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Dynamic Texture Recognition Using Multiscale
Binarized Statistical Image Features
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Abstract—A spatio-temporal descriptor for representation and
recognition of time-varying textures is proposed [binarized statis-
tical image features on three orthogonal planes (BSIF-TOP)] in
this paper. The descriptor, similar in spirit to the well known local
binary patterns on three orthogonal planes approach, estimates
histograms of binary coded image sequences on three orthogonal
planes corresponding to spatial/spatio-temporal dimensions.
However, unlike some other methods which generate the code
in a heuristic fashion, binary code generation in the BSIF-TOP
approach is realized by filtering operations on different regions
of spatial/spatio-temporal support and by binarizing the filter
responses. The filters are learnt via independent component
analysis on each of three planes after preprocessing using a
whitening transformation. By extending the BSIF-TOP descriptor
to a multiresolution scheme, the descriptor is able to capture the
spatio-temporal content of an image sequence at multiple scales,
improving its representation capacity. In the evaluations on the
UCLA, Dyntex, and Dyntex 4+ + dynamic texture databases, the
proposed method achieves very good performance compared to
existing approaches.
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I. INTRODUCTION

YNAMIC textures are sequences of spatial patterns

varying over time. They are typically image sequences
of moving scenes exhibiting stochastic motion. Some readily
observable instances of such visual phenomena in the natural
world are sea waves, smoke, fire, swarms of birds, vegetation
in the wind, etc. Normally, the changes in dynamic patterns
are due to motion (e.g., swarms of birds, fluttering flag) but
may also be the result of variations in the intensity of the
emitted light (e.g., fire) (see Fig. 1). In literature, such pat-
terns are referred to with different terminologies, including
spatio-temporal textures, turbulent flow/motion, time-varying
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Fig. 1. Example frames of dynamic textures. (a) Escalator. (b) Fountain.
(c) Sea. (d) Smoke.

textures, dynamic textures, textured motion, etc. The terms
spatio-temporal and dynamic textures will be used in this work
interchangeably.

Sometimes, the term dynamic texture is used for image se-
quences of natural processes with nondeterministic behavior;
however, in this work it is assumed that it also applies to sim-
pler patterns of events such as a moving escalator or a walking
crowd and as a result it encompasses a larger set of time-varying
textures.

Conventionally, the classification of textures was based on
static cues only. However, it has been observed that in many
situations static information was not sufficient and it is advanta-
geous to employ temporal statistics in conjunction with spatial
information where applicable and attempt to recognize a scene
not only based on the statistics of a single image but on the sta-
tistics of an image sequence over time. It has been argued that
in the perception of the world, the vision system in humans ex-
ploits motion in addition to supplementary information in other
forms [1]. In particular, motion is known to be an influential
sensory signal for visual recognition of objects and scenes. In
this respect, Johansson’s moving dot displays [2] illustrates that
highly ambiguous objects from a single view become easily
identified once motion is provided. The study of dynamic tex-
tures in computer vision as a topic ranging from dynamic tex-
ture modelling and synthesis to classification and recognition
has emerged very recently. The focus of this paper is on the de-
velopment of an effective representation and classification tech-
nique for time-varying textures. Unlike static patterns, dynamic
textures not only depend on the spatial distribution of textons,
but also on their dynamics over time. The main challenge in the
study of time-varying textures is then how to effectively com-
pute the properties of dynamics over a period of time.
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The capability to recognize time-varying patterns is of signifi-
cant importance to various applications of visual processing. In
surveillance, the ability to discern dynamic patterns can serve
to isolate activities of interest from background clutter. For ex-
ample, one may need to know whether a fire has started or not,
and if so, identify its location and extent. Traffic monitoring,
homeland security, or studying animal behavior can be consid-
ered as other applications, just to name a few.

