𝑅𝑜
= 𝐸{𝜌} L𝑆𝐼𝑁𝑅 𝜛,∞

Where L𝑆𝐼𝑁𝑅 𝜛,∞ = 
𝑆𝐼𝑁𝑅𝐾𝐶

𝑆𝑁𝑅𝑜
, i.e. SINR loss with perfect covariance. 



STAP Fundamentals – Sample Matrix Inversion

• At least 2Ndof-3 = 645 Samples are required to 

reach 3-dB below the optimum SINR loss.

• By reducing the weight dimensionality the 

performance for a fixed number of snapshots 

can be dramatically improved.

• Non-homogeneity of clutter in range, 

combined with the clutter power and 

elevation angle dependence on range 

reduce the number of range gates over which 

the clutter is effectively stationary.

• The need for adequate covariance estimation 

is a major factor for reduced-dimension STAP.

• The presence of a strong target signal in the 

snapshots can dramatically increase then 

number of samples required for a specified 

level of performance.  



Reduced Dimension STAP Algorithms – A taxonomy



 A space-time covariance matrix 𝐂 is called spatial-temporal separable if it can be

expressed as a Kronecker product: 𝐂 = 𝐂𝑠⨂𝐂𝑡.

 For example, the jamming interference covariance matrix 𝐑𝑗 = 𝐸 𝛘𝑗𝛘𝑗
𝐻 = 𝐈𝑀⨂𝚽𝑗

(where 𝚽𝑗 is the jamming sources spatial covariance matrix), is spatial−temporal

separable.

 If a space-time covariance matrix is separable, then the corresponding optimal

weight vector is also separable and the output of the optimal processor cay be

written as:

𝐲 = 𝐰𝐻𝛘 =  

𝑛=0

𝑁−1

 

𝑚=0

𝑀−1

𝑤𝑛
∗𝑤𝑚𝜒𝑛𝑚

 In another words, for a temporal-spatial separable problem, finding an MN×1 optimal

weighting vector can be simplified into finding an M×1 temporal optimal weighting

vector and an N×1 spatial optimal weighting vector in two discrete steps.

Spatial-Temporal Inseparable Covariance Matrix



Spatial-Temporal Inseparable Covariance Matrix

 Ground clutter is spatially and temporally correlated as both the clutter intensity and

Doppler are a function of elevation & azimuth angles. As a result, the covariance matrix

of the ground clutter cannot in general be written as a Kronecker product and hence it

is spatial-temporal inseparable.

 Since the dominant part of the covariance matrix of interest is the ground clutter,

therefore, in general the covariance matrix of interference is spatial-temporal

inseparable.

 This means that any space-time cascaded processors, such as factored time-space

(FTS), factored space-time (FST) and majority of dimension-reduced algorithms discussed

in next lecture, are unavoidably associated with some SINR loss.

 In essence, all reduced dimension cascaded processors that process data in space-

domain and time domain separately, imply the covariance matrix to be spatial-

temporal separable which is against the nature of the covariance matrix.
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