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Flexibility of Recurrent Neural Networks
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image -> sequence of words



Flexibility of Recurrent Neural Networks

e.g. Sentiment Classification
sequence of words -> sentiment



Flexibility of Recurrent Neural Networks

e.g. Machine Translation
seq of words -> seq of words



Flexibility of Recurrent Neural Networks

e.g. Video classification on frame level
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applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W
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RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

Notice: the same function and the same set 
of parameters are used at every time step.



Recurrent Neural Networks
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The state consists of a single “hidden” vector h:
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Vocabulary:
[h,e,l,o]

Example training
sequence:
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Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”



Recurrent Neural Networks

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning



Recurrent Neural Networks

Convolutional Neural Network

Recurrent Neural Network
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Recurrent Neural Networks

h0

x0
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RT>

y0

<START>

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

v

Wih
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Recurrent Neural Networks

h0

x0
<STA
RT>

y0

<START>

test image

straw

h1

y1

hat

h2

y2

sample
<END> token
=> finish.



Recurrent Neural Networks

Image Sentence Datasets

Microsoft COCO
[Tsung-Yi Lin et al. 2014]
mscoco.org

currently:
~120K images
~5 sentences each

http://mscoco.org
http://mscoco.org
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Long Short Term Memory (LSTM)
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Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]

x
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Long Short Term Memory (LSTM)

Summary
- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don’t work very well
- Common to use LSTM or GRU: their additive interactions 

improve gradient flow
- Backward flow of gradients in RNN can explode or vanish. 

Exploding is controlled with gradient clipping. Vanishing is 
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research
- Better understanding (both theoretical and empirical) is needed.



Deep Learning Libraries
Caffe, Torch, Theano, TensorFlow



Caffe
http://caffe.berkeleyvision.org

http://caffe.berkeleyvision.org
http://caffe.berkeleyvision.org


Caffe overview

From U.C. Berkeley
Written in C++
Has Python and MATLAB bindings
Good for training or finetuning feedforward models



Caffe

45

Main classes
Blob: Stores data and 

derivatives (header source)

Layer: Transforms bottom 
blobs to top blobs (header + source)

Net: Many layers; computes 
gradients via forward / 
backward (header source)

Solver: Uses gradients to 
update weights (header source)

data

DataLayer

InnerProductLayer

diffs
X

data

diffs
y

SoftmaxLossLayer

data

diffs
fc1

data

diffs
W

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/blob.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/blob.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/layer.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/net.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/net.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/solver.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/solver.cpp


Caffe

Protocol Buffers
.proto file“Typed JSON” 

from Google

Define “message types” in 
.proto files

https://developers.google.com/protocol-buffers/ 

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/


Caffe

Protocol Buffers

name: “John Doe”
id: 1234
email: “jdoe@example.com”

.proto file

.prototxt file

“Typed JSON” 
from Google

Define “message types” in 
.proto files

Serialize instances to text 
files (.prototxt)

https://developers.google.com/protocol-buffers/ 

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/


Caffe

Protocol Buffers

name: “John Doe”
id: 1234
email: “jdoe@example.com”

.proto file

.prototxt file

Java class

C++ class

“Typed JSON” 
from Google

Define “message types” in 
.proto files

Serialize instances to text 
files (.prototxt)

Compile classes for 
different languages



Caffe

Protocol Buffers

https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto 
<- All Caffe proto types defined here, good documentation! 

https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto
https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto


Caffe

Training / Finetuning

No need to write code!
1. Convert data (run a script)
2. Define net (edit prototxt)
3. Define solver (edit prototxt)
4. Train (with pretrained weights) (run a script)



Caffe

Step 1: Convert Data
DataLayer reading from LMDB is the easiest
Create LMDB using convert_imageset
Need text file where each line is

“[path/to/image.jpeg] [label]”

Create HDF5 file yourself using h5py

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/tools/convert_imageset.cpp


Caffe

Step 2: Define Net
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Layers and Blobs 
often have same 
name!
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Caffe

Layers and Blobs 
often have same 
name!

