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Sequential Monte Carlo methods
L Monte Carlo

Monte Carlo

m Experiment-based methods for solving physical and mathematical
problems

m A sufficient number of experiments is realized to enable computing a
physical quantity

m Characterizing real phenomena is hard (often impossible in the analytical
sense)

m Amount and nature of uncertainty is generally unknown

m Convenient when computational power is available
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Sequential Monte Carlo methods
L Monte Carlo

An illustration: estimate 7

m Take N i.i.d. samples {X(")},-e[l,_N] from the uniform distribution on a
square with side /¢

m Count the samples that fall inside a circle inscribed in the square (Nircle)

m Estimate 7 as
Acircle ~ Ncircle
square
2
4 /4 _ E ~ Ncircle
2 4 N
4’IVcircIe
N

Pr{X in the circle} =

=

A —

m With N = 100,000,000 samples, |r — #| ~ 10°. What is going on?
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L Monte Carlo

An illustration: estimate 7
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L Monte Carlo

An illustration: estimate 7

n =4000, 7 =~ 3.1150
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L Monte Carlo

An illustration: estimate 7

n=>5000, 7~ 3.1168
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L Monte Carlo

An illustration: estimate 7

n=6500, 7~ 3.1600
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L Monte Carlo

An illustration: estimate 7

n =8500, 7~ 3.1840
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L Monte Carlo

An illustration: estimate 7

n = 10000, 7 ~ 3.1468
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L Monte Carlo

An illustration: estimate 7

n— 24000, ™ 3. 1467
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L Monte Carlo

An illustration: estimate 7
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Sequential Monte Carlo methods

L Monte Carlo

Monte Carlo

Law of large numbers: an empirical average tends to the expected value
as the number of experiments increases

Regions:
Qequare = {x € R* : x is in the square},
Qeirte = {x € R? : x is in the circle},
m X0~ U(x; OAsquare), for i=1,... N,

1/Asquare, Qs uare,
Z/{(X;aAsquare) = { / ; x < 5

0, otherwise.
m Probability:
PI’{X < Qcirde} £ u(X; 8Asquare)dX
Deircle
= AS;{IQFE dx = Acircle/Asquare-

circle
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Sequential Monte Carlo methods

L Monte Carlo

Monte Carlo

= Monte Carlo enables estimates of E[¢] = [, v(x)px(x)dx, for locally
integrable functions ¢(-) of x € X', by computing

Z X~ pr(x).

(x), where 15(x) =1 if x € B and zero

2 \

m 7 estimate: ¢(x) = 1gq
otherwise.

circle

m In our example we sample from a uniform density: prior knowledge about
the phenomenon is required

m Often prior knowledge is available but sampling is difficult: we know how
to sample from a limited number of probability densities.

m How to sample? We know how to generate samples from 1/([0, 1]), for
instance, Z") = mod (aZ'™Y 4 ¢, m) and Z¥/m ~ U([0, 1]).
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Sequential Monte Carlo methods

L Monte Carlo

Importance sampling

m How to proceed if we do not know how sample from p.(x) (target
measure) but we know how to evaluate it?

m Suppose a distribution g(x) (proposal) from which it is easy to sample,
and is somewhat “close” to pr(x)

m By doing
w(x)

Ef¢] = /X o (x)pr (x)dx = /X ”;((XX)) (x)q(x)dx

= [ #0e(oat)as.

= We take samples x(") ~ g(x), and compute the estimate as

N
2= W), w® = w(x")/N.

i=1
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L Sequential Monte Carlo

Sequential Monte Carlo

m What if:

B x; now varies with time, i.e., the sequence {x;};>¢ is a
stochastic process
m Evidence about the process is given by an observation process
{Vk}ken, realized at time steps t = t.
m Can we estimate E[pe|y1, ..., ] = [ o(xe)p(xely1, . .., ye)dx:?

m Solution: sequential Monte Carlo methods.
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L Sequential Monte Carlo

Sequential importance sampling (SIS)

m For simplicity we write sequences of states and observations as
Xo:k = (X0, X1y -y xk) and yak = (Y1, ¥2, - -+, Yi)-

m Sequential importance sampling performs inference as

Elpelyii] = / (o] Y1) () a0 Ly ) o
X

A Pr (XO:k |_y1:k)

W (xo- . .
(ouelyase) q(xo:k|y1:k)

m At time step k — 1, we possess a set of weights and samples (particles)
W x1)

m In the standard SIS setting X,Eill is a path sample, i.e.,
Xlgfll = Xc(){3<—1 = X/Eillv Xt(jlzv e Xc()i)

m The weights are given by W‘Eill x vT/(x((,fL_1|y1:k_1)
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L Sequential Monte Carlo

