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Overview Narrowband Beamforming

Polynomial Matrix Co-Enthusiasts
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Overview Narrowband Beamforming

Today’s Overview

1. Narrowband array processing and beamforming;

2. Narrowband blind source separation;

3. Polynomial matrix fundamentals and algorithms;

4. Broadband array applications.
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Narrowband Beamforming
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Overview Narrowband Beamforming

Intuitive Beamforming

◮ A farfield wavefront arrives at a sensor array:

x(t)

δ(t)

δ(t− 2∆τ )

δ(t−∆τ )

δ(t− 3∆τ )

δ(t− 4∆τ )

◮ due to the direction of arrival (DOA) and finite propagation speed,
the wavefront will arrive at different sensors with a delay ∆τ ;

◮ with appropriate processing (beamforming), the sensor signals can
be aligned to create constructive interference at the output x(t).
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Spatial Sampling
◮ For unambiguous spatial sampling, we need to take at

least two samples per wavelength of the highest frequency
component in the array signals;

◮ analogy from temporal sampling (Nyquist): take at least two
samples per period (relating to the highest frequency component);

◮ Wavelength λ and frequency f are related by the propagation
speed c in the medium: λ = c

f
;

d

ϑ
d sin(ϑ)

◮ maximum sensor distance

d =
λmax

2
=

c

2fmax

◮ time delay between sensors

∆τ =
d sin(ϑ)

c
=

sin(ϑ)

2fmax
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Spatial and Temporal Sampling
◮ Consider the array signals x0(t) and x1(t) due to a source
ej(ωt+ϕ0):

d

x0(t) = ejωt

x1(t) = ejω(t−∆τ)

ej(ωt+ϕ0)

ϑ
d sin(ϑ)

◮ sampling with t = nTs leads to

x0[n] = ejωnTs and x1[n] = ejω(nTs−∆τ)

◮ with fmax = fs
2 = 1

2Ts
and normalised angular frequency Ω = ωTs,

x0[n] = ejΩn and x1[n] = ejΩn · e−jΩ sin(ϑ)
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Narrowband Array Signals

◮ A narrowband source with norm. angular frequency Ω
illuminates an M -element linear array of equispaced sensors:

x[n] =











x0[n]
x1[n]
...

xM−1[n]











= ejΩn ·











1

e−jΩsin(ϑ)

...

e−j(M−1)Ω sin(ϑ)











= ejΩn · sΩ,ϑ

◮ the vector sΩ,ϑ characterises the phase shifts of waveform with
frequency Ω and DOA ϑ measured at the array sensors;

◮ since a narrowband signal ejΩn only causes phase shifts rather
than delays, constructive interference can be accomplished by a
set of complex multipliers rather than processors δ(t−m∆τ),
m = 0, 1, . . . (M − 1);

◮ beamforming problem: how to select the set of complex
coefficients?
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Narrowband Array Processing
◮ Find a set of complex multipliers wm, m = 0, 1, . . . (M − 1):

.

.

.

y[n]

wM−1

w1

.

.

.

w0

ej(Ωn+ϕ0)

ejΩne−j(M−1)Ω sin(θ)

ejΩne−jΩ sin(θ)

ejΩn

◮ to steer the array characteristic towards this source, the output

y[n] = [w0 w1 . . . wM−1]e
jΩn











1

e−jΩ sin(ϑ)

...

e−j(M−1)Ω sin(ϑ)











= ejΩnwHsΩ,ϑ

should fulfill y[n] = ejΩn, leading to wHsΩ,ϑ = 1.
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Beamforming Vector

◮ For later convenience and compatibility, the Hermitian
transpose operator {·}H is used to denote the coefficient vector

wH = [w0 w1 . . . wM−1]

◮ as a result, the vector w hold the complex conjugates of the
coefficients,

w =











w∗
0

w∗
1
...

w∗
M−1











◮ to access the actual unconjugated coefficients, the beamforming
vector w∗ has to be considered