Learning rates 
(weight + bias)

Regularization 
(weight + bias)

Number of output 
classes

Set these to 0 to 
freeze a layer

Step 2: Define Net



Caffe

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt 

● .prototxt can get ugly for 
big models

● ResNet-152 prototxt is 
6775 lines long!

● Not “compositional”; can’t 
easily define a residual 
block and reuse

Step 2: Define Net

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt
https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt


Caffe

Modified prototxt:
layer {
  name: "fc7"
  type: "InnerProduct"
  inner_product_param {
    num_output: 4096
  }
}
[... ReLU, Dropout]
layer {
  name: "my-fc8"
  type: "InnerProduct"
  inner_product_param {
    num_output: 10
  }
}

Step 2: Define Net (finetuning)
Original prototxt:
layer {
  name: "fc7"
  type: "InnerProduct"
  inner_product_param {
    num_output: 4096
  }
}
[... ReLU, Dropout]
layer {
  name: "fc8"
  type: "InnerProduct"
  inner_product_param {
    num_output: 1000
  }
}

Pretrained weights:
“fc7.weight”: [values]
“fc7.bias”: [values]
“fc8.weight”: [values]
“fc8.bias”: [values]

Same name: 
weights copied
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Caffe

Modified prototxt:
layer {
  name: "fc7"
  type: "InnerProduct"
  inner_product_param {
    num_output: 4096
  }
}
[... ReLU, Dropout]
layer {
  name: "my-fc8"
  type: "InnerProduct"
  inner_product_param {
    num_output: 10
  }
}

Step 2: Define Net (finetuning)
Original prototxt:
layer {
  name: "fc7"
  type: "InnerProduct"
  inner_product_param {
    num_output: 4096
  }
}
[... ReLU, Dropout]
layer {
  name: "fc8"
  type: "InnerProduct"
  inner_product_param {
    num_output: 1000
  }
}

Pretrained weights:
“fc7.weight”: [values]
“fc7.bias”: [values]
“fc8.weight”: [values]
“fc8.bias”: [values]

Same name: 
weights copied

Different name: 
weights reinitialized



Caffe

Step 3: Define Solver
Write a prototxt file defining a 

SolverParameter
If finetuning, copy existing 

solver.prototxt file
Change net to be your net
Change snapshot_prefix to your 

output
Reduce base learning rate (divide 

by 100)
Maybe change max_iter and 

snapshot

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L92
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L92


Caffe

Step 4: Train!
./build/tools/caffe train \
  -gpu 0 \
  -model path/to/trainval.prototxt \
  -solver path/to/solver.prototxt \
  -weights path/to/pretrained_weights.caffemodel

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp 

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp
https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp


Caffe

Step 4: Train!
./build/tools/caffe train \
  -gpu 0 \
  -model path/to/trainval.prototxt \
  -solver path/to/solver.prototxt \
  -weights path/to/pretrained_weights.caffemodel

-gpu -1 

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp 

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp
https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp


Caffe

Step 4: Train!
./build/tools/caffe train \
  -gpu 0 \
  -model path/to/trainval.prototxt \
  -solver path/to/solver.prototxt \
  -weights path/to/pretrained_weights.caffemodel

-gpu all 

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp 

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp
https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp


Caffe

Pros / Cons
(+) Good for feedforward networks
(+) Good for finetuning existing networks
(+) Train models without writing any code!
(+) Python and matlab interfaces are pretty useful!
(-) Need to write C++ / CUDA for new GPU layers
(-) Not good for recurrent networks
(-) Cumbersome for big networks (GoogLeNet, ResNet)



Torch
http://torch.ch

http://torch.ch
http://torch.ch


Torch

From NYU + IDIAP
Written in C and Lua
Used a lot a Facebook, DeepMind



Torch

Lua
High level scripting language, easy to 

interface with C
Similar to Javascript: 

One data structure:
table == JS object

Prototypical inheritance
metatable == JS prototype

First-class functions
Some gotchas:

