

Underwater imaging using singlephoton multispectral Lidar

Y. Altmann, A. Halimi, A. Maccarone, P. Chhabra, A. Wallace, Yvan Petillot, S. McLaughlin, G.S. Buller

> School of Engineering and Physical Sciences Heriot-Watt University

UDRC Themed Meeting, Newcastle University, May, 16th 2017

Single-photon Lidar

Single-photon detector(s)

- Pulsed laser (20 MHz), low power ($\approx \mu W$)
- Detector: single-photon avalanche diode (SPAD)
- Time of flight: for each detected photon (precision ≈10⁻¹² s)
 - − Path length precision $\approx 600 \mu m$

- Dark counts < 50 cps
- Timing jitter ~ 60 ps
- Detection efficiency of 49% at λ =550 nm

$$y_{n,t} = \mathcal{P}(\alpha_{n,t_n} r_n g_0(t-t_n) + b_n), \qquad t \in \{1, \dots, T\}$$

- $y_{n,t}$: photon count in tth bin
- $g_0(\cdot)$: instrumental response
- α_{n,t_n} : attenuation factor

- b_n : background level
- *r_n*: target reflectivity
- t_n : Time-of-flight (ToF)

$$y_{n,t} = \mathcal{P}(\alpha_{n,t_n} r_n g_0(t-t_n) + b_n), \qquad t \in \{1, \dots, T\}$$

- $y_{n,t}$: photon count in tth bin
- $g_0(\cdot)$: instrumental response
- α_{n,t_n} : attenuation factor

- b_n : background level
- *r_n*: target reflectivity
- *t_n*: ToF

 $y_{n,t} = \mathcal{P}(\alpha_{n,t_n} r_n g_0(t-t_n) + b_n), \qquad t \in \{1, \dots, T\}$

• b_n : background level

- $y_{n,t}$: photon count in tth bin
- $g_0(\cdot)$: instrumental response r_n : target reflectivity
- α_{n,t_n} : attenuation factor t_n : ToF Target detection/identification from extremely sparse histograms

Multispectral Lidar

Motivations

- Joint extraction of geometric and spectral information
 - Limited data registration issues
 - High depth resolution (<1cm)
- Robustness
 - Energy spread across wavelengths (range estimation)
- Fast/long range imaging
 < 10 of useful photons
- But... ill-posed problems
 - High uncertainty, sparse data
 - Regularization required

Bayesian methods preferred

$$y_{n,\ell,t} = \mathcal{P}(\alpha_{n,\ell,t_n} r_{n,\ell} g_{0,\ell}(t-t_n) + b_{n,\ell})$$

$$t \in \{1, \dots, T\}, \ell \in \{1, \dots, L\}$$

Examples of instrumental responses

- $y_{n,\ell,t}$: photon count in *t*th bin (ℓ th band)
- $g_{0,\ell}(\cdot)$: instrumental response
- α_{n,ℓ,t_n} : attenuation factors

- $b_{n,\ell}$: background level
- $r_{n,\ell}$: target reflectivity
- t_n : ToF

Estimation of t_n , $\{b_{n,\ell}\}$ and $\{r_{n,\ell}\}$ for each pixel

3D scene reconstruction

 Recovery of range and colour profiles (3 wavelengths) from extremely low photon counts (denoising)

3D scene reconstruction

≈1 photon/pixel

≈10 photon/pixel

• Efficient extraction of information from multispectral Lidar data

Spectral classification

RGB image (5 x 5 cm)

Unsupervised spectral classification

Estimated range profile (in mm)

 33 spectral bands, 500– 820 nm, 200x200 pixels
First computational methods for spectral analysis from extremely photon-limited (terrestrial) multispectral Lidar data¹

¹Altmann et al., EUSIPCO 2016, IEEE SSP 2016, WHISPERS 2016

Spectral clustering

RGB image (5 x 5 cm)

Unsupervised spectral clustering

Estimated range profile (in mm)

 33 spectral bands, 500– 820 nm, 200x200 pixels
First computational methods for spectral analysis from extremely photon-limited (terrestrial) multispectral Lidar data¹

¹Altmann et al., EUSIPCO 2016, IEEE SSP 2016, WHISPERS 2016

Spectral clustering

Depth/classification profile

Main spectral signatures

Spectral unmixing

RGB image (5 x 5 cm)

Data sparsity (1 photon/pixel) for each band

- Material quantification, anomaly detection (range ≈ 1,80 m)
- Known spectral library

Abundance estimation

Estimated abundances: 1 photon per pixel (per band)

Anomaly detection

Glue residue

Anomaly maps

HERIOT WATT Underwater imaging

- Unfiltered tap water
- Average power ~ 330 nW
- Pixel format = 300 x 300

Target photograph

- Target distance in water $\sim 1.33~\text{m}$
- Acquisition time per pixel = 10 ms
- Wavelength range: 500 nm 725 nm

- Unfiltered tap water
- Average power \sim 330 nW
- Pixel format = 300 x 300

- Target distance in water $\sim 1.33~\text{m}$
- Acquisition time per pixel = 10 ms
- Wavelength range: 500 nm 725 nm

HERIOT WATT Underwater object detection

- Unfiltered tap water
- Average power ~ 330 nW
- Pixel format = 300 x 300

- Target distance in water \sim 1.33 m
- Acquisition time per pixel = 10 ms

HERIOT WATT Multispectral measurements

Counts

λ = 680nm

Conclusion

Conclusions

- Joint extraction of spectral and geometric information
 - Detection classification quantification
- Multispectral Lidar / combined modalities
- MCMC methods: system assessment
 - Faster analysis → Optimization-based methods

Ongoing/future work

- Color/geometry-based analysis (Chhabra et al., SSPD 2016)
- Actual 3D scene analysis
 - need for fast and reliable methods
- Sampling strategies
 - Sparse sampling (compressive sampling, mosaic filters)
 - Adaptive sampling (multimodality)
 - Data storage/representation

Thanks for you attention !

Y.Altmann@hw.ac.uk