
RNN LSTM and Deep Learning Libraries
UDRC Summer School

Muhammad Awais
m.a.rana@surrey.ac.uk

Outline

➢ Recurrent Neural Network
➢ Application of RNN
➢ LSTM
➢ Caffe
➢ Torch
➢ Theano
➢ TensorFlow

Flexibility of Recurrent Neural Networks

Vanilla Neural Networks

Flexibility of Recurrent Neural Networks

e.g. Image Captioning
image -> sequence of words

Flexibility of Recurrent Neural Networks

e.g. Sentiment Classification
sequence of words -> sentiment

Flexibility of Recurrent Neural Networks

e.g. Machine Translation
seq of words -> seq of words

Flexibility of Recurrent Neural Networks

e.g. Video classification on frame level

Recurrent Neural Networks

x

RNN

Recurrent Neural Networks

x

RNN

y
usually want to predict
a vector at some time
steps

Recurrent Neural Networks

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

new state old state input vector at
some time step

some function
with parameters W

Recurrent Neural Networks

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

new state old state input vector at
some time step

some function
with parameters W

Notice: the same function and the same set
of parameters are used at every time step.

Recurrent Neural Networks

x

RNN

y

The state consists of a single “hidden” vector h:

Recurrent Neural Networks

Character-level
language model
example

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

x

RNN

y

Recurrent Neural Networks

Character-level
language model
example

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Recurrent Neural Networks

Character-level
language model
example

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Recurrent Neural Networks

Character-level
language model
example

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Recurrent Neural Networks

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning

Recurrent Neural Networks

Convolutional Neural Network

Recurrent Neural Network

Recurrent Neural Networks
test image

Recurrent Neural Networks
test image

Recurrent Neural Networks
test image

X

Recurrent Neural Networks
test image

x0
<STA
RT>

<START>

Recurrent Neural Networks

h0

x0
<STA
RT>

y0

<START>

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

v

Wih

Recurrent Neural Networks

h0

x0
<STA
RT>

y0

<START>

test image

straw

sample!

Recurrent Neural Networks

h0

x0
<STA
RT>

y0

<START>

test image

straw

h1

y1

Recurrent Neural Networks

h0

x0
<STA
RT>

y0

<START>

test image

straw

h1

y1

hat

sample!

Recurrent Neural Networks

h0

x0
<STA
RT>

y0

<START>

test image

straw

h1

y1

hat

h2

y2

Recurrent Neural Networks

h0

x0
<STA
RT>

y0

<START>

test image

straw

h1

y1

hat

h2

y2

sample
<END> token
=> finish.

Recurrent Neural Networks

Image Sentence Datasets

Microsoft COCO
[Tsung-Yi Lin et al. 2014]
mscoco.org

currently:
~120K images
~5 sentences each

http://mscoco.org
http://mscoco.org

Recurrent Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks

time

depth

Recurrent Neural Networks

time

depth

LSTM:

Long Short Term Memory (LSTM)

x

h

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]

x

h

vector from
before (h)

W

i

f

o

g

vector from
below (x)

sigmoid

sigmoid

tanh

sigmoid

4n x 2n 4n 4*n

Long Short Term Memory (LSTM)

cell
state c

f

x

Long Short Term Memory (LSTM)

cell
state c

f

x

i g

x

+

Long Short Term Memory (LSTM)

cell
state c

f

x +

tanh

o x

h

c

i g

x

Long Short Term Memory (LSTM)

cell
state c

f

x +

tanh

o x

h

c

i g

x

higher layer, or
prediction

Long Short Term Memory (LSTM)

LSTM

cell
state c

f

x

i g

x

+

tanh

o

x
f

x

i g

x

+

tanh

o

x

one timestep one timestep

h hh x x

Long Short Term Memory (LSTM)

Summary
- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don’t work very well
- Common to use LSTM or GRU: their additive interactions

improve gradient flow
- Backward flow of gradients in RNN can explode or vanish.

Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research
- Better understanding (both theoretical and empirical) is needed.

