

Multimodal Data Processing

A Geometric Approach via Sparsity

João F. C. Mota

Heriot-Watt University, Edinburgh, UK

Side Information

Signal processing tasks

Denoising

Reconstruction

Demixing (source separation)

Compression

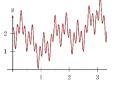
Inpainting, super-resolution, ...

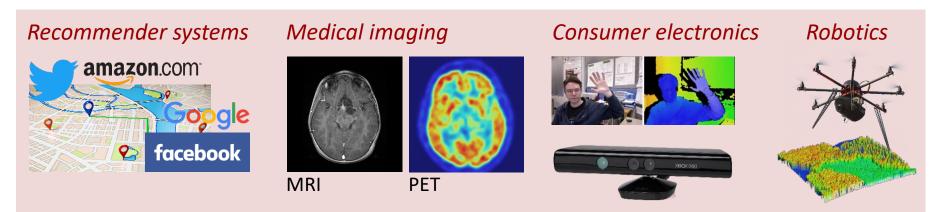
prior information

multi-modal



heterogeneous





How to represent multi-modal or heterogeneous data ?

How to process it ?

Outline

Compressed Semsing with Prior Information

Towards Heterogeneous Data Processing

Single-Image Super-Resolution

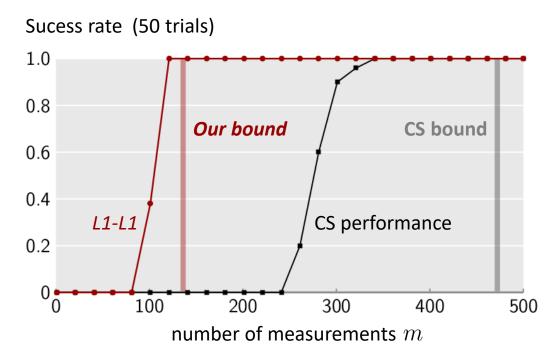
N Deligiannis VUB-Belgium

E Tsiligianni VUB-Belgium

M Rodrigues

M Vella Heriot-Watt U

Compressed Sensing



What if we know $\overline{x} \sim x^{\star}$? prior information

How to integrate \overline{x} in the problem?

Reconstruction guarantees?

 $\|\overline{x} - x^{\star}\|_2 / \|x^{\star}\|_2 \simeq 0.45$

Compressed Sensing (CS)

$$b = A: m \times n$$

$$iid \ Gaussian$$

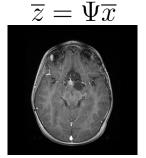
$$1000$$

$$x^{\star}$$

$$Basis \ pursuit$$

$$\hat{x} = \arg \min_{x} \|x\|_{1}$$

$$s t \qquad b = Ar$$



$$z^{\star} = \Psi x^{\star}$$

L

L1-L1 minimization

$$b = A : m \times n$$

i.i.d. $\mathcal{N}(0, 1/m)$ x^*

Theorem (CS) [Chandrasekaran et al, 12']

 $m \ge 2s \log\left(\frac{n}{s}\right) + \frac{7}{5}s + 1 \implies x^* = \underset{x \text{ s.t. }}{\operatorname{argmin}} \|x\|_1 \quad \text{w.h.p.}$

$$\begin{array}{ll} \textbf{Theorem (L1-L1 minimization)} & [\textbf{Mota et al, 17'}] & parameter-free \\ \hline h := \left| \{i : x_i^{\star} > 0, \ \overline{x}_i < x_i^{\star} \} \cup \{i : x_i^{\star} < 0, \ \overline{x}_i > x_i^{\star} \} \right| > 0 & \beta = 1 \\ \hline m \ge 2\overline{h} \log \left(\frac{n}{s+\xi/2}\right) + \frac{7}{5}(s+\frac{\xi}{2}) + 1 & \Longrightarrow & x^{\star} = \operatorname*{argmin}_{x} & \|x\|_1 + \|x-\overline{x}\|_1 & \text{w.h.p.} \\ & & \text{s.t.} & b = Ax \\ 0 \le \overline{h} \le s & \left| \xi = \left| \{i : \overline{x}_i \neq x_i^{\star} = 0\} \right| - \left| \{i : \overline{x}_i = x_i^{\star} \neq 0\} \right| \\ & \text{support overestimation} \end{array}$$