◮ note that
wHsΩ,ϑ = 1 −→ sHΩ,ϑw = 1
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Narrowband Beamforming — Single Source
◮ The expression sHΩ,ϑw = 1 forms a system with one single

equation and M unknowns

w

= 1sHΩ,ϑ

◮ general solution to an underdetermined system Ax = b is the
right pseudo-inverse A†,

x = A†b = AH(AAH)−1b

◮ here:

w = (sHΩ,ϑ)
† · 1 = sΩ,ϑ · (s

H
Ω,ϑsΩ,ϑ)

−1 · 1 =
sΩ,ϑ

‖sΩ,ϑ‖
2
2

=
1

M
sΩ,ϑ

◮ the complex conjugation for w∗ inverts and therefore compensates
the phase of the steering vector, which could have been foreseen

◮ the formulation via the pseudo-inverse will be very powerful for
more complicated cases. 11 / 30
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Narrowband Beamformer Example
◮ Source parameters: Ω = π

2 and ϑ = 30◦ ; array parameter:
M = 5;

◮ steering vector (with Ω sin(ϑ) = 1
4π):

sTΩ,ϑ = [1 e−j
1

4
π . . . e−j

4

4
π]

◮ coefficient vector is given by w = (sHΩ,ϑ)
†;

◮ numerical solution in Matlab;
Omega=1/4; theta = pi/6; M=5;

s = exp(-sqrt(-1)*Omega*sin(theta)*(0:(M-1)’));

w = pinv(s’);
◮ angle([s conj(w)])/pi yields:

-0.00000 0.00000

-0.25000 0.25000

-0.50000 0.50000

-0.75000 0.75000

-1.00000 1.00000
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Beam Pattern I
◮ The beamformer has a unit gain towards a source with

frequency Ω and DoA θ; what is its gain response towards other
angles of arrival?

◮ the beam pattern measures the response of a beamformer by
sweeping the angle ψ of a source with frequency Ω

g(Ω, ψ) = wHsΩ,ψ

◮ beam pattern for the previous example:
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0
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angle of arrival ψ
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in
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(Ω
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Beam Pattern II
◮ Below are a number of beam patterns for the case Ω = π

2
and ϑ = 30◦ for variable M ;
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M=5

M=10

M=20

◮ increasing the sensor number M narrows the main beam, and
increases the number of spatial zeros;

◮ analogous characteristic in the time domain: increased temporal
support leads to higher frequency resolution.
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Interference
◮ Many scenarios

contain a source of
interest and a number
of interferers:
signal of interest:
{Ω0, ϑ0}
two interferers:
{Ω1, ϑ1}, {Ω2, ϑ2}

y[n]

wM−1

w1

w0

.

.

.

.

.

.

ϑ1

ϑ2

ϑ0

ejΩ0n

ejΩ1n

ejΩ2n

◮ we would like to control the beampattern to place spatial nulls in
the directions of the interfering sources;

◮ Problem formulation and solution :





sHΩ0,ϑ0

sHΩ1,ϑ1

sHΩ2,ϑ2



w =





1
0
0



 −→ w =





sHΩ0,ϑ0

sHΩ1,ϑ1

sHΩ2,ϑ2





† 



1
0
0
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Narrowband BF Example — Multiple Sources
◮ The signal of interest illuminates an M = 5 element array

at a frequency Ω0 =
π
2 with a DoA ϑ0 = 30◦

◮ two interferers at Ω1 = Ω2 = Ω0 are present with DoA ϑ1 = −45◦

and ϑ2 = 60◦

◮ results via right pseudo-inverse of steering vectors

∠sΩ0,ϑ0 ∠sΩ1,ϑ1 ∠sΩ2,ϑ2 ∠w∗ |w|

0.00 0.00 0.00 -42.81 0.3172
45.00 63.64 -77.94 -105.01 0.3004
90.00 127.28 -155.89 -90.00 0.2343
135.00 -169.08 126.17 -74.99 0.3004
180.00 -105.44 48.23 -137.19 0.3172

◮ the angle of w is no longer intuitive; also note that the
coefficients in w no longer have the same modulus

◮ amongst a manifold of solutions, the right pseudo-inverse provides
the minimum norm solution.
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Multiple Source Example — Beampattern