Deep Learning Libraries
Caffe, Torch, Theano, TensorFlow

Caffe
http://caffe.berkeleyvision.org

http://caffe.berkeleyvision.org
http://caffe.berkeleyvision.org

Caffe overview

From U.C. Berkeley
Written in C++
Has Python and MATLAB bindings
Good for training or finetuning feedforward models

Caffe

45

Main classes
Blob: Stores data and

derivatives (header source)

Layer: Transforms bottom
blobs to top blobs (header + source)

Net: Many layers; computes
gradients via forward /
backward (header source)

Solver: Uses gradients to
update weights (header source)

data

DataLayer

InnerProductLayer

diffs
X

data

diffs
y

SoftmaxLossLayer

data

diffs
fc1

data

diffs
W

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/blob.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/blob.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/layer.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/net.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/net.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/solver.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/solver.cpp

Caffe

Protocol Buffers
.proto file“Typed JSON”

from Google

Define “message types” in
.proto files

https://developers.google.com/protocol-buffers/

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

Caffe

Protocol Buffers

name: “John Doe”
id: 1234
email: “jdoe@example.com”

.proto file

.prototxt file

“Typed JSON”
from Google

Define “message types” in
.proto files

Serialize instances to text
files (.prototxt)

https://developers.google.com/protocol-buffers/

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

Caffe

Protocol Buffers

name: “John Doe”
id: 1234
email: “jdoe@example.com”

.proto file

.prototxt file

Java class

C++ class

“Typed JSON”
from Google

Define “message types” in
.proto files

Serialize instances to text
files (.prototxt)

Compile classes for
different languages

Caffe

Protocol Buffers

https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto
<- All Caffe proto types defined here, good documentation!

https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto
https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto

Caffe

Training / Finetuning

No need to write code!
1. Convert data (run a script)
2. Define net (edit prototxt)
3. Define solver (edit prototxt)
4. Train (with pretrained weights) (run a script)

Caffe

Step 1: Convert Data
DataLayer reading from LMDB is the easiest
Create LMDB using convert_imageset
Need text file where each line is

“[path/to/image.jpeg] [label]”

Create HDF5 file yourself using h5py

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/tools/convert_imageset.cpp

Caffe

Step 2: Define Net

Caffe

Layers and Blobs
often have same
name!

Step 2: Define Net

Caffe

Layers and Blobs
often have same
name!

Learning rates
(weight + bias)

Regularization
(weight + bias)

Step 2: Define Net

Caffe

Layers and Blobs
often have same
name!

Learning rates
(weight + bias)

Regularization
(weight + bias)

Number of output
classes

Step 2: Define Net

Caffe

Layers and Blobs
often have same
name!

Learning rates
(weight + bias)

Regularization
(weight + bias)

Number of output
classes

Set these to 0 to
freeze a layer

Step 2: Define Net

Caffe

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt

● .prototxt can get ugly for
big models

● ResNet-152 prototxt is
6775 lines long!

● Not “compositional”; can’t
easily define a residual
block and reuse

Step 2: Define Net

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt
https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt

Caffe

Modified prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "my-fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 10
 }
}

Step 2: Define Net (finetuning)
Original prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 1000
 }
}

Pretrained weights:
“fc7.weight”: [values]
“fc7.bias”: [values]
“fc8.weight”: [values]
“fc8.bias”: [values]

Same name:
weights copied

Caffe

Modified prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "my-fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 10
 }
}

Step 2: Define Net (finetuning)
Original prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 1000
 }
}

Pretrained weights:
“fc7.weight”: [values]
“fc7.bias”: [values]
“fc8.weight”: [values]
“fc8.bias”: [values]

Same name:
weights copied

Caffe

Modified prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "my-fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 10
 }
}

Step 2: Define Net (finetuning)
Original prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 1000
 }
}

Pretrained weights:
“fc7.weight”: [values]
“fc7.bias”: [values]
“fc8.weight”: [values]
“fc8.bias”: [values]

Same name:
weights copied

Different name:
weights reinitialized

Caffe

Step 3: Define Solver
Write a prototxt file defining a

SolverParameter
If finetuning, copy existing

solver.prototxt file
Change net to be your net
Change snapshot_prefix to your

output
Reduce base learning rate (divide

by 100)
Maybe change max_iter and

snapshot

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L92
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L92

Caffe

Step 4: Train!
./build/tools/caffe train \
 -gpu 0 \
 -model path/to/trainval.prototxt \
 -solver path/to/solver.prototxt \
 -weights path/to/pretrained_weights.caffemodel

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp
https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

Caffe

Step 4: Train!
./build/tools/caffe train \
 -gpu 0 \
 -model path/to/trainval.prototxt \
 -solver path/to/solver.prototxt \
 -weights path/to/pretrained_weights.caffemodel

-gpu -1

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp
https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

