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Sequential Monte Carlo methods

Monte Carlo

Monte Carlo

Experiment-based methods for solving physical and mathematical
problems

A sufficient number of experiments is realized to enable computing a
physical quantity

Characterizing real phenomena is hard (often impossible in the analytical
sense)

Amount and nature of uncertainty is generally unknown

Convenient when computational power is available
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Sequential Monte Carlo methods

Monte Carlo

An illustration: estimate π

Experiment

Take N i.i.d. samples {X (i)}i∈[1..N] from the uniform distribution on a
square with side `

Count the samples that fall inside a circle inscribed in the square (Ncircle)

Estimate π as

Pr{X in the circle} =
Acircle

Asquare
≈ Ncircle

N

=
π`2/4
`2

=
π

4
≈ Ncircle

N

∴ π ≈ π̂ =
4Ncircle

N

With N = 100, 000, 000 samples, |π − π̂| ∼ 10−5. What is going on?
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Monte Carlo

Monte Carlo

Law of large numbers: an empirical average tends to the expected value
as the number of experiments increases
Regions:

Ωsquare := {x ∈ R2 : x is in the square},

Ωcircle := {x ∈ R2 : x is in the circle},

X (i) ∼ U(x ; ∂Asquare), for i = 1, . . . ,N,

U(x ; ∂Asquare) =

{
1/Asquare, x ∈ Ωsquare,

0, otherwise.

Probability:

Pr{X ∈ Ωcircle} ,
∫

Ωcircle

U(x ; ∂Asquare)dx

= A−1
square

∫
Ωcircle

dx = Acircle/Asquare.
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Monte Carlo

Monte Carlo

Monte Carlo enables estimates of E[ϕ] =
∫
X ϕ(x)pπ(x)dx , for locally

integrable functions ϕ(·) of x ∈ X , by computing

ϕ̂ =
1
N

N∑
i=1

ϕ(x (i)), x (i) ∼ pπ(x).

π estimate: ϕ(x) = 1Ωcircle(x), where 1B(x) = 1 if x ∈ B and zero
otherwise.

In our example we sample from a uniform density: prior knowledge about
the phenomenon is required

Often prior knowledge is available but sampling is difficult: we know how
to sample from a limited number of probability densities.

How to sample? We know how to generate samples from U([0, 1]), for
instance, Z (i) = mod (aZ (i−1) + c,m) and Z (i)/m ∼ U([0, 1]).

Heriot-Watt University June 27th, 2017 7 / 29



Sequential Monte Carlo methods

Monte Carlo

Importance sampling

How to proceed if we do not know how sample from pπ(x) (target
measure) but we know how to evaluate it?

Suppose a distribution q(x) (proposal) from which it is easy to sample,
and is somewhat “close” to pπ(x)

By doing

E[ϕ] =

∫
X
ϕ(x)pπ(x)dx =

∫
X

w̆(x)︷ ︸︸ ︷
pπ(x)

q(x)
ϕ(x)q(x)dx

=

∫
X
w̆(x)ϕ(x)q(x)dx ,

We take samples x (i) ∼ q(x), and compute the estimate as

ϕ̂ =
N∑
i=1

w (i)ϕ(x (i)), w (i) = w̆(x (i))/N.
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Sequential Monte Carlo

Sequential Monte Carlo

What if:

xt now varies with time, i.e., the sequence {xt}t≥0 is a
stochastic process
Evidence about the process is given by an observation process
{yk}k∈N, realized at time steps t = tk .

Can we estimate E[ϕt |y1, . . . , yk ] =
∫
X ϕ(xt)p(xt |y1, . . . , yk)dxt?

Solution: sequential Monte Carlo methods.
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Sequential Monte Carlo

Sequential importance sampling (SIS)

For simplicity we write sequences of states and observations as
x0:k = (x0, x1, . . . , xk) and y1:k = (y1, y2, . . . , yk).

Sequential importance sampling performs inference as

E[ϕk |y1:k ] =

∫
X
w̆(x0:k |y1:k)ϕ(xk)q(x0:k |y1:k)dxk ,

w̆(x0:k |y1:k) ,
pπ(x0:k |y1:k)

q(x0:k |y1:k)
.