HERIOI

S-sparse

Heterogeneous Data Processing

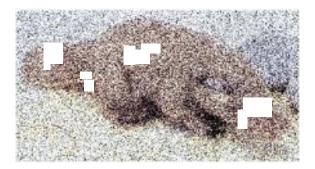
How to perform reconstruction, inpainting, classification w/ *heterogeneous* data?

different representations

Conceptual example

Known database: *images* + *annotation* (*or description*)

Platypus

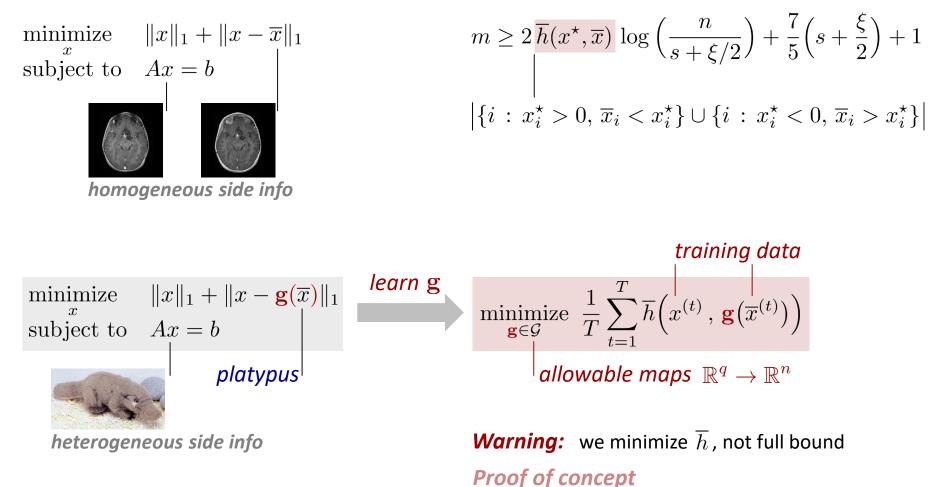


Platypus (side information)

Heterogeneous Data Processing

Our Approach

Recall L1-L1 minimization



A Classification Problem ?

$$\underset{\mathbf{g}\in\mathcal{G}}{\text{minimize}} \ \frac{1}{T} \sum_{t=1}^{T} \overline{h} \Big(x^{(t)} \,,\, \mathbf{g} \big(\overline{x}^{(t)} \big) \Big)$$

 \boldsymbol{n}

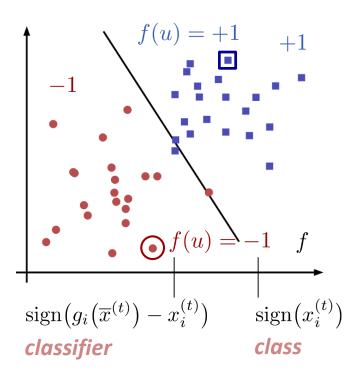
$$\overline{h}(x, \mathbf{g}(\overline{x})) = \left| \left\{ i : x_i > 0, \, g_i(\overline{x}) < x_i \right\} \cup \left\{ i : x_i < 0, \, g_i(\overline{x}) > x_i \right\} \right| = \sum_{i=1}^n \mathbb{1}_{\left\{ \operatorname{sign}(x_i) \cdot (x_i - g_i(y)) > 0 \right\}}$$

$$\begin{array}{c} \underset{\left\{g_{i} \in \mathcal{G}_{i}\right\}_{i=1}^{n}}{\text{minimize}} \quad \frac{1}{T} \sum_{i=1}^{n} \sum_{t=1}^{T} \mathbb{1} \left\{ \underset{\left\{\text{sign}\left(x_{i}^{(t)}\right) \cdot \left(x_{i}^{(t)} - g_{i}\left(\overline{x}^{(t)}\right)\right) > 0 \right\} \right. \\ \\ \left| \begin{array}{c} \text{n independent} \\ \text{problems} \end{array} \right| \begin{array}{c} \text{O-1 loss in a classification problem} \\ \left| \begin{array}{c} L^{0-1} = \left\{ \begin{array}{c} 1 & , \ f(u) \neq v \\ 0 & , \ f(u) = v \end{array} \right. \end{array} \right. \end{array} \right. \end{array} \right.$$

