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An underwater sensor network (inspired from 

[Akyildiz, Ad-hoc networks, 2005] and [Heideman, 

PToRSL, 2012]).

An autonomous sensor system for base 

and perimeter protection [Thomas, et al, 

Proc. SPIE, 2016]).
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Functional view
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Functional view



𝑝 𝑋1:𝑘, 𝜃 𝑍1:𝑘
1 , … , 𝑍1:𝑘

𝑁 = 𝑝 𝑋1:𝑘 𝑍1:𝑘
1 , … , 𝑍1:𝑘

𝑁 , 𝜃 𝑝 𝜃 𝑍1:𝑘
1 , … , 𝑍1:𝑘

𝑁

∝ 𝑙 𝑍1:𝑘
1 , … , 𝑍1:𝑘

𝑁 |𝜃 𝑝(𝜃)
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Functional view



• Problem definition: Opportunistic self calibration

• Separable pseudo-likelihoods

• Markov random fields with separable likelihoods

• Self-calibration via belief propagation (BP)

• Demonstration on a SAPIENT network

• Conclusions
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Problem Definition

• The concatenation of all configuration variables of a respective nature

Example: Sensor locations and orientations with respect to a selected 

reference frame

• The network-wide collected sensor data in the time window of k=1,…,t
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𝜋(𝑿𝑘|𝑿𝑘−1)

Problem Definition

𝑙i(𝒁𝑘
𝑖 |𝑿𝑘 , 𝜃)
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Problem Definition



16 sensors collecting measurements from 4 targets with the following uncertainties:

i) unknown measurement-target association

ii) false alarms,

iii) less than one probability of detection. 

Unknowns sensor locations and orientations (left pane), the network-wide collected 

data (right pane)
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Problem Definition

Challenge 1: Intractability of the likelihood of 𝜃



Challenge 2: The likelihood is non-negligible only over a very 

small subset of the possible configurations (and potentially 

multiple local maxima).
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Problem Definition

Hint: Potentially smoother if the time window length t is high.
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Separable pseudolikelihoods
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Separable pseudolikelihoods

Separable likelihoods
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Separable pseudo-likelihoods 
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Uney, Mulgrew, Clark “A cooperative approach to sensor localisation in distributed fusion networks,” 

IEEE Trans. Signal Proc., 2016.
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Separable likelihood asymptotics

Separable pseudo-likelihoods
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𝑠 𝑍𝑘
𝑖 , 𝑍𝑘

𝑗
. , . , 𝛿𝑥, 𝛿𝑦) ሚ𝑙(𝑍1:𝑘

𝑖 , 𝑍1:𝑘
𝑗
|𝛿𝑥, 𝛿𝑦)

Example: Separable likelihoods in sensor localisation

𝜃𝑖 = 𝛼𝑖 = 0, 𝑠𝑖 = 0,0 (blue sensor) and 𝜃𝑗 = 𝛼𝑗 = 0, 𝑠𝑗 = 𝛿𝑥, 𝛿𝑦 (black sensor)

𝑠 𝑍𝑘
𝑖 , 𝑍𝑘

𝑗
. , . , 𝛿𝑥, 𝛿𝑦) ሚ𝑙(𝑍1:𝑘

𝑖 , 𝑍1:𝑘
𝑗
|𝛿𝑥, 𝛿𝑦)
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Uney, Mulgrew, Clark “Latent parameter estimation in fusion networks using separable likelihoods,” 

IEEE Trans. Signal and Information Proc. Over networks 2018.

Separable pseudo-likelihoods
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Markov random fields with separable likelihoods

Latent parameter posterior
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Markov random fields with separable likelihoods

The graph 𝓖 represents conditional independence relations by graph 

separation (Corollary to the Hammersley-Clifford theorem)

𝑝 𝜃𝑖 𝜃∖𝑖 = 𝑝(𝜃𝑖|𝜃𝑛𝑒(𝑖))

𝑝 𝜃1, … , 𝜃𝑁 ∝ ෑ

𝑖,𝑗 ∈ℰ

𝑙(. , . |𝜃𝑖 , 𝜃𝑗)ෑ

𝑖∈𝒱

𝑝0,𝑖 𝜃𝑖
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• Belief propagation over 𝓖 finds the marginals underlying the expectation in the MMSE estimate

(approximately unless  𝓖 is a tree) iteratively with the following messaging passing equations at

step s

• Minimum mean squared error (MMSE) estimation 𝐸 𝜃 𝑍 = [𝐸 𝜃1 𝑍 ,… , 𝐸{𝜃𝑁|𝑍}]

Wainwright, Jordan, “Graphical models, exponential families, and, variational inference,” Foundations 

and Trends in Machine Learning 2008.