At time step k − 1, we possess a set of weights and samples (particles)
{w (i)

k−1, x
(i)
k−1}

In the standard SIS setting x
(i)
k−1 is a path sample, i.e.,

x
(i)
k−1 ≡ x

(i)
0:k−1 = x

(i)
k−1, x

(i)
k−2, . . . x

(i)
0

The weights are given by w
(i)
k−1 ∝ w̆(x

(i)
0:k−1|y1:k−1)
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Sequential Monte Carlo

Sequential importance sampling (SIS)

When a new observation yk becomes available, new samples extend the
path of previous samples, i.e.,

x
(i)
k ∼ q(x0:k |y1:k) = q(xk |x0:k−1, yk)q(x0:k−1|y1:k−1),

x
(i)
k ∼ q(xk |x

(i)
k−1, yk) ≡ q(xk |x

(i)
0:k−1, yk),

The new weights are updated as

w̆(x0:k |y1:k) :=
pπ(x0:k |y1:k)

q(x0:k |y1:k)
=

pπ(yk |xk )p(xk |xk−1)

p(yk |y1:k−1)

q(xk |xk−1, yk)

pπ(x0:k−1, y1:k−1)

q(x0:k−1|y1:k−1)

=
1

p(yk |y1:k−1)

p(yk |xk)p(xk |xk−1)

q(xk |xk−1, yk)
w̆(x0:k−1|y1:k−1),

Estimates are given as

ϕ̂ =
1
N

∑N
i=1 w̆

(i)
k ϕ(x

(i)
k )

1
N

∑N
i=1 w̆

(i)
k

, w̆
(i)
k = w̆(x

(i)
0:k |y1:k).
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Sequential Monte Carlo

Sequential importance sampling (SIS)

Usual choices of one-step proposals:

Bootstrap filter: q(xk |xk−1, yk) = p(xk |xk−1), resulting in

w̆(x0:k |y1:k) ∝ p(yk |xk)w̆(x0:k−1|y1:k−1)

.
Optimal proposal: q(xk |xk−1, yk) = p(yk |xk )p(xk |xk−1)

p(yk |xk−1) , resulting
in

w̆(x0:k |y1:k) ∝ p(yk |xk−1)w̆(x0:k−1|y1:k−1)
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Sequential Monte Carlo

Problems

Weight degeneracy: if proposed particles are too far from the region of
high probability under the target distribution, only a few particles will
have significant weight, which causes the other weights to become
irrelevant for the estimate.

Particle degeneracy: a direct consequence of the curse of dimensionality.
Recall that the particles extend stochastic paths, which in turn occupy a
space with increasing dimension as x (i)

0:k ∈ X
k+1. As the number of

dimensions increases, a finite number of realizations can only populate
the space to an increasingly sparse extent.
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Sequential Monte Carlo samplers

Sequential Monte Carlo samplers

In Markov Chain Monte Carlo literature, estimates can be generated by
simulating an event according to a transition Markov kernel (reversible)
that corresponds to an invariant (stationary) distribution pπ(dx).

Convergence to the invariant distribution is only guaranteed by using an
accept-reject step.

Sample a candidate x
?(i)
k ∼ q(xk |x

(i)
k−1)

Compute acceptance probability

α(i)(x
?(i)
k |x

(i)
k−1) = min

(
pπ(x

?(i)
k

)q(x
(i)
k−1|x

?(i)
k

)

pπ(x
(i)
k−1)q(x

?(i)
k
|x(i)

k−1)
, 1
)

Sample a test variable u(i) ∈ U([0, 1], if u(i) ≤ α(i) then accept the
candidate x

(i)
k ← x

?(i)
k , else reject the move x

(i)
k ← x

(i)
k−1.
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Sequential Monte Carlo samplers

Sequential Monte Carlo samplers

MCMC acknowledges and corrects for the fact that a single-step proposal
can lead the chain to the wrong direction, and so convergence is
guaranteed by accept-reject step.

When doing particle filtering (SIS), once a candidate is sampled the move
is made, such that convergence to the target distribution is not enforced.