1-indexed =(
Variables global by default =(
Small standard library http://tylerneylon.com/a/learn-lua/ 

http://tylerneylon.com/a/learn-lua/
http://tylerneylon.com/a/learn-lua/


Torch

Tensors
Torch tensors are just like numpy arrays



Torch

Tensors
Torch tensors are just like numpy arrays



Torch

Tensors
Torch tensors are just like numpy arrays



Torch

Tensors
Like numpy, can easily change data type:



Torch

Tensors
Unlike numpy, GPU is just a datatype away:



Torch

Tensors
Documentation on GitHub:

https://github.com/torch/torch7/blob/master/doc/tensor.md https://github.com/torch/torch7/blob/master/doc/maths.md 

https://github.com/torch/torch7/blob/master/doc/tensor.md
https://github.com/torch/torch7/blob/master/doc/tensor.md
https://github.com/torch/torch7/blob/master/doc/maths.md
https://github.com/torch/torch7/blob/master/doc/maths.md


Torch

nn
nn module lets you easily build 
and train neural nets
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nn
nn module lets you easily build 
and train neural nets

Build a two-layer ReLU net



Torch

nn
nn module lets you easily build 
and train neural nets

Get weights and gradient for 
entire network



Torch

nn
nn module lets you easily build 
and train neural nets

Use a softmax loss function



Torch

nn
nn module lets you easily build 
and train neural nets

Generate random data



Torch

nn
nn module lets you easily build 
and train neural nets

Forward pass: compute 
scores and loss



Torch

nn
nn module lets you easily build 
and train neural nets

Backward pass: Compute 
gradients. Remember to set 
weight gradients to zero!



Torch

nn
nn module lets you easily build 
and train neural nets

Update: Make a gradient 
descent step



Torch

cunn
Running on GPU is easy:
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Running on GPU is easy:

Import a few new packages

Cast network and criterion



Torch

cunn
Running on GPU is easy:

Import a few new packages

Cast network and criterion

Cast data and labels



Torch

optim
optim package implements different 
update rules: momentum, Adam, etc 
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optim
optim package implements different 
update rules: momentum, Adam, etc

Import optim package 



Torch

optim
optim package implements different 
update rules: momentum, Adam, etc

Import optim package

Write a callback function that returns 
loss and gradients 



Torch

optim
optim package implements different 
update rules: momentum, Adam, etc

Import optim package

Write a callback function that returns 
loss and gradients

state variable holds hyperparameters, 
cached values, etc; pass it to adam 



Torch

Modules
Caffe has Nets and Layers; 
Torch just has Modules



Torch

Modules
Caffe has Nets and Layers; 
Torch just has Modules

Modules are classes written in 
Lua; easy to read and write

Forward / backward written in Lua 
using Tensor methods

Same code runs on CPU / GPU
https://github.com/torch/nn/blob/master/Linear.lua 

https://github.com/torch/nn/blob/master/Linear.lua
https://github.com/torch/nn/blob/master/Linear.lua


Torch

Modules
Caffe has Nets and Layers; 
Torch just has Modules

Modules are classes written in 
Lua; easy to read and write

updateOutput: Forward pass; 
compute output

https://github.com/torch/nn/blob/master/Linear.lua 

https://github.com/torch/nn/blob/master/Linear.lua
https://github.com/torch/nn/blob/master/Linear.lua


Torch

Modules
Caffe has Nets and Layers; 
Torch just has Modules

Modules are classes written in 
Lua; easy to read and write

updateGradInput: Backward; 
compute gradient of input

https://github.com/torch/nn/blob/master/Linear.lua 

https://github.com/torch/nn/blob/master/Linear.lua
https://github.com/torch/nn/blob/master/Linear.lua


Torch

Modules
Caffe has Nets and Layers; 
Torch just has Modules

Modules are classes written in 
Lua; easy to read and write

accGradParameters: Backward; 
compute gradient of weights

https://github.com/torch/nn/blob/master/Linear.lua 

https://github.com/torch/nn/blob/master/Linear.lua
https://github.com/torch/nn/blob/master/Linear.lua


Torch

Modules
Tons of built-in modules and loss functions

https://github.com/torch/nn 

https://github.com/torch/nn
https://github.com/torch/nn


Torch

Modules
Writing your own modules is easy!