Problems: 0-1 loss minimization

- NP-Hard
- Does not generalize well

Our solution: G_i = set of affine functions & 0-1 loss rachinge loss



support vector machine

Performance Guarantees

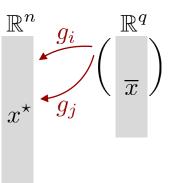
 $\begin{array}{ll} \underset{x}{\text{minimize}} & \|x\|_1 + \|x - \mathbf{g}(\overline{x})\|_1 \\ \text{subject to} & Ax = b \end{array}$

$$m > 2\overline{h}(x^{\star}, \mathbf{g}(\overline{x})) \log\left(\frac{n}{s+\xi/2}\right) + \frac{7}{5}\left(s+\frac{\xi}{2}\right)$$

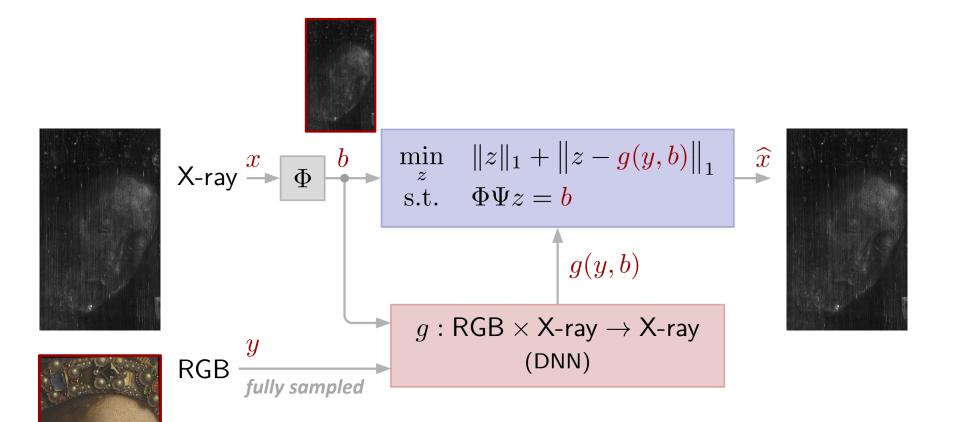
Learn each
$$g_i: \min_{w,r} \|w\|_2^2 + \frac{\lambda}{T} \sum_{t=1}^T \max\left\{0, \ 1 - v^{(t)} \cdot \left(w^\top u^{(t)} + r\right)\right\}$$

Theorem [Mota et al., 17']

Assume $\{x^{(t)}, \overline{x}^{(t)}\}_{t=1}^{T}$ are iid realizations of (X, \overline{X}) w/ unknown joint pdf Each g_i is learned as above (+ technical assumptions) Then, with high probability, $\mathbb{E}\left[\overline{h}(X, \mathbf{g}(\overline{X}))\right] \leq O\left(\frac{1}{\sqrt{T}}\right)$ # training data points