Caffe

Step 4: Train!
./build/tools/caffe train \
 -gpu 0 \
 -model path/to/trainval.prototxt \
 -solver path/to/solver.prototxt \
 -weights path/to/pretrained_weights.caffemodel

-gpu all

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp
https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

Caffe

Pros / Cons
(+) Good for feedforward networks
(+) Good for finetuning existing networks
(+) Train models without writing any code!
(+) Python and matlab interfaces are pretty useful!
(-) Need to write C++ / CUDA for new GPU layers
(-) Not good for recurrent networks
(-) Cumbersome for big networks (GoogLeNet, ResNet)

Torch
http://torch.ch

http://torch.ch
http://torch.ch

Torch

From NYU + IDIAP
Written in C and Lua
Used a lot a Facebook, DeepMind

Torch

Lua
High level scripting language, easy to

interface with C
Similar to Javascript:

One data structure:
table == JS object

Prototypical inheritance
metatable == JS prototype

First-class functions
Some gotchas:

1-indexed =(
Variables global by default =(
Small standard library http://tylerneylon.com/a/learn-lua/

http://tylerneylon.com/a/learn-lua/
http://tylerneylon.com/a/learn-lua/

Torch

Tensors
Torch tensors are just like numpy arrays

Torch

Tensors
Torch tensors are just like numpy arrays

Torch

Tensors
Torch tensors are just like numpy arrays

Torch

Tensors
Like numpy, can easily change data type:

Torch

Tensors
Unlike numpy, GPU is just a datatype away:

Torch

Tensors
Documentation on GitHub:

https://github.com/torch/torch7/blob/master/doc/tensor.md https://github.com/torch/torch7/blob/master/doc/maths.md

https://github.com/torch/torch7/blob/master/doc/tensor.md
https://github.com/torch/torch7/blob/master/doc/tensor.md
https://github.com/torch/torch7/blob/master/doc/maths.md
https://github.com/torch/torch7/blob/master/doc/maths.md

Torch

nn
nn module lets you easily build
and train neural nets

Torch

nn
nn module lets you easily build
and train neural nets

Build a two-layer ReLU net

Torch

nn
nn module lets you easily build
and train neural nets

Get weights and gradient for
entire network

Torch

nn
nn module lets you easily build
and train neural nets

Use a softmax loss function

Torch

nn
nn module lets you easily build
and train neural nets

Generate random data

Torch

nn
nn module lets you easily build
and train neural nets

Forward pass: compute
scores and loss

Torch

nn
nn module lets you easily build
and train neural nets

Backward pass: Compute
gradients. Remember to set
weight gradients to zero!

Torch

nn
nn module lets you easily build
and train neural nets

Update: Make a gradient
descent step

Torch

cunn
Running on GPU is easy:

Torch

cunn
Running on GPU is easy:

Import a few new packages

Torch

cunn
Running on GPU is easy:

Import a few new packages

Cast network and criterion

Torch

cunn
Running on GPU is easy:

Import a few new packages

Cast network and criterion

Cast data and labels

Torch

optim
optim package implements different
update rules: momentum, Adam, etc

Torch

optim
optim package implements different
update rules: momentum, Adam, etc

Import optim package

Torch

optim
optim package implements different
update rules: momentum, Adam, etc

Import optim package

Write a callback function that returns
loss and gradients

Torch

optim
optim package implements different
update rules: momentum, Adam, etc

Import optim package

Write a callback function that returns
loss and gradients

state variable holds hyperparameters,
cached values, etc; pass it to adam

Torch

Modules
Caffe has Nets and Layers;
Torch just has Modules

Torch

Modules
Caffe has Nets and Layers;
Torch just has Modules

Modules are classes written in
Lua; easy to read and write

Forward / backward written in Lua
using Tensor methods

Same code runs on CPU / GPU
https://github.com/torch/nn/blob/master/Linear.lua

https://github.com/torch/nn/blob/master/Linear.lua
https://github.com/torch/nn/blob/master/Linear.lua

Torch

Modules
Caffe has Nets and Layers;
Torch just has Modules

Modules are classes written in
Lua; easy to read and write

updateOutput: Forward pass;
compute output

https://github.com/torch/nn/blob/master/Linear.lua

https://github.com/torch/nn/blob/master/Linear.lua
https://github.com/torch/nn/blob/master/Linear.lua

Torch

Modules
Caffe has Nets and Layers;
Torch just has Modules

Modules are classes written in
Lua; easy to read and write

updateGradInput: Backward;
compute gradient of input

https://github.com/torch/nn/blob/master/Linear.lua

https://github.com/torch/nn/blob/master/Linear.lua
https://github.com/torch/nn/blob/master/Linear.lua