Torch

Modules
Container modules allow you to combine multiple modules
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Modules
Container modules allow you to combine multiple modules

x

mod1

mod2

out

x

mod1 mod2

out[2]out[1]

x1

mod1 mod2

out[2]out[1]

x2



Torch

nngraph
Use nngraph to build modules 
that combine their inputs in 
complex ways

Inputs: x, y, z
Outputs: c
a = x + y
b = a ☉ z
c = a + b



Torch

nngraph
Use nngraph to build modules 
that combine their inputs in 
complex ways

Inputs: x, y, z
Outputs: c
a = x + y
b = a ☉ z
c = a + b

x y z

+

a

☉

b

+

c



Torch

nngraph
Use nngraph to build modules 
that combine their inputs in 
complex ways

Inputs: x, y, z
Outputs: c
a = x + y
b = a ☉ z
c = a + b

x y z

+

a

☉

b

+

c



Torch

Pretrained Models
loadcaffe: Load pretrained Caffe models: AlexNet, VGG, some others
https://github.com/szagoruyko/loadcaffe 

GoogLeNet v1: https://github.com/soumith/inception.torch 

GoogLeNet v3: https://github.com/Moodstocks/inception-v3.torch 

ResNet: https://github.com/facebook/fb.resnet.torch 

https://github.com/szagoruyko/loadcaffe
https://github.com/szagoruyko/loadcaffe
https://github.com/soumith/inception.torch
https://github.com/Moodstocks/inception-v3.torch
https://github.com/facebook/fb.resnet.torch


Torch

Package Management

After installing torch, use luarocks 
to install or update Lua packages

(Similar to pip install from Python)



Torch

Torch: Other useful packages
torch.cudnn: Bindings for NVIDIA cuDNN kernels

https://github.com/soumith/cudnn.torch 

torch-hdf5: Read and write HDF5 files from Torch
https://github.com/deepmind/torch-hdf5

lua-cjson: Read and write JSON files from Lua
https://luarocks.org/modules/luarocks/lua-cjson

cltorch, clnn: OpenCL backend for Torch, and port of nn
https://github.com/hughperkins/cltorch, https://github.com/hughperkins/clnn 

torch-autograd: Automatic differentiation; sort of like more powerful nngraph, 
similar to Theano or TensorFlow
https://github.com/twitter/torch-autograd 

fbcunn: Facebook: FFT conv, multi-GPU (DataParallel, ModelParallel)
https://github.com/facebook/fbcunn 

https://github.com/soumith/cudnn.torch
https://github.com/soumith/cudnn.torch
https://github.com/deepmind/torch-hdf5
https://github.com/deepmind/torch-hdf5
https://luarocks.org/modules/luarocks/lua-cjson
https://luarocks.org/modules/luarocks/lua-cjson
https://github.com/hughperkins/cltorch
https://github.com/hughperkins/clnn
https://github.com/hughperkins/cltorch
https://github.com/twitter/torch-autograd
https://github.com/twitter/torch-autograd
https://github.com/facebook/fbcunn
https://github.com/facebook/fbcunn


Torch

Pros / Cons

(-) Lua
(-) Less plug-and-play than Caffe

You usually write your own training code
(+) Lots of modular pieces that are easy to combine
(+) Easy to write your own layer types and run on GPU
(+) Most of the library code is in Lua, easy to read
(+) Lots of pretrained models!
(-) Not great for RNNs



Theano
http://deeplearning.net/software/theano/

http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/


Theano

From Yoshua Bengio’s group at University of Montreal

Embracing computation graphs, symbolic computation

High-level wrappers: Keras, Lasagne



Theano

Computational Graphs
x y z
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Theano

Computational Graphs
x y z

+

a

☉

b

+

c

Define symbolic variables;
these are inputs to the 
graph



Theano

Computational Graphs
x y z

+

a

☉

b

+

c

Compute intermediates 
and outputs symbolically



Theano

Computational Graphs
x y z

+

a

☉

b

+

c

Compile a function that 
produces c from x, y, z
(generates code)