In the context of automatic face recognition [3]-[5], psy-
chological and neural studies [6] indicate that both static and
dynamic facial features and personal characteristics are appro-
priate for recognizing faces. It has also been found that the facial
motion is the basis to the recognition of facial expressions. A
further application of dynamic texture recognition is concerned
with lip reading. It is known that human speech perception is
a multimodal process where visual information of lips, teeth,
and tongue offers important information about the place of pro-
nunciation articulation. Description and recognition of dynamic
patterns is also of practical importance in video indexing/re-
trieval, and registration and editing systems, which have at-
tracted growing attention. In summary, the span of applications
of time-varying textures is very wide, including video indexing/
retrieval [7], surveillance [8], environmental monitoring [9],
isolating background from activities of interest [10], detection
of various emergency conditions such as fire [11], leaks in pipes,
space-time stereo [12], grouping [13], [14], activity recognition
[15], tracking [16], lip reading [17], etc.

There are different approaches proposed in the literature
for representation and recognition of spatio-temporal textures.
A line of research is based on the so-called physics-based
approaches [18]. In these methods, by analyzing the underlying
generating process, a model for the characterization of a specific
dynamic pattern is constructed. Once the model parameters are
recovered for an input pattern, they are used for recognition.
A major disadvantage of these approaches is that the models
are derived for specific patterns separately and thus suffer from
poor generalization to other kinds of time-varying textures. A
second group of approaches are the methods which directly use
the motion field for recognition. Using the estimated instan-
taneous motion patterns in sequences, the flow-based method
proposed in [19] converts the analysis of spatio-temporal
sequences to the analysis of sequences of static information.
In other works [20], [21], dynamic texture is represented using
statistical measurements of optical flow information. Based
on the velocity and acceleration fields estimated at various
spatio-temporal scales, a metric for video sequences is defined
in [22]. The main drawbacks of these methods include the high
correlation of normal flow and dynamic texture spatial appear-
ance in addition to the assumptions of brightness constancy and
local smoothness which generally do not hold for stochastic
dynamics scenes [23].

Apart from the physics-based methods, there are other
methods for spatio-temporal texture characterization based
on statistical generative representations to jointly model the
appearance and dynamics of textures. Recognition in these
methods is performed by comparing the estimated model
parameters. Several variants of this approach include autore-
gressive (AR) models [24]-[27] and multiresolution schemes
[28], the most popular one being the joint photometric-dy-

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 8, DECEMBER 2014

namic, AR-based linear dynamic system (LDS) model [26].
Although good performance has been reported in the literature
for these methods, the performance of these approaches is
highly dependent on the spatial appearance captured by these
models rather than the underlying dynamics [29], [30]. Other
methods [31] have addressed the variability in viewpoint in the
LDS model within the bag-of-features framework. There are
also some LDS variants which have discarded the appearance
component of the model and have restricted the attention to
the dynamic component for recognition purposes [29], [30].
Methods employing certain transforms such as wavelet and
3D-surfacelet also exist. One may cite, for example, the work
in [32] which uses spatio-temporal wavelet transforms in order
to decompose dynamic texture into different spatio-temporal
scales.

A successful category of methods for dynamic texture catego-
rization which do not explicitly model the underlying dynamic
patterns is known as discriminative method [33], [34]. Using a
number of training samples, different spatio-temporal filters are
constructed in [33] which are specifically tuned for certain local
dynamic pattern structures. The original local binary pattern
(LBP) descriptor in 2D images proposed by Zhao and Pietikinen
in [35] is extended to the 3D spatio-temporal volume based on
local spatio-temporal statistics in [34]. To compare different de-
scriptors efficiently, the co-occurrence of LBPs was computed
in three orthogonal planes, known as the local binary patterns
on three orthogonal planes (LBP-TOP) descriptor [34].

Other work in [36] addresses the problem of separating a
video sequence into its two constituent layers. One layer cor-
responds to the video of the unoccluded background, and the
other to that of the dynamic texture. For this purpose an ap-
proach that uses the image motion information to simultane-
ously obtain a model of the dynamic texture and separate it from
the background which is required to be still is proposed. The
frames of a sequence are modelled as being produced by a con-
tinuous hidden Markov model (HMM), characterized by transi-
tion probabilities based on the Navier-Stokes equations for fluid
dynamics, and by generation probabilities based on the convex
matting of the fluid dynamic texture (FDT) with the background.