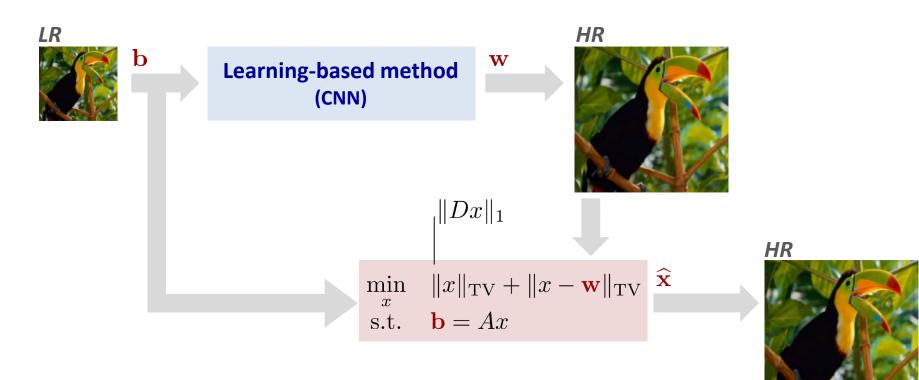


X-Ray Super-Resolution aided by RGB



Preliminary Results

Single modality super-resolution



Preliminary Results

		$ \min_{\substack{x \\ \text{s.t.}}} \ x\ _{\text{TV}} \\ b = Ax $		
Dataset	Scale	TVAL3	\mathbf{SRCNN}^{\star}	Ours
Set5	$\times 2$	34.0315 (0.9354)	36.2772 (0.9509)	36.5288 (0.9536)
	$\times 4$	29.1708 (0.8349)	30.0765 (0.8525)	30.2669 (0.8590)
Set14	$\times 2$	31.0033 (0.8871)	31.9954 (0.9012)	32.2949 (0.9057)
	$\times 4$	26.6742 (0.7278)	27.1254 (0.7395)	27.3040 (0.7480)
BSD100	$\times 2$	30.1373 (0.8671)	31.1087 (0.8835)	31.2241 (0.8866)
	$\times 4$	26.3402 (0.6900)	26.7027 (0.7018)	26.7838 (0.7085)
Urban100	$\times 2$	27.5143 (0.8728)	28.6505 (0.8909)	28.8415 (0.8939)
	$\times 4$	23.7529 (0.6977)	24.1443 (0.7047)	24.2368 (0.7114)
		PSNR (SSIM)		

*C. Dong, C. C. Loy, K. He, X. Tang *Learning a deep convolutional neural network for image super-resolution* ECCV, 2014

Dataset	Scale	\mathbf{FSRCNN}^{\star}	Ours	$\operatorname{LapSRN}^{\star\star}$	Ours
Set5	$\times 2$	36.9912 (0.9556)	37.0394 (0.9559)	37.7008 (0.9590)	37.7219 (0.9592)
	$\times 4$	30.7122 (0.8658)	30.8005 (0.8691)	31.7181 (0.8891)	31.7428 (0.8894)
	$\times 8$			26.3314 (0.7548)	26.3881 (0.7545)
Set14	$\times 2$	32.6515 (0.9089)	32.6935 (0.9092)	33.2518 (0.9138)	33.2709 (0.9142)
	$\times 4$	27.6179 (0.7550)	27.6890 (0.7574)	28.2533 (0.7730)	28.2722 (0.7734)
	$\times 8$			24.5643 (0.6266)	24.5993 (0.6264)
BSD100	$\times 2$	31.5075 (0.8905)	31.5250 (0.8907)	32.0214 (0.8970)	32.0274 (0.8975)
	$\times 4$	26.9675 (0.7130)	27.0011 (0.7149)	27.4164 (0.7296)	27.4317 (0.7300)
	$\times 8$			24.6495 (0.5887)	24.6769 (0.5886)
Urban100	$\times 2$	29.8734 (0.9010)	29.8926 (0.9013)	31.1319 (0.9180)	31.1462 (0.9183)
	$\times 4$	24.6196 (0.7270)	24.6619 (0.7297)	25.5026 (0.7661)	25.5167 (0.7662)
	$\times 8$			22.0547 (0.5956)	22.0675 (0.5944)

*C. Dong, C. C. Loy, X. Tang *Accelerating the super-resolution convolutional neural network* ECCV, 2016

**W.-S. Lai, J.-B. Huang, N. Ahuja, M.-H. Yang *Deep Laplacian pyramid networks for fast and accurate super-resolution* CVPR, 2017

Dataset	Scale	\mathbf{SRMD}^{\star}	Ours	ESRGAN**	Ours
Set5	$\times 2$	37.4496 (0.9579)	37.5817 (0.9585)		
	$\times 4$	31.5750 (0.8853)	31.6531 (0.8863)	32.7072 (0.9001)	32.7170 (0.9002)
Set14	$\times 2$	33.1035 (0.9127)	33.1868 (0.9137)		
	$\times 4$	28.1593 (0.7716)	28.2174 (0.7728)	28.8342 (0.7877)	28.9253 (0.7891)
BSD100	$\times 2$	31.8722 (0.8953)	31.9009 (0.8959)		
	$\times 4$	27.3350 (0.7273)	27.3579 (0.7280)	27.8332 (0.7447)	27.8489 (0.7447)
Urban100	$\times 2$	30.8799 (0.9146)	30.9253 (0.9151)		
	$\times 4$	25.3494 (0.7605)	25.3834 (0.7609)	27.0270 (0.8146)	27.0404 (0.8146)