Theano

Computational Graphs
x y z

+

a

☉

b

+

c

Run the function, passing 
some numpy arrays
(may run on GPU)



Theano

Computational Graphs
x y z

+

a

☉

b

+

c

Repeat the same 
computation using numpy 
operations (runs on CPU)



Theano

Simple Neural Net



Theano

Simple Neural Net

Define symbolic variables:
x = data
y = labels
w1 = first-layer weights
w2 = second-layer weights



Theano

Simple Neural Net

Forward: Compute scores
(symbolically)



Theano

Simple Neural Net

Forward: Compute probs, loss
(symbolically)



Theano

Simple Neural Net

Compile a function that 
computes loss, scores



Theano

Simple Neural Net

Stuff actual numpy arrays into 
the function



Theano

Computing Gradients



Theano

Computing Gradients

Same as before: define 
variables, compute scores and 
loss symbolically



Theano

Computing Gradients

Theano computes gradients for 
us symbolically!



Theano

Computing Gradients

Now the function returns loss, 
scores, and gradients



Theano

Computing Gradients

Use the function to perform 
gradient descent!



Theano

Pros / Cons
(+) Python + numpy
(+) Computational graph is nice abstraction
(+) RNNs fit nicely in computational graph
(-) Raw Theano is somewhat low-level
(+) High level wrappers (Keras, Lasagne) ease the pain
(-) Error messages can be unhelpful
(-) Large models can have long compile times
(-) Much “fatter” than Torch; more magic
(-) Patchy support for pretrained models



TensorFlow
https://www.tensorflow.org

https://www.tensorflow.org
https://www.tensorflow.org


TensorFlow

From Google

Very similar to Theano - all about computation graphs

Easy visualizations (TensorBoard)

Multi-GPU and multi-node training



TensorFlow

TensorFlow: Two-Layer Net



TensorFlow

TensorFlow: Two-Layer Net
Create placeholders for data 
and labels: These will be fed 
to the graph



TensorFlow

TensorFlow: Two-Layer Net

Create Variables to hold 
weights; similar to Theano 
shared variables

Initialize variables with numpy 
arrays 



TensorFlow

TensorFlow: Two-Layer Net

Forward: Compute scores, 
probs, loss (symbolically)



TensorFlow

TensorFlow: Two-Layer Net

Running train_step will use 
SGD to minimize loss



TensorFlow

TensorFlow: Two-Layer Net

Create an artificial dataset; y is 
one-hot like Keras



TensorFlow

TensorFlow: Two-Layer Net

Actually train the model



TensorFlow

TensorFlow: Multi-GPU
Data parallelism: 
synchronous or asynchronous



TensorFlow

TensorFlow: Multi-GPU
Data parallelism: 
synchronous or asynchronous

Model parallelism: 
Split model across GPUs



TensorFlow

TensorFlow: Distributed
Single machine:
Like other frameworks

Many machines:
Not open source (yet) =(



TensorFlow

TensorFlow: Pros / Cons
(+) Python + numpy
(+) Computational graph abstraction, like Theano; great for RNNs
(+) Much faster compile times than Theano
(+) Slightly more convenient than raw Theano?
(+) TensorBoard for visualization
(+) Data AND model parallelism; best of all frameworks
(+/-) Distributed models, but not open-source yet
(-) Slower than other frameworks right now
(-) Much “fatter” than Torch; more magic
(-) Not many pretrained models



Comparison between Libraries

Caffe Torch Theano TensorFlow

Language C++, Python Lua Python Python

Pretrained Yes ++ Yes ++ Yes (Lasagne) Inception

Multi-GPU: 
Data parallel

Yes Yes 
cunn.DataParallelTable

Yes
platoon

Yes

Multi-GPU:
Model parallel

No Yes
fbcunn.ModelParallel

Experimental Yes (best)

Readable 
source code

Yes (C++) Yes (Lua) No No

Good at RNN No Mediocre Yes Yes (best)



Any Question???
Thanks