The work in [37] presents a model of spatio-temporal vari-
ations in a dynamic texture sequence. In this work, a model is
proposed which relates texture dynamics to the variation of the
Fourier phase, that captures the relationships between the mo-
tions of all pixels within the texture, as well as the appearance
of the texture. The proposed approach does not require segmen-
tation or cropping during the training, which allows it to handle
time-varying sequences containing a static background.

In addition to the aforementioned methods, there is a further
category of approaches which are constructed by stacking
multiple modules of nonlinear operations atop of each other,
commonly referred to as deep learning networks [38], [39].
However, the majority of these methods are designed to operate
on static data and are rarely employed to model time-varying
patterns. Among few attempts for dealing with time-varying
patterns are some works on using variants of the restricted
Boltzmann machine (RBM) for specific time series data, i.e.,
human motion analysis in [40], [41]. Some other deep-learning
methods address video data with convolutional learning of
spatio-temporal features or stacked auto-encoders [42]-[44].
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However, as these methods have not been evaluated on the
most commonly employed standard dynamic texture databases
(UCLASO0, Dyntex, and Dyntex 4 +) in a recognition scenario,
a quantitative comparison of the proposed method against these
approaches is not feasible.

In [45], the hierarchical matching pursuit (HMP) method,
which builds a feature hierarchy layer-by-layer using an ef-
ficient matching pursuit encoder, is proposed. The proposed
method includes different modules as batch (tree) orthogonal
matching pursuit, spatial pyramid max pooling, and contrast
normalization. The proposed HMP method is shown to be
scalable and handle full-size images efficiently. The HMP
approach is then compared with state-of-the-art algorithms
including convolutional deep belief networks, scale invariant
feature transform (SIFT)-based single layer sparse coding,
and kernel-based feature learning and shown to yield superior
accuracy on three types of image classification problems.
However, no extension of the approach is considered to the
dynamic texture classification and evaluations are conducted
only on static image databases.

The current work addresses the representation and recogni-
tion of temporally varying textures using the binarized statis-
tical image features (BSIF) [46]. Similar to some other descrip-
tors such as local binary pattern [35] and local phase quanti-
zation [47], the static BSIF produces a binary code for each
pixel. This is realized by binarizing the responses of a set of
filters operating on local image patches. The outputs of the fil-
ters are generated by linearly projecting local image patches
onto a subspace whose basis vectors are learnt via statistical
analysis of natural images. For characterization of dynamic pat-
terns, the original BSIF operator which was proposed to op-
erate on static images is extended in this work to the spatio-tem-
poral domain. This objective is realized by analyzing the spatial
and temporal variations of an image sequence by applying spa-
tial/spatio-temporal filters on various regions of a 3D signal sim-
ilar in spirit to the LBP-TOP approach [34]. The filters are learnt
in a similar fashion as the static BSIF descriptor but working in
a spatio-temporal domain instead. To this end, different filters
are learnt on three orthogonal planes of XY, X7, and YT'. In
the process of filter learning, a whitening transformation on the
pixels in various regions of spatio-temporal support is applied,
followed by an independent coefficient analysis (ICA) transfor-
mation. The ICA transformation serves to maximize the inde-
pendence of filter responses while the whitening transforma-
tion captures spatial and spatio-temporal domain correlations
in addition to neutralizing the dominant effects of the low-fre-
quency content and contrast gain and luminance control [48]. As
the filter responses are made statistically independent via ICA,
they can be binarized independently to produce a binary code
for each temporal pixel. This is a fundamental prerequisite for
independent processing of filter responses which is not com-
pletely fulfilled in other descriptors such as LBP and its vari-
ants. By varying the sizes of dynamic BSIF filters, a multiscale
dynamic texture representation is then derived which is able to
capture spatio-temporal information at multiple resolutions. The
responses of filters are finally summarized via histograms. The
recognition of a dynamic pattern then boils down to a compar-
ison of distributions of coded patterns. In summary, the main
contributions of the current work include a dynamic texture de-
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scriptor based on the BSIF representation. The proposed dy-
namic descriptor has computational overhead by a small factor
compared to the static case and compares very favorably with
the existing representations. An extension of the proposed dy-
namic descriptor to a multiscale version, applicable to image se-
quences which improves the discriminatory capacity of the rep-
resentation by a great extent, is proposed next. It is shown that a
simple x? distance-based classifier on the obtained representa-
tions can achieve promising performance on different databases.
The remainder of the paper is organized as follows: In Section II,
we overview the original static BSIF descriptor. Section III de-
tails the description of the proposed spatio-temporal texture de-
scriptor (BSIF-TOP). The discussion is then followed by a mul-
tiscale extension of the proposed BSIF-TOP representation, i.e.,
MBSIF-TOP. In Section IV, an experimental evaluation of the
proposed method along with a comparison to other approaches
on different databases is presented. The paper is drawn to con-
clusions in Section V.

II. BINARIZED STATIC IMAGE FEATURES

A. Overview of Static BSIF

The BSIF is a generative model based on the ICA [48]. ICA
represents the data as a linear transformation of some latent in-
dependent components. Let p denote the pixel grey values in an
image patch concatenated into a vector. Using ICA, p can be
represented using a feature matrix F as

p=7Fr 1)
where the elements of the vector r are some unknown random
variables which differ from one patch to another. Conversely,
the elements of F are constant and the same for all different
image patches. A fundamental assumption regarding this linear
generative model is that the elements of r are statistically inde-
pendent. In this case, one may, using a large enough number of
training samples, recover a reasonable approximation to F up to
a multiplicative constant without explicitly knowing the latent
vector r [48]. Estimation of F is equivalent to determining the
matrix F which produces r as the output of a number of linear
filters as

r=Fp @)

where each row of F represents a filter applied to the pixels in
p.

In practice, the statistical models are applied on preprocessed
data. Suppose that the data variables of a single patch after pre-
processing are collected into the vectorz = (z1, ..., zx ). Com-
monly, a linear transformation is used for preprocessing. In this
case, ;s would be linear transformations of the independent
components r;s. This can be readily observed by multiplying
both sides of (1) by the matrix performing the preprocessing
and obtain

z = Ur 3)
where matrix I/ is obtained by multiplying matrix F by the pre-
processing transformation matrix, V. In practice, a whitening
transformation is used as the preprocessing step as it is found to
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be instrumental in contrast gain and luminance control [48]. In
this case, for matrix ¢/ to be invertible, the number of indepen-
dent components should be chosen in a way that it equals the
number of variables produced after the whitening transforma-
tion. Under this condition, the system in (3) would be invertible
in a unique way, producing the vector r as a linear function of
Z as

r="Uz 4)

where matrix U is obtained by inverting matrix Z{. The filter
matrix F in (2) can then be obtained by multiplying the linear
transformations U and V, i.e.,

F =UV. Q)

As a result, the independent components r;’s of vector r are
obtained as

r=UVp. (6)

In summary, given an image p of size d x d pixels, one applies
N filters on the pixels of p using the filter matrix FY*4* and
obtains N responses which are stacked into the vector r. As the
filter responses (7;s) are independent, they can be processed in-
dependently. This is in contrast to some other approaches [47],
[35] where the independence assumption is imposed only ap-
proximately. A useful post-processing step is binarizing ;s by
thresholding at zero to produce the binarized features b;s as

L

The binarized features of b;s can then be summarized using ag-
gregate statistics such as histograms.

Learning BSIF Filters: The training procedure for filter ma-
trix F' can be summarized as follows. Using a training set of
image patches randomly taken from natural images their co-
variance matrix is estimated and eigen-decomposed. The di-
mensionality of each patch is then reduced using N (number
of the filters used) principal eigenvectors of the covariance ma-
trix divided by their standard deviations. At the end of this step,
whitened data samples z are obtained. In more detail, if the eigen
decomposition of the covariance matrix ¥ is ¥ = YDYT,
where D is the diagonal matrix of eigen values of ¥ in a de-
scending order and the columns of Y are the corresponding
eigenvectors of X, then matrix V which is used for whitening
and dimensionality reduction is given by

r; >0,