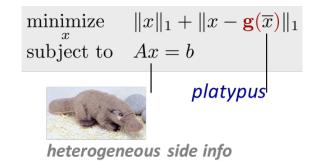
*K. Zhang, W. Zuo, L. Zhang *Learning a single convolutional super-resolution network for multiple degradations* CVPR, 2018

**X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, C. C. Loy, *ESRGAN: Enhanced super-resolution generative adversarial networks* ECCV workshops, 2018

Conclusions

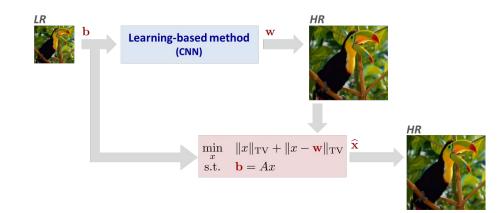
Multimodal data processing: from prior information to heterogeneous data

Theory informs practice



Models still have a role and can complement data-driven methods

More theory needed

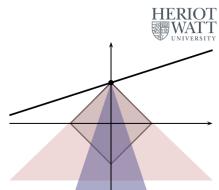


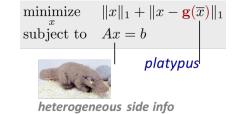
References

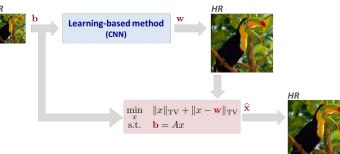
J. F. C. Mota, N. Deligiannis, M. R. D. Rodrigues *Compressed Sensing with Prior Information: Optimal Strategies, Geometries, and Bounds* IEEE Transactions on Information Theory, Vol 63, No 7, 2017

J. F. C. Mota, E. Tsiligianni, N. Deligiannis A framework of learning affine transformations for multimodal sparse reconstruction Wavelets and Sparsity XVII, SPIE Optical Engineering + Applications, 2017

M. Vella, J. F. C. Mota Single Image Super-Resolution via CNN Architectures and TV-TV Minimization British Machine Vision Conference (BMVC), 2019







Experimental Results

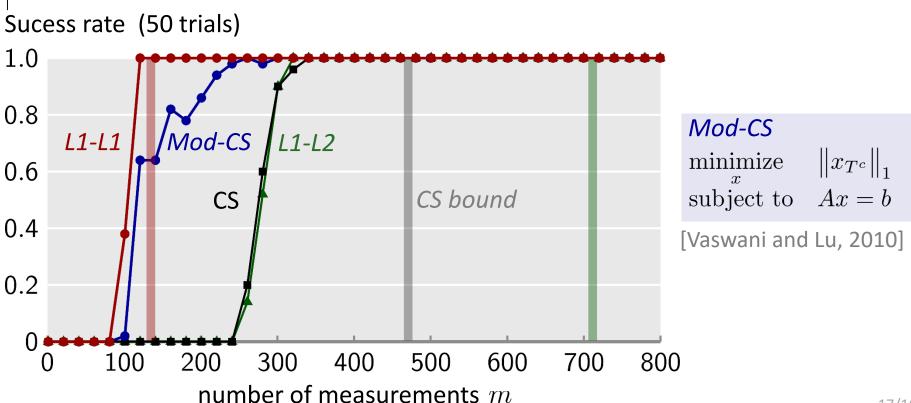
 $\|\hat{x} - x^{\star}\|_{\infty} / \|x^{\star}\|_{\infty} \le 10^{-2}$

A_{ij} : Gaussian

 $x^{\star}: n = 1000 \qquad s = 70 \qquad \qquad x_i^{\star} \sim \mathcal{N}(0, 1)$

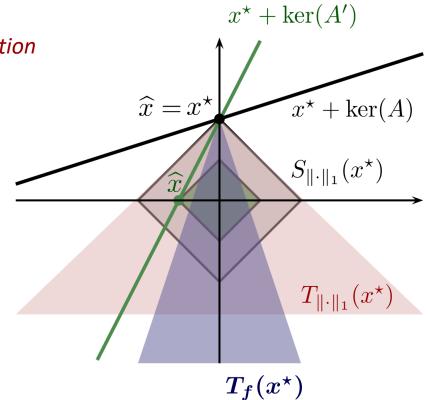
 $\overline{x}: \ \overline{x} = x^{\star} + z \qquad \operatorname{card}(z) = 28 \qquad z_i \sim \mathcal{N}(0, 0.8)$