◮ Beam pattern for previous example with one source of interest
and two interferers:

−80 −60 −40 −20 0 20 40 60 80
0

0.5

1

1.5

angle of arrival ψ

g
a
in

 |
g
(Ω

,ψ
)|

◮ the pseudo-inverse is the minimum-nomr solution, keeping the
general gain response as low as possible;

◮ the minimum norm property protects against spatially white noise.
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Data Independent Beamforming

◮ Previous beamformer designs were based on the knowledge of
DoA of the signal of interest and of interfering sources;

◮ remaining degrees of freedom are invested to suppress spatially
white noise;

◮ using the analogy between spatial and temporal processing,
classical filter design techniques can be invoked to design arrays
with a bandpass-type angular response;

◮ beamformers based on source parameters (frequency, DoA) rather
the actual received waveforms are termed data independent
beamformers;

◮ this is in contrast to statistically optimum beamformers, which
take the received signal statistics into account.
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Statistically Optimum Beamforming

y[n]

wM−1

w1

w0

.

.

.

.

.

.

xM−1[n]

x1[n]

x0[n]
◮ Statistically optimum

beamformer minimise
e.g. the signal power of
the beamformer output,
y[n];

◮ to avoid the trivial
solution w = 0, the signal
of interest needs to be
protected by constraints;

◮ this results in e.g. the following constrained optimisation problem

min
w

∗

E
{

|y[n]|2
}

subject to sHΩ,ϑw = 1

◮ the solution to this specific statistically optimum beamformer is
known as the minimum variance distortionless response (MVDR).
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MVDR Beamformer

◮ Solving the MVDR problem: minimise the power of
y[n] = wHx subject to the contraint wHsΩ0,ϑ0 = 1;

◮ Formulation using a Lagrange multiplier λ:

∂

∂w∗

(

wHE
{

xxH
}

w − λ(wHsΩ0,ϑ0 − 1)
)

= Rxxw− λsΩ0,ϑ0 = 0

◮ the solution w = λR−1
xx sΩ0,ϑ0 is inserted into the constraint

equation to determine λ:

λsHΩ0,ϑ0
R−1
xx sΩ0,ϑ0 = 1

◮ therefore

wMVDR =
(

sHΩ0,ϑ0
R−1
xx sΩ0,ϑ0

)−1
R−1
xx sΩ0,ϑ0

◮ this stastically optimum beamformer has various other names,
e.g. Capon beamformer.
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MVDR Beamformer — Simple Case

◮ In the case of spatially white noise input, such that

Rxx = σ2xxI −→ R−1
xx = σ−2

xx I

the MVDR solution reduces to

wMVDR =
sΩ0,ϑ0

‖sΩ0,ϑ0‖
2
2

=
sΩ0,ϑ0

M
;

◮ this is identical to the data independent beamformer in the
absence of interference (i.e. no spatially structured noise);
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Generalised Sidelobe Canceller (GSC)

◮ The generalised sidelobe canceller is a specific implementation of
the MVDR beamformer; it transforms the constrained MVDR
problem into an unconstrained optimisation problem;

◮ a first guess at the solution is performed by the quiescent
beamformer wq, which is identical to the previously defined data
independent beamformer, obtained by inverting the constraint
equation

CHwq = f −→ wq =
(

CH
)†

f

d[n]
xn wq

◮ the quiescent beamformer eliminates interferers captured by C

and f , but passes the signal of interest, any interferers
unaccounted for in the constraints, and spatially distributed noise.
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GSC — Idea

◮ GSE idea: produce array signals that are free of any contribution
from the signal of interest, and use the resulting signal vector u[n]
to eliminate remaining interference from the quiescent output:

d[n]
xn wq e[n]

u[n]
B wa y[n]

◮ the blocking matrix B eliminates the signal of interest and any
interferers captured by the constraints;

◮ the vector wa will be based on the statistics of u[n] and d[n] to
minimise the beamformer output variance E

{

|e[n]|2
}

.
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GSC — Blocking Matrix

◮ In order to project away from the constraints,

B ·C = B ·
[

sΩ0,ϑ0 sΩ1,ϑ1 . . . sΩr−1,ϑr−1

]