Particle filtering degenerates when unlikely moves are made and the
weights lose relevance.

Sequential Monte Carlo samplers introduces a weight compensation to
account for possibly bad moves. This is done via introduction of a
backward Kernel.
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Sequential Monte Carlo samplers

Sequential Monte Carlo samplers

Sequential Monte Carlo samplers provide estimates for

E[ϕk |y1:k ] =

∫
X
w̆(x0:k |y1:k)ϕ(xk)q(x0:k |y1:k)dxk ,

w̆(x0:k |y1:k) ,
pπ(x0:k |y1:k)

q(x0:k |y1:k)
.

And introduces the backward kernel L(k)(xk−1|xk) such that

pπ(x0:k |y1:k) = pπ(xk |y1:k)L(k)(xk−1|xk)L(k−1)(xk−2|xk−1) . . . L(1)(x0|x1),

pπ(xk |y1:k) =

∫
pπ(x0:k |y1:k)dx0:k−1.
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Sequential Monte Carlo samplers

Sequential Monte Carlo samplers

The new weights are updated as

w̆(x0:k |y1:k) :=
pπ(x0:k |y1:k)

q(x0:k |y1:k)
=

pπ(xk |y1:k)L(k)(xk−1|xk)L(k−1)(xk−2|xk−1) . . .

q(xk |xk−1, yk)q(x0:k−1|y1:k−1)

=
pπ(xk |y1:k)L(k)(xk−1|xk)

q(xk |xk−1, yk)q(x0:k−1|y1:k−1)

pπ(xk−1|y1:k−1)

pπ(xk−1|y1:k−1)
L(k−1)(xk−2|xk−1) . . .

=
pπ(xk |y1:k)L(k)(xk−1|xk)

pπ(xk−1|y1:k−1)q(xk |xk−1, yk)

pπ(x0:k−1|y1:k−1)

q(x0:k−1|y1:k−1)

=
pπ(xk |y1:k)L(k)(xk−1|xk)

pπ(xk−1|y1:k−1)q(xk |xk−1, yk)
w̆(x0:k−1|y1:k−1)

≡ αL(xk |xk−1, yk)︸ ︷︷ ︸
analogue of α

w̆(x0:k−1|y1:k−1).
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Particle Flow

Optimal Transport

Monge-Kantorovich problem:

Two densities p0(x) and pΛ(x), with total mass∫
X p0(x)dx =

∫
X pΛ(x)dx = 1

Find a smooth one-to-one map M : X → X , M : p0 7→ pΛ, where∫
x∈A p0(x)dx =

∫
M(x)∈A pΛ(M(x))dM(x), that achieves

d(p0, pΛ)r = inf
M

∫
‖M(x)− x‖r p0(x)dx , r ≥ 0.

The map means that det (∇M) · pΛ(M(x)) = p0(x)

When r = 2, the problem is a continuum mechanics classical problem:

∂λp = −∇ · (pµ), λ ∈ [0,Λ], p(0, ·) = p0, p(Λ, ·) = pΛ.
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Particle Flow

Optimal Transport

det (∇M) · pΛ(M(x)) = p0(x) is highly nonlinear, and becomes a
second-order elliptic equation for “potential maps” as M = ∇Ψ

Solving ∂λp = −∇ · (pµ) by a Monte Carlo method only requires
propagating samples according to ẋ = µ(λ)

Reich, 2011: Parametrize p as a sequence of N = Λ/∆λ intermediate
densities, (pj)j∈[0..N], which arise by applying the likelihood progressively

`y (x) =
1√

2π detR
e−

1
2 (y−Hx)TR−1(y−Hx) ∝ e−Ly (x),

`Ny (x) ∝ e−
Ly (x)

N = e
− Ly (x)

Λ/∆λ =⇒ `y (x) ∝
N∏
j=1

`Ny (x).
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Particle Flow

Optimal Transport

pj+1(x) =
`Ny (x)pj(x)∫
`Ny (x)pj(x)dx

=

(
1−∆λ

Ly (x)

Λ

)
pj(x)∫ (

1−∆λ
Ly (x)