 $\|\overline{x} - x^{\star}\|_2 / \|x^{\star}\|_2 \simeq 0.45$ $\overline{h} = 11 \quad \xi = -42$

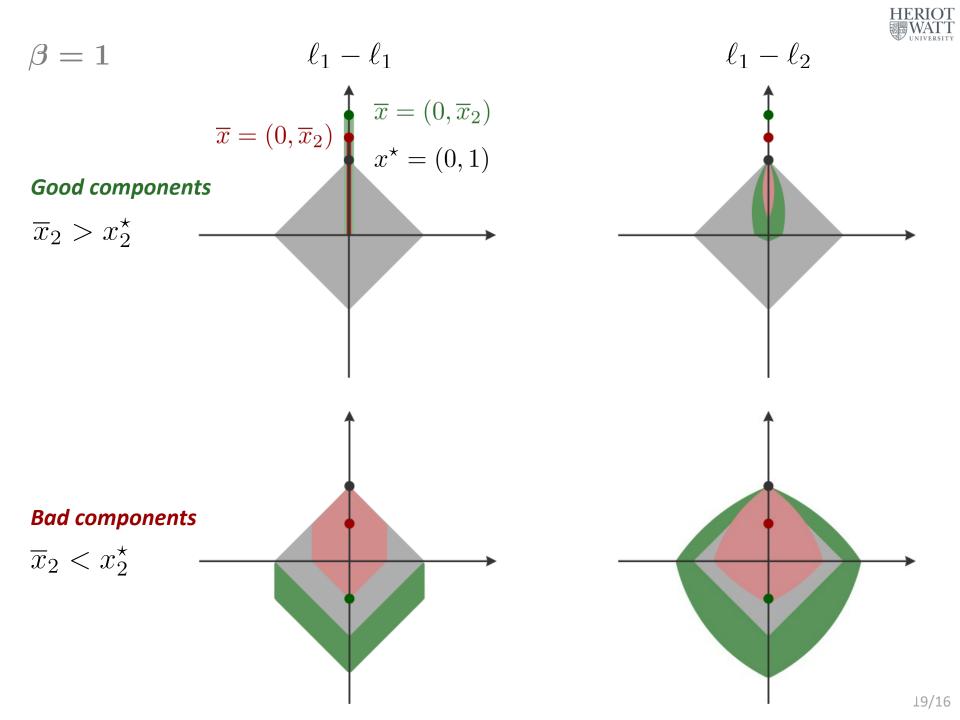


Intuition

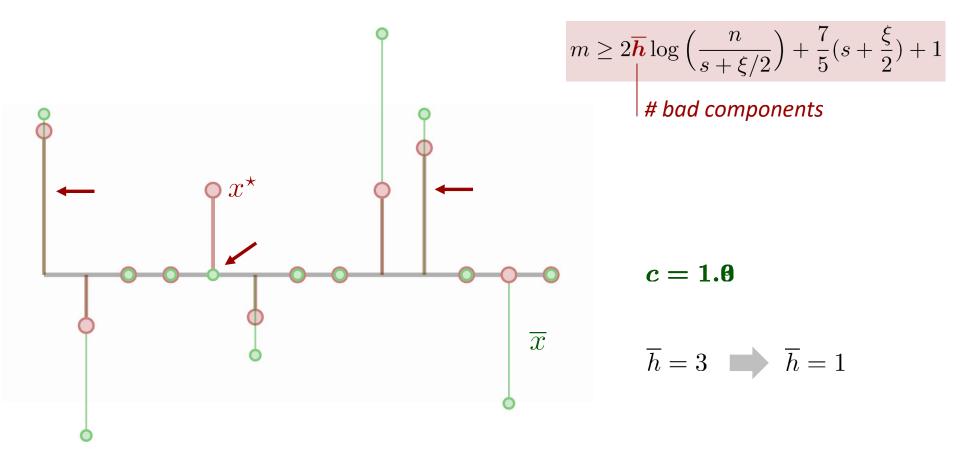
 $Ax^{\star} = b$ measurements **random orientation** solutions of Ax = b : $x^* + \ker(A)$ $\widehat{x} = \operatorname{argmin} \|x\|_1$ s.t. Ax = b**Tangent cone** of f at x^{\star} $T_f(x^\star) = \operatorname{cone}(S_f(x^\star) - x^\star)$ $\left| \left\{ x \, : \, f(x) \le f(x^{\star}) \right\} \right|$ Our approach



$$g_1(x - \overline{x}) = \|x - \overline{x}\|_1$$
$$g_2(x - \overline{x}) = \frac{1}{2} \|x - \overline{x}\|_2^2$$



Improving Prior Information?