Self calibration via belief propagation

𝑚𝑗𝑖
𝑠
𝜃𝑖 = න 𝑙 . , . 𝜃𝑖 , 𝜃𝑗 𝑝0,𝑗 𝜃𝑗 ෑ

𝑖′∈𝑛𝑒 𝑗 ∖𝑖

𝑚
𝑖′𝑗
𝑠−1

𝜃𝑗 𝑑𝜃𝑗

𝑝𝑖
𝑠
𝜃𝑖 ∝ 𝑝0,𝑖 𝜃𝑖 ෑ

𝑗∈𝑛𝑒(𝑖)

𝑚𝑗𝑖
𝑠
𝜃𝑖
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Suppose we are given ෨𝐿 many configuration samples {𝜃𝑖
(𝑙)
, 𝜃𝑗

(𝑙)
}. Approximate the edge 

potential by  the Kernel sum

For the case, BP messages become Kernel mixtures, as well. Samples from the node 

marginals are generated by

Self calibration via belief propagation

Uney, Mulgrew, Clark “Latent parameter estimation in fusion networks using separable likelihoods,” 

IEEE Trans. Signal and Information Proc. Over networks 2018.

𝐸 𝜃𝑖|𝑍 ≈
1

𝐿


𝑙=1

𝐿

𝜃𝑖
𝑠 ,(𝑙)
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• Efficiency in sampling and fast convergence via initialisation of node 

potentials with BP over a (spanning) tree:

𝑝𝒯1 𝜃1, … , 𝜃𝑁

∝ ෑ

𝑖,𝑗 ∈ 𝒯1

𝑙(. , . |𝜃𝑖, 𝜃𝑗)ෑ

𝑖∈𝒱

𝑝0,𝑖 𝜃𝑖

𝑝𝒢 𝜃1, … , 𝜃𝑁

∝ ෑ

𝑖,𝑗 ∈ 𝒯1

𝑙(. , . |𝜃𝑖 , 𝜃𝑗)ෑ

𝑖∈𝒱

𝑝𝒯1,𝑖 𝜃𝑖

Self calibration via belief propagation
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Simulation Example
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Particle BP over the pairwise MRF with separable likelihood edge potentials.
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Location and orientation estimation error during particle BP iterations with the dual-term 

separable pseudo-likelihood.



Demonstration on a SAPIENT network
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Data collection: (left) Sensor field-of-views 

and pedestrian trajectories, (right) Range-

bearing measurements overlaid for the 

experiment period for all six sensors (colour 

coded)

Manually

measured ground truth
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Real data with particle BP 

over the graph on the left and 

separable likelihood edge potentials.
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Demonstration on a SAPIENT network

Error in location and orientation estimation with respect to the 

manually measured ground truth

Uney, Copsey, Page, Mulgrew, Mugrew, Thomas “Enabling self-configuration of fusion networks via 

scalable opportunistic sensor calibration,” SPIE Defence + Security 2018.
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Lidar data projected to the global coordinate 

system using manual calibration 

parameters..

Lidar data projected to the global coordinate 

system using the automatic calibration 

parameters..
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Conclusions

• Separable likelihoods are powerful approximations for scalable latent 

parameter estimation in multi-sensor fusion problems.

• MRF parameter posterior with separable likelihood edge potentials

• Particle BP for MMSE parameter estimation

• Demonstrated real world self-calibration capability on a SAPIENT 

network.

• MATLAB code available: https://github.com/muratuney

• Work in progress: Sampling in continuous valued MRFs

• Tree reparameterised loopy BP for annealing the edge potentials
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Thank you for your attention...

Questions?
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Multi-object likelihood

𝑙 𝒁𝒌
𝒊 𝑿𝒌; 𝜃𝑖

= 𝒫(𝑍; 𝜆𝐹𝐴)ෑ

𝑥∈𝑿

(1 − 𝑃𝐷(𝑥)) 

𝜏: 1,…,𝑛 →{0,1,…,𝑚}

ෑ

𝑖:𝜏 𝑖 ≠0

𝑃𝐷 𝑥𝑖 𝑙(𝑧𝜏 𝑖 |𝑥𝑖 ; 𝜃𝑖)

1 − 𝑃𝐷 𝑥𝑖 𝑒𝜆𝐹𝐴𝒫({𝑧𝜏 𝑖 }; 𝜆𝐹𝐴)