Torch

Modules
Caffe has Nets and Layers;
Torch just has Modules

Modules are classes written in
Lua; easy to read and write

accGradParameters: Backward;
compute gradient of weights

https://github.com/torch/nn/blob/master/Linear.lua

https://github.com/torch/nn/blob/master/Linear.lua
https://github.com/torch/nn/blob/master/Linear.lua

Torch

Modules
Tons of built-in modules and loss functions

https://github.com/torch/nn

https://github.com/torch/nn
https://github.com/torch/nn

Torch

Modules
Writing your own modules is easy!

Torch

Modules
Container modules allow you to combine multiple modules

Torch

Modules
Container modules allow you to combine multiple modules

x

mod1

mod2

out

Torch

Modules
Container modules allow you to combine multiple modules

x

mod1

mod2

out

x

mod1 mod2

out[2]out[1]

Torch

Modules
Container modules allow you to combine multiple modules

x

mod1

mod2

out

x

mod1 mod2

out[2]out[1]

x1

mod1 mod2

out[2]out[1]

x2

Torch

nngraph
Use nngraph to build modules
that combine their inputs in
complex ways

Inputs: x, y, z
Outputs: c
a = x + y
b = a ☉ z
c = a + b

Torch

nngraph
Use nngraph to build modules
that combine their inputs in
complex ways

Inputs: x, y, z
Outputs: c
a = x + y
b = a ☉ z
c = a + b

x y z

+

a

☉

b

+

c

Torch

nngraph
Use nngraph to build modules
that combine their inputs in
complex ways

Inputs: x, y, z
Outputs: c
a = x + y
b = a ☉ z
c = a + b

x y z

+

a

☉

b

+

c

Torch

Pretrained Models
loadcaffe: Load pretrained Caffe models: AlexNet, VGG, some others
https://github.com/szagoruyko/loadcaffe

GoogLeNet v1: https://github.com/soumith/inception.torch

GoogLeNet v3: https://github.com/Moodstocks/inception-v3.torch

ResNet: https://github.com/facebook/fb.resnet.torch

https://github.com/szagoruyko/loadcaffe
https://github.com/szagoruyko/loadcaffe
https://github.com/soumith/inception.torch
https://github.com/Moodstocks/inception-v3.torch
https://github.com/facebook/fb.resnet.torch

Torch

Package Management

After installing torch, use luarocks
to install or update Lua packages

(Similar to pip install from Python)

Torch

Torch: Other useful packages
torch.cudnn: Bindings for NVIDIA cuDNN kernels

https://github.com/soumith/cudnn.torch

torch-hdf5: Read and write HDF5 files from Torch
https://github.com/deepmind/torch-hdf5

lua-cjson: Read and write JSON files from Lua
https://luarocks.org/modules/luarocks/lua-cjson

cltorch, clnn: OpenCL backend for Torch, and port of nn
https://github.com/hughperkins/cltorch, https://github.com/hughperkins/clnn

torch-autograd: Automatic differentiation; sort of like more powerful nngraph,
similar to Theano or TensorFlow
https://github.com/twitter/torch-autograd

fbcunn: Facebook: FFT conv, multi-GPU (DataParallel, ModelParallel)
https://github.com/facebook/fbcunn

https://github.com/soumith/cudnn.torch
https://github.com/soumith/cudnn.torch
https://github.com/deepmind/torch-hdf5
https://github.com/deepmind/torch-hdf5
https://luarocks.org/modules/luarocks/lua-cjson
https://luarocks.org/modules/luarocks/lua-cjson
https://github.com/hughperkins/cltorch
https://github.com/hughperkins/clnn
https://github.com/hughperkins/cltorch
https://github.com/twitter/torch-autograd
https://github.com/twitter/torch-autograd
https://github.com/facebook/fbcunn
https://github.com/facebook/fbcunn

Torch

Pros / Cons

(-) Lua
(-) Less plug-and-play than Caffe

You usually write your own training code
(+) Lots of modular pieces that are easy to combine
(+) Easy to write your own layer types and run on GPU
(+) Most of the library code is in Lua, easy to read
(+) Lots of pretrained models!
(-) Not great for RNNs