Λ

)
pj(x)dx

+O(∆λ2),

pj+1(x) =
pj(x)−∆λ

Ly (x)

Λ
pj(x)

1− ∆λ
Λ
E [Ly (x)]

+O(∆λ2),
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Particle Flow

Optimal Transport

pj+1(x) =
pj(x)−∆λ

Ly (x)

Λ
pj(x)

1− ∆λ
Λ
E [Ly (x)]

+O(∆λ2),

pj+1(x)− pj(x)

∆λ
= − 1

Λ
[Ly (x)pj(x)− E [Ly (x)] pj+1(x)] +O(∆λ2),

Take the limit as ∆λ→ 0 to give

∂p(x , λ)

∂λ
= − 1

Λ
[Ly (x)− E [Ly (x)]] p(x , λ),

where pj(x)→ pj+1(x) and so

∇ · (p(x , λ)µ) =
1
Λ

[Ly (x)− E [Ly (x)]] p(x , λ)

.
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Particle Flow

Particle flow

Increasing number of papers on a technique called Particle Flow.

These papers report remarkable performance:

No resampling
No proposal distribution (no sampling!?)
High dimensions (traditionally requiring frequent resampling)
Impressive RMSE

Particle flow does not propose an explicit method to
approximate filtering distributions.
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Particle Flow

Particle flow

Given a family of distributions:

p0 (x), which is easy to sample from
pΛ (x), which is what we are interested in
pλ (x), which is between the two

The intermediate distribution is defined as

pλ (x) =
p0 (x)

[
pΛ(x)
p0(x)

]λ/Λ

∫
p0 (x ′)

[
pΛ(x′)
p0(x′)

]λ/Λ

dx ′

Key idea: λ evolves continuously between λ = 0 and λ = Λ.
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Particle flow
−

4
−

2
0

2
4

6

Prior

Target
 0.002 

 0.01 

 0.02 

 0.04 

 0.08 

 0.15 

 0.002 

 0.01 

 0.02 

 0.04 

 0.08 

 0.15 

 0.002 

 0.01 

 0.02 

 0.04 

 0.08 

 0.15 

λ = 0

 0.002 

 0.01 

 0.01 

 0.02 

 0.04 

 0.08 

 0.15 

λ = 0.1

−4 −2 0 2 4 6 8

−
4

−
2

0
2

4
6

 0.002 

 0.01 

 0.01 

 0.02 

 0.02 

 0.04 

 0.04 

 0.08 

 0.15 

λ = 0.3

−4 −2 0 2 4 6 8

 0.002 

 0.01 

 0.01 

 0.02 

 0.02 

 0.04 

 0.04 

 0.08 

λ = 0.8

−4 −2 0 2 4 6 8

 0.002 

 0.01 

 0.02 

 0.04 

 0.08 

 0.15 

λ = 1

x
2

x1

Figure 1: Intermediate distributions for particle flow
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Particle Flow

Stochastic Particle flow

Stochastic version of the particle flow, by solving a stochastic differential
equation (SDE) that describes the evolution w.r.t. λ ∈ [0,∞) of the
samples x (λ)(i) :pλ (x) .

If one starts with samples from p0 (x) and propagates them through
0 ≤ λ <∞ by simulating from the SDE, the samples become
approximately x (λ)(i) :pΛ (x) = π(x) for λ→∞.

It is easy to demonstrate that the SDE that provides the described
process can be achieved by the Langevin diffusion process

dx =
1
2
D (x)∇x log [π (x)] dλ+ D (x)

1/2 dwλ,

where {wλ} is a standard Wiener process, D (x) is the diffusion matrix, and
π (x) is the target distribution.
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Stochastic Particle flow
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Figure 2: New particle flow in the context of other methods
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Particle Flow

Results - Convoy tracking

Exemplar run
Convoy tracking, Joint SPF-GS, step k = 45

Figure 3: Exemplar run for the convoy tracking problem
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Results - Convoy tracking

Log RMSE x number of vehicles
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Figure 4: Logarithm of RMSE versus number of vehicles
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Particle Flow

Results - Convoy tracking

Questions
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