

LSSCN Consortium

Activity recognition and anomaly detection in video using temporal and discriminative analysis

Ioannis Kaloskampis, Yulia Hicks Cardiff University

Engineering and Physical Sciences Research Council

Framework for Activity Recognition and Anomaly Detection – Problem Statement

- Area surveillance problem
- Multiple sensors
 - Overlapping/non overlapping field of views
 - Variable sensor configuration
- Multiple data modalities
 - Video
 - Radar data
 - HCI data
 - Background maps

DARPA WPAFB 2009

Framework for Activity Recognition and Anomaly Detection - Requirements

- Data-driven framework
- Computationally efficient
- Can handle heterogeneous spatio-temporal data
- Can incorporate domain knowledge.

Contributions

- Framework for Activity Recognition and Anomaly Detection
- High-level inference model for activity recognition
 - Hierarchy based on 'importance' of actions
 - Prolonged activities

Anomaly Detection in Video - Framework for **Activity Recognition**

Fisher vectors (soft clustering)

Detects activities in heterogeneous data streams

Low-level features

- We employ two approaches:
 - Objects of interest in a scene 1. detected and tracked; events modelled as trajectories
 - VJ / HOG detectors
 - Kalman / Particle filter tracking
 - Rely on accuracy of tracker/ detector
 - Local spatio-temporal features 2.
 - Repeatable across different videos
 - HOGHOF, DTF
 - Unsupervised detection
 - Generic approach
 - Large vectors (D=162 \rightarrow 426)

BF (Brown Univ.)→

- Classic approach: Bag-of-Words
 - Build a dictionary of 'words' by clustering training features
 - Hard assign features to clusters 'words'

- Modern approach: Fisher vectors (Peronnin and Dance 2007)
 - Soft assignment of features to clusters
 - More detailed and accurate approach

- Modern approach: Fisher vectors
 - Soft assignment of features to clusters
 - \blacktriangleright I = ($\mathbf{x}_{1}, ..., \mathbf{x}_{N}$) set of D dim. feature vector
 - $\succ \text{ GMM:} \Theta = (\mu_{k'} \Sigma_{k'} \pi_k : k = 1, ..., K)$
 - > Associate each \mathbf{x}_i to a mode k with strength:

$$q_1$$
 q_2 q_3

$$q_{ik} = rac{\expigl[-rac{1}{2}(\mathbf{x}_i-\mu_k)^T\Sigma_k^{-1}(\mathbf{x}_i-\mu_k)igr]}{\sum_{t=1}^K \expigl[-rac{1}{2}(\mathbf{x}_i-\mu_t)^T\Sigma_k^{-1}(\mathbf{x}_i-\mu_t)igr]}$$

$$egin{aligned} u_{jk} &= rac{1}{N\sqrt{\pi_k}} \sum_{i=1}^N q_{ik} rac{x_{ji} - \mu_{jk}}{\sigma_{jk}}, & ext{j} = 1,2,\dots D \ v_{jk} &= rac{1}{N\sqrt{2\pi_k}} \sum_{i=1}^N q_{ik} \left[\left(rac{x_{ji} - \mu_{jk}}{\sigma_{jk}}
ight)^2 - 1
ight] \end{aligned}$$

$$\Phi(I) = egin{bmatrix} dots \ \mathbf{u}_k \ dots \ \mathbf{v}_k \ dots \ \mathbf{v}_k \ dots \end{bmatrix}$$

- Modern approach: Fisher vectors
 - Problem dimensionality increases
 - FV.dim = 2 x (Gaussians) x (Dims)
 - FV.dim = 6000 ~ 30000
 - PCA with efficient SVD algorithms
 - LM-SVD (Liu et al., 2013)
 - F-SVD (Halko et al., 2010)
 - SVDS (MATLAB)
 - ➢ dim → 64, 128, 256

$\mathbf{Dim}\; 6816 \rightarrow 64$	
<u>Algorithm</u>	Computation time (sec)
LM-SVD	1.95
F-SVD	0.89
SVDS	83.04

Recognition and anomaly detection at action level

- Action detection
 - ➢ HTK framework
 - Based on continuous HMMs
 - Output: Probability for each of the *n* possible actions for each testing sample
- Anomaly detection
 - Unrecognised actions
 - Actions with low confidence score (thresholds)

 S_1

 S_2

 S_3

 S_4

Data fusion and activity formulation

- Each sensor outputs a time sequence of actions
- Actions are put together in chronological order to formulate the activity sequence
- Actions can be represented by their start and end points to handle overlaps

Activity recognition

- High level inference
 - HIM algorithm (proposed)

- Output: One of the *m* possible activities for each testing sample
- Anomaly detection at high level
 - Proximity to activity classes (thresholds)
 - Define classes corresponding to abnormal behaviour

Action detection and inference

Handling prolonged activities

- Challenge 1: temporal dependencies cannot be efficiently encoded by a simple state model (e.g. HMM)
- Challenge 2: discriminative properties of simple state model inadequate for long sequences
- Solutions:

≻ Hybrid classifiers ~RF+HHMM (Kaloskampis et al. 2011)

> HIM algorithm (proposed)

Framework Evaluation: ENGIN dataset

- Activity recognition in video
 Cardiff ENGIN dataset (IMA 2014).
- Prolonged action sequences
- Temporal dependencies and discriminative properties
- Anomaly detection: erroneously executed activities

Engineering activities dataset

Framework Evaluation – Next Steps

- WASABI dataset
- Wide area surveillance challenge
- Sample received from DSTL (Richard Green)
- Available modalities:
 - Background maps
 - Full motion video
 - Wide area motion imagery
 - Radar data
 - Track data
- Challenges
 - Anomaly detection
 - Activity understanding

Framework Evaluation - Next Steps

- FMV data received:
 - ➢ 68 HD videos
 - ➢ Res: 1920x1080
 - Frame rate: 25 FPS
- 3 video types
 - Low, High, IR
- Initial approach
 - Exploit track data
 - Set up grid on the surveilled area
 - Learn model of normal behaviours from a number of trajectories
 - HIM behaviour analysis algorithm
 - Detect outliers