Theano
http://deeplearning.net/software/theano/

http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/

Theano

From Yoshua Bengio’s group at University of Montreal

Embracing computation graphs, symbolic computation

High-level wrappers: Keras, Lasagne

Theano

Computational Graphs
x y z

+

a

☉

b

+

c

Theano

Computational Graphs
x y z

+

a

☉

b

+

c

Theano

Computational Graphs
x y z

+

a

☉

b

+

c

Define symbolic variables;
these are inputs to the
graph

Theano

Computational Graphs
x y z

+

a

☉

b

+

c

Compute intermediates
and outputs symbolically

Theano

Computational Graphs
x y z

+

a

☉

b

+

c

Compile a function that
produces c from x, y, z
(generates code)

Theano

Computational Graphs
x y z

+

a

☉

b

+

c

Run the function, passing
some numpy arrays
(may run on GPU)

Theano

Computational Graphs
x y z

+

a

☉

b

+

c

Repeat the same
computation using numpy
operations (runs on CPU)

Theano

Simple Neural Net

Theano

Simple Neural Net

Define symbolic variables:
x = data
y = labels
w1 = first-layer weights
w2 = second-layer weights

Theano

Simple Neural Net

Forward: Compute scores
(symbolically)

Theano

Simple Neural Net

Forward: Compute probs, loss
(symbolically)

Theano

Simple Neural Net

Compile a function that
computes loss, scores

Theano

Simple Neural Net

Stuff actual numpy arrays into
the function

Theano

Computing Gradients

Theano

Computing Gradients

Same as before: define
variables, compute scores and
loss symbolically

Theano

Computing Gradients

Theano computes gradients for
us symbolically!

Theano

Computing Gradients

Now the function returns loss,
scores, and gradients

Theano

Computing Gradients

Use the function to perform
gradient descent!

Theano

Pros / Cons
(+) Python + numpy
(+) Computational graph is nice abstraction
(+) RNNs fit nicely in computational graph
(-) Raw Theano is somewhat low-level
(+) High level wrappers (Keras, Lasagne) ease the pain
(-) Error messages can be unhelpful
(-) Large models can have long compile times
(-) Much “fatter” than Torch; more magic
(-) Patchy support for pretrained models

TensorFlow
https://www.tensorflow.org

https://www.tensorflow.org
https://www.tensorflow.org

TensorFlow

From Google

Very similar to Theano - all about computation graphs

Easy visualizations (TensorBoard)

Multi-GPU and multi-node training

TensorFlow

TensorFlow: Two-Layer Net

TensorFlow

TensorFlow: Two-Layer Net
Create placeholders for data
and labels: These will be fed
to the graph

TensorFlow

TensorFlow: Two-Layer Net

Create Variables to hold
weights; similar to Theano
shared variables

Initialize variables with numpy
arrays

TensorFlow

TensorFlow: Two-Layer Net

Forward: Compute scores,
probs, loss (symbolically)

TensorFlow

TensorFlow: Two-Layer Net

Running train_step will use
SGD to minimize loss

TensorFlow

TensorFlow: Two-Layer Net

Create an artificial dataset; y is
one-hot like Keras

TensorFlow

TensorFlow: Two-Layer Net

Actually train the model

TensorFlow

TensorFlow: Multi-GPU
Data parallelism:
synchronous or asynchronous

TensorFlow

TensorFlow: Multi-GPU
Data parallelism:
synchronous or asynchronous

Model parallelism:
Split model across GPUs

TensorFlow

TensorFlow: Distributed
Single machine:
Like other frameworks

Many machines:
Not open source (yet) =(

TensorFlow

TensorFlow: Pros / Cons
(+) Python + numpy
(+) Computational graph abstraction, like Theano; great for RNNs
(+) Much faster compile times than Theano
(+) Slightly more convenient than raw Theano?
(+) TensorBoard for visualization
(+) Data AND model parallelism; best of all frameworks
(+/-) Distributed models, but not open-source yet
(-) Slower than other frameworks right now
(-) Much “fatter” than Torch; more magic
(-) Not many pretrained models

Comparison between Libraries

Caffe Torch Theano TensorFlow

Language C++, Python Lua Python Python

Pretrained Yes ++ Yes ++ Yes (Lasagne) Inception

Multi-GPU:
Data parallel

Yes Yes
cunn.DataParallelTable

Yes
platoon

Yes

Multi-GPU:
Model parallel

No Yes
fbcunn.ModelParallel

Experimental Yes (best)

Readable
source code

Yes (C++) Yes (Lua) No No

Good at RNN No Mediocre Yes Yes (best)

Any Question???
Thanks