Improve \overline{x} by $\overline{x} \leftarrow c \cdot \overline{x}$ c > 1

Warning: $\overline{h} > 0$

CS Geometry & Known Results

Theorem (Chandrasekaran et al "The Convex Geometry of Linear Inverse Problems" 2012) $A: m \times n, \quad A_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1/m)$ $f: \mathbb{R}^n \to \mathbb{R}$ convex $\begin{cases} b = Ax^{\star} & \widehat{x} = \underset{x}{\operatorname{argmin}} \quad f(x) \implies \widehat{x} = x^{\star} \quad \text{w.h.p.} \\ m \ge w(T_f(x^{\star}))^2 + 1 & \text{s.t.} \quad Ax = b \end{cases}$ Gaussian width $w(C) = \mathbb{E}_g \left[\sup_{z \in C \cap \mathbb{R}^n(0,1)} g^\top z \right], \quad g \sim \mathcal{N}(0,1)$ C_2 $\int_{1}^{s-\text{sparse}} w(T_f(x^*))^2 \le 2s \log\left(\frac{n}{s}\right) + \frac{7}{5}s$ $w(C_2) > w(C_1)$ $f_1(x) = \|x\|_1 + \beta \|x - \overline{x}\|_1 \quad \Longrightarrow \quad w(T_{f_1}(x^*))^2 \leq ?$ $\ell_1 - \ell_1$ minimization $f_2(x) = \|x\|_1 + \frac{\beta}{2} \|x - \overline{x}\|_2^2 \quad \Longrightarrow \quad w(T_{f_2}(x^*))^2 \leq ?$ $\ell_1 - \ell_2$ minimization

$$\begin{array}{ll} \textbf{Theorem: L1-L1} & (\boldsymbol{\beta} = 1) \\ A: m \times n, & A_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1/m) & \widehat{x} = \operatorname*{argmin}_{x} & \|x\|_{1} + \|x - \overline{x}\|_{1} \\ Ax^{\star} = b & \text{measurements} & \overline{h} > 0 & \text{s.t.} & Ax = b \end{array}$$
$$\begin{array}{ll} \widehat{x} = & \operatorname{argmin}_{x} & \|x\|_{1} + \|x - \overline{x}\|_{1} \\ \text{s.t.} & Ax = b \end{array}$$

$$\frac{1}{m} \ge 2\overline{h}\log\left(\frac{n}{s+\xi/2}\right) + \frac{7}{5}(s+\xi/2) + 1$$

standard CS: $m \ge 2s \log\left(\frac{n}{s}\right) + \frac{7}{5}s + 1$

$$\begin{aligned} \text{Theorem: L1-L2} \quad (\beta = 1) \\ A: m \times n, & A_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1/m) & \widehat{x} = \underset{x}{\operatorname{argmin}} \|x\|_1 + \frac{1}{2} \|x - \overline{x}\|_2^2 \\ Ax^* = b \text{ measurements } (\texttt{+ some realistic assumptions}) & \text{s.t.} & Ax = b \end{aligned}$$

$$\begin{aligned} \#i: x_i^* = 0, \ |\overline{x}_i| \ge 1 \\ \#i: x_i^* = 0, \ |\overline{x}_i| \ge 1 \\ \#i: x_i^* = 0, \ |\overline{x}_i| \ge 1 \end{aligned}$$

$$\begin{aligned} m \ge 2v \log\left(\frac{n}{q}\right) + s + 2R + \frac{4}{5}q + 1 & \Longrightarrow & \widehat{x} = x^* \text{ w.h.p.} \\ \psi: = \sum_{i: x_i^* > 0} (1 + x_i^* - \overline{x}_i)^2 + \sum_{i: x_i^* < 0} (1 + \overline{x}_i - x_i^*)^2 + \sum_{i: x_i^* = 0, \overline{x}_i \neq 0} (|\overline{x}_i| - 1)^2 \end{aligned}$$