= 0

◮ assuming that the r constraints are linearly independent, the
singular value decomposition of the constraint matrix yields

B ·
[

U0 U⊥
0

]











σ0
. . . 0

σr−1

0 0











·VH = 0

◮ the matrix U⊥
0 ∈ C

M×(M−r) spans the nullspace of CH, and

B = (U⊥
0 )

H ∈ C
(M−r)×M

has the required property, as
(U⊥

0 )
H ·

[

U0 U⊥
0

]

Σ = [0 I] ·Σ = 0.
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GSC — Unconstrained Optimisation

◮ The beamforming vector wa is adjusted to minimise the
beamformer’s output power;

◮ the MMSE or Wiener solution is given by

wa = R−1
uu · p =

BRxx(C
H)†f

BRxxBH

with the covariance matrix

Ruu = E
{

u[n] · uH[n]
}

= B E
{

x[n] · xH[n]
}

BH = BRxxB
H

and the cross-correlation vector

p = E{u[n] · d∗[n]} = BRxxwq

◮ iterative optimisation schemes, such as the least mean squares
(LMS) algorithm may be used to approximate the MMSE solution.
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Beamforming and MIMO Processing
◮ Assume a transmission scenario

with an M -element transmit
(Tx) antenna array and an
N -element receive (Rx) array;

ϑRx

ϑTxx

y

sHTx

sRx

◮ in the absence of scatterers and any attenuation, the farfield
transmission from the transmit antenna is characterised by a
steering vector sHTx;

◮ the incoming waveform at the Rx device is described by another
steering vector sRx;

◮ the overall MIMO system between a Tx vector x ∈ C
M and an Rx

vector y ∈ C
N is described as
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MIMO Requirements

◮ The farfield assumption is convenient for beamforming, but leads
to a rank one MIMO system matrix which is incompatible with
the desire to extract multiple independent subchannels or with to
achieve diversity;

◮ rich scattering in connection with MIMO usually implies multiple
reflections of signals;

◮ together with a sufficiently large antenna spacing means that the
farfield assumption is invalid and the MIMO system matrix is not
rank deficient;

◮ some suggestions of “sufficiently large spacing” imply an antenna
element distance of d > 10λ;

◮ recall spatial sampling requires d < 1
2λ !
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Beamforming with d > 1
2λ

◮ For a flexible spatial sampling with d = αλ, 0 < α ∈ R, the
steering vector for a waveform with normalised angular frequency
Ω and DoA ϑ is

y = ejΩn











1

ej2αΩ sin(ϑ)

...

ej2α(M−1)Ω sin(ϑ)











= s2αΩ,ϑ · e
jΩ

◮ inspecting s2αΩ,ϑ the steering vector is aliased to a different
frequency 2αΩ;

◮ although the correct frequency can be retrieved unambigiously
from temporal sampling of any array element, at Ω various
different angles could provide the same steering vector s2αΩ,ϑ;

◮ the array performs spatial undersampling, resuling in spatial
aliasing.
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Spatial Undersampling Example
◮ Beamforming parameters: signal of interest with Ω = π

2 , direction
of arrival ϑ = 30◦, M = 32 array elements;

◮ data independent beamformer design with correct spatial
sampling (d = λ/2) and incorrect spatial sampling (d = 10λ):

−80 −60 −40 −20 0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

angle of arrival ψ

g
a
in

 |
g
(Ω

,ψ
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◮ MIMO systems perform beamforming, but may dissipate energy
into aliased directions.
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Summary

◮ Spatial sampling by an array of sensors (e.g. antenna elements)
has been explored;

◮ the spatial data window of a narrowband source is characterised
by the steering vector;

◮ appropriate data independent beamformers can be designed based
on the steering vectors of desired sources and interferers;

◮ statistically optimum beamformers are based on the signal
statistics;

◮ a specific statistically optimum beamformer, the generalised
sidelobe canceller, has been reviewed — it uses signal statistics to
improve the performance of a data independent beamformer
derived from the constraint equations;

◮ some similarities and differences between beamforming and MIMO
systems have been highlighted.
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