University Defence Research Collaboration (UDRC) Signal Processing in the Information Age

WP3.1 Generative Neural Networks Phase III - Themed Meeting on Deep Learning

Queen's University Belfast 14 November 2019

Dr Nikolaos Dionelis Research Associate

Academics: Prof. Sotirios Tsaftaris

Dr Mehrdad Yaghoobi

Dr Sen Wang

EPSRC

https://udrc.eng.ed.ac.uk/udrc-themedmeeting-machine-learning-and-deeplearning

Generative Neural Networks for AD

- Anomaly Detection (AD):
 - Identification of samples that differ from typical data
 - Anomaly not known in advance, before inference
- <u>Aim</u>: Detect strong anomalies
 - Strong anomalies: Near boundary
 - Weak anomalies: Far from boundary
 - Specifically adversarial anomalies:
 - Anomalies close to high-probability normal samples
 - Provide decision boundaries for inference of within and OoD
- Application areas:
 - X-ray contraband detection; Electro-optical sensors

Current Methodologies for AD

- Generative Models (GMs) used for AD:
 - Generative Adversarial Networks (GANs)
 - Autoencoders (AEs)
 - Invertible GMs: Flows
- Architecture / Loss function / Algorithm
- GAN generator or discriminator for AD
- Other Invertible GMs:
 - IResNet, ResFlow: Not yet used for AD
 - Compute probability at any point in the high-dimensional image data space

GANomaly Model Architecture

Discernible Limitations for Practical AD

- Shortcomings of current methodologies:
 - Leave-one-out evaluation
 - Lack strong anomalies definition
- Anomalies not confined to a finite labelled set
 - Broader definition of anomaly
 - Complement of the support
- Rarity problem
 - Sample the tails
 - Sampling complexity
- Multi-mode distribution estimation
- <u>Aim</u>: Address these challenges

Proposed BDSGM and Contributions

- Develop the IResNet- and boundary-based model: Boundary of Distribution's Support Generative Model (BDSGM)
- For AD: Accurate boundary estimation is key
- Train an invertible generative model, IResNet
- Create an algorithm for sample generation on the boundary
 Obviate the rarity and sampling complexity problems
- Improve the leave-one-out evaluation methodology
- Generation of strong anomalies
 - Specifically of adversarial anomalies
- Evaluate the use of inference for anomaly detection

Flowchart of BDSGM

- Train an invertible model to fit the normal data distribution
 Train the IResNet to learn Generator G(z) and G⁻¹(x)
- Create and train the B(z) to generate samples on the boundary

Loss Function for $B(z; \theta_b)$

- Given a data distribution, p_x(x): Approximate its probability density with an IResNet, G(z), to obtain p_g(x).
- B(z) = Mapping from latent space, z, to image data space, x
- $\boldsymbol{\theta}_{b}$ = Parameters of B(z)
- Minimize proposed loss function L:

 $\operatorname{argmin}_{\boldsymbol{\theta}_b} L(\boldsymbol{\theta}_b, \mathbf{z}, \mathbf{x}, G, \lambda_1, \lambda_2)$

 $L(\boldsymbol{\theta}_b, \mathbf{z}, \mathbf{x}, G, \lambda_1, \lambda_2) = L_0(\boldsymbol{\theta}_b, \mathbf{z}, G) + \lambda_1 L_1(\boldsymbol{\theta}_b, \mathbf{z}, \mathbf{x}) + \lambda_2 L_2(\boldsymbol{\theta}_b, \mathbf{z})$

• Run the Stochastic Gradient Descent (SGD) algorithm on the proposed loss function to obtain $\theta_{\rm b}$

Three Terms of Proposed Loss

- L₀: Penalize probability density to find the boundary
- L₁: Distance from a point to a set
 - Penalize distance from normality
- L₂: Scattering, dispersion, and diversity
 - Avoid mode collapse

$$L(\boldsymbol{\theta}_b, \mathbf{z}, \mathbf{x}, G, \lambda_1, \lambda_2) = L_0(\boldsymbol{\theta}_b, \mathbf{z}, G) + \lambda_1 L_1(\boldsymbol{\theta}_b, \mathbf{z}, \mathbf{x}) + \lambda_2 L_2(\boldsymbol{\theta}_b, \mathbf{z})$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left[p_g(B(\mathbf{z}_i; \boldsymbol{\theta}_b)) + \lambda_1 \min_{j=1}^{M} ||B(\mathbf{z}_i; \boldsymbol{\theta}_b) - \mathbf{x}_j||_2 + \lambda_2 \frac{1}{N-1} \sum_{j=1, j \neq i}^{N} \frac{||\mathbf{z}_i - \mathbf{z}_j||_2}{||B(\mathbf{z}_i; \boldsymbol{\theta}_b) - B(\mathbf{z}_j; \boldsymbol{\theta}_b)||_2} \right]$$

- N = Batch size
- M = Sample size

Expansion of First Term

• Use change of variables formula:

$$L_{0}(\boldsymbol{\theta}_{b}, \mathbf{z}, G) = \frac{1}{N} \sum_{i=1}^{N} p_{g}(B(\mathbf{z}_{i}; \boldsymbol{\theta}_{b}))$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left[p_{\mathbf{z}}(G^{-1}(B(\mathbf{z}_{i}; \boldsymbol{\theta}_{b}))) |\det \mathbf{J}_{G}(B(\mathbf{z}_{i}; \boldsymbol{\theta}_{b}))|^{-1} \right]$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left[\exp(\log(p_{\mathbf{z}}(G^{-1}(B(\mathbf{z}_{i}; \boldsymbol{\theta}_{b})))) - \log(|\det \mathbf{J}_{G}(B(\mathbf{z}_{i}; \boldsymbol{\theta}_{b}))|)) \right]$$

- Depends on: $B(\mathbf{z})$, $G^{-1}(\mathbf{x})$, det $\mathbf{J}_{G}(\mathbf{x})$, $p_{\mathbf{z}}(\mathbf{z})$
- Standard Gaussian distribution, z ~ N(0; I)
- Inference: Queried test sample, x*
 - Anomaly if $p_g(\mathbf{x}^*) = \exp(\log(p_z(G^{-1}(\mathbf{x}^*))) \log(|\det \mathbf{J}_G(\mathbf{x}^*)|)) < \epsilon$
 - Normal otherwise

Experimental Setup of Proposed Model

- PyTorch vectorized implementation of the BDSGM
- Synthetic data
 - Two-dimensional uni- and multi-mode Gaussian distributions
- Closed-Form Solution (CFS) evaluation of the first term:

$$L_0(\boldsymbol{\theta}_b, \mathbf{z}) = \frac{1}{N} \sum_{i=1}^{N} \left[\left((2\pi)^d \det \boldsymbol{\Sigma} \right)^{-0.5} \\ \times \exp\left(-0.5 \left(B(\mathbf{z}_i; \boldsymbol{\theta}_b) - \boldsymbol{\mu} \right)^T \boldsymbol{\Sigma}^{-1} \left(B(\mathbf{z}_i; \boldsymbol{\theta}_b) - \boldsymbol{\mu} \right) \right) \right]$$

- Train the CFS-based BDSGM
 - Generator $B(\mathbf{z}; \boldsymbol{\theta}_{b})$ network architecture
 - Hyper-parameters: $\lambda_1 = 0.3$ and $\lambda_2 = 0.025$
 - Sample size M = 1024 and batch size N = 256
- Train the IResNet-based BDSGM

Uni-Mode Evaluation of BDSGM

- Boundary formation of IResNet-based BDSGM
- Compare: Outputs, loss function (LF) values, convergence rate

(a) IResNet- BDSGM;

(b) CFS-BDSGM

(d) IResNet: Input samples (left), output probability density (middle), and output samples (right)

Training Evolution

In parallel, examine: Sample size M vs Batch size N
 N affects boundary formation and convergence speed

Bi-Mode BDSGM Boundary Formation

(a) IResNet- BDSGM; B(z) FC 2-8-8-8-2

(c) IResNet: Input samples (left), output probability density (middle), and output samples (right)

(b) CFS-BDSGM

-3

Bi-Mode Training Evolution

+ Real points

 $^{-1}$

-2

-3

-4

-1 0 1 2

+ Real points

LF value = 0.0466, batch size = 500, sample size = 1024

3 4

x ~ N(2), x std = 0.35, I1 = 0.3, I2 = 0.025, Ir = 0.001

G(z) = IResNet, B(z) = 2-8-8-8-2, 45500 epochs

5 6

× IResNet Points

Generated points

Conclusion

Boundary of Distribution's Support Generative Model (BDSGM):

- Train an invertible generative model, IResNet
- Create algorithm for sample generation on the boundary
- Obviate the sampling complexity problem
- Proposed loss function:
 - Forces samples to lie on the boundary
- Multi-mode distribution
 - Support: Disconnected components