Sequential importance sampling (SIS)

m When a new observation yx becomes available, new samples extend the
path of previous samples, i.e.,

Xii) ~ q(XO:k|y1:k) = q(Xk|X0:k—17}/k)q(X0:k71|y1:k71),
X ~ alalxLe,vi) = a(xlxgh ),
m The new weights are updated as

P (yic | ) POxk Xk — 1)

l7V(Xo-k|y1-k) — pTr(XO:k|y1:k) . PYkly1:k—1) Pw(XO:k—l,}/l:k—l)
S q(x0:k|y1:k) q(xk|xk—1,yk)  q(xok—1]y1:6—1)
1 P(yk|xi)p(xulxk—1)

= WIX0:k—1|Y1:k—1),
p(yklyik—1)  q(xklxk—1, yx) ( | )

m Estimates are given as
N (i i
% Dica W;E )SD(X;i )) o (i)
P

1N ()
NZ;:1 Wy
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L Sequential Monte Carlo

Sequential importance sampling (SIS)

m Usual choices of one-step proposals:

m Bootstrap filter: g(xi|xx—1,¥x) = p(xk|xx—1), resulting in

W (Xo:k|y1:) o< P(Yi| Xk )W (Xo:k—1]y1:k—1)

Pylx )Pl xi—1)

P(Yi|Xk—1) ' r(35U|t|ng

m Optimal proposal: g(xk|xk—1,yk) =
in

W (X0:k|y1:4) X P(Vic|Xk—1)W(Xo:k—1|Y1:6-1)
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L Sequential Monte Carlo

Problems

m Weight degeneracy: if proposed particles are too far from the region of
high probability under the target distribution, only a few particles will
have significant weight, which causes the other weights to become
irrelevant for the estimate.

m Particle degeneracy: a direct consequence of the curse of dimensionality.
Recall that the particles extend stochastic paths, which in turn occupy a
space with increasing dimension as x((,fl € X**1. As the number of
dimensions increases, a finite number of realizations can only populate
the space to an increasingly sparse extent.
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LSequential Monte Carlo samplers

Sequential Monte Carlo samplers

m In Markov Chain Monte Carlo literature, estimates can be generated by
simulating an event according to a transition Markov kernel (reversible)
that corresponds to an invariant (stationary) distribution p.(dx).

m Convergence to the invariant distribution is only guaranteed by using an
accept-reject step.

(O]

m Sample a candidate x; " ~ q(xk|xk 1)

m Compute acceptance probability

PYRGING (e Dag) 1)
a7 7) = min (W 1

pr(x) al " 1x ,1)’

m Sample a test variable u e U([0,1], if u < al) then accept the
() () )
=1

candidate x,” < xk , else reject the move x;
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LSequential Monte Carlo samplers

Sequential Monte Carlo samplers

m MCMC acknowledges and corrects for the fact that a single-step proposal
can lead the chain to the wrong direction, and so convergence is
guaranteed by accept-reject step.

m When doing particle filtering (SIS), once a candidate is sampled the move
is made, such that convergence to the target distribution is not enforced.

m Particle filtering degenerates when unlikely moves are made and the
weights lose relevance.

m Sequential Monte Carlo samplers introduces a weight compensation to
account for possibly bad moves. This is done via introduction of a
backward Kernel.
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LSequential Monte Carlo samplers

Sequential Monte Carlo samplers

m Sequential Monte Carlo samplers provide estimates for

Elpelyie] = / 0 (xok y20 ) () ok ya i,
X

é Pr (XO:k |y1:k)

W (xo- . .
( 0.k|y1.k) q(Xo;k|y1;k)

m And introduces the backward kernel L(k)(xk_l\xk) such that
P (xo:k [ ya:k) = P [yan ) LY (i [ ) L5 (e a | xi—1) - . . LY (x0]xa),

Pw(Xk|)/1:k) Z/Pw(Xo:kb/l:k)dXo:ka
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LSequential Monte Carlo samplers

Sequential Monte Carlo samplers

m The new weights are updated as

_ Pr(Xo:k|y1:k) _ P (v ) L9 a1 | xi ) LD (e _alxe—1) . . .
q(Xo:k|y1:k) q(xk|xk—1, Y )q(X0:k—1]y1:6—1)
P (v ) LY a1 ]xk)  pr (k1 lyik—1) (k—1)
(Xk—2|Xk—1) - .
G(xk|xk—1, Y )q(Xo:k—1|y1:6—1) Pr(Xk—1|y1:6-1)
_ P (Xklyr ) L a1 ]xk)  pr(xok—1|yik—1)
Pr(Xk—1]y1:6—1)q(X|Xk—1, ¥&) q(x0:k—1|y1:k—1)
_ pr Oy L i [x)
Pr (k=1 ]y1:k—1) g(Xk|Xk—1, Y«
(

= OLL(Xk|Xk_1,yk) w

W(Xo:k|y1:k) -

) W(xo:k—1|y1:k—1)

Xo:k—1|y1:k—1)-

analogue of «
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L Particle Flow

Optimal Transport

Monge-Kantorovich problem:

m Two densities po(x) and pa(x), with total mass
f)( po(x)dx = f)( pa(x)dx =1

m Find a smooth one-to-one map M : X — X, M : po — pa, where
Jeen Po(x)dx = fM(X)eA pa(M(x))dM(x), that achieves

d(po, o)’ = i&f/ IM(x) = x|I” po(x)dx, r > 0.

m The map means that det (VM) - pA(M(x)) = po(x)

m When r = 2, the problem is a continuum mechanics classical problem:

oap ==V - (pu), A €[0,A], p(0,-) = po, p(A,-) = pa.
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L Particle Flow

Optimal Transport

m det (VM) - pa(M(x)) = po(x) is highly nonlinear, and becomes a
second-order elliptic equation for “potential maps” as M = V¥

m Solving 9xp = —V - (pu) by a Monte Carlo method only requires
propagating samples according to x = pu(\)

m Reich, 2011: Parametrize p as a sequence of N = A/AM\ intermediate
densities, (pj)jeo..n], Which arise by applying the likelihood progressively

1 —1(y—H)TR I (y—H L
0o(x) = e~ 3O=HITRTE =) oLy ()
v (x) V2mdet R
L) L) N
éy(x)oc e N — e MBX — £, (x) ocHZC’(x).
j=1
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L Particle Flow

Optimal Transport

L et (- e 2
P = TN (x)dx I (1 - MLy/(\X)) () +0(AN%),
) = P AR
P T BRI, (]

+ O(AN?),
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L Particle Flow

Optimal Transport

pi(x) — DX pi(x)
1—- E[L,(x)]

pi+1(x) = +O(AN?),

Pl P — 211, ()i () — ELLy (9] pra ()] + O(8X2),

AN
Take the limit as A\ — 0 to give
op(x,A) _ 1
“on  — A [Ly(x) = E[L, ()] p(x, A),

where p;j(x) = pj+1(x) and so

V- (px, i) = 1 1) ~ ELL, ()] p(x, )
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L Particle Flow

Particle flow

m Increasing number of papers on a technique called Particle Flow.
m These papers report remarkable performance:

m No resampling

m No proposal distribution (no sampling!?)

m High dimensions (traditionally requiring frequent resampling)

m Impressive RMSE

m Particle flow does not propose an explicit method to
approximate filtering distributions.
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L Particle Flow

Particle flow

m Given a family of distributions:

m po (x), which is easy to sample from
m pa (x), which is what we are interested in
B p) (x), which is between the two

m The intermediate distribution is defined as

A/A
pA(x)
po (x) [pﬁm]
1A
Jpo () [E3] e

m Key idea: X evolves continuously between A =0 and A = A.

px (x) =
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L Particle Flow

Particle flow

Figure 1: Intermediate distributions for particle flow
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L Particle Flow

Stochastic Particle flow

m Stochastic version of the particle flow, by solving a stochastic differential
equation (SDE) that describes the evolution w.r.t. A € [0, c0) of the
samples x (A\)? ~py (x).

m If one starts with samples from po (x) and propagates them through
0 < A < oo by simulating from the SDE, the samples become
approximately x (\)? ~px (x) = 7(x) for A — oo.

m It is easy to demonstrate that the SDE that provides the described
process can be achieved by the Langevin diffusion process

dx — %D (x) Vs log [ (x)] d + D (x)¥* dws,

where {wy} is a standard Wiener process, D (x) is the diffusion matrix, and
m (x) is the target distribution.
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L Particle Flow

Stochastic Particle flow

Importance Sampling

MCMC

X2

Optimizer

X4

Figure 2: New particle flow in the context of other methods
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L Particle Flow

L Results - Convoy tracking

Exemplar run

Convoy tracking, Joint SPF-GS, step k = 45

Figure 3: Exemplar run for the convoy tracking problem
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L Particle Flow

L Results - Convoy tracking

Log RMSE x number of vehicles

Root-Mean-Square Error versus number of vehicles, d = 10.0 m

3.0 T T T T T
‘*—JPDA ©GNN_+JPDA-GM »*CPDA +=Joint SIR <GPF «SDPF ©SPF-GS ‘
25
— 20
e
w
2
g 15
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Number of vehicles

Figure 4: Logarithm of RMSE versus number of vehicles
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L Results - Convoy tracking

Questions
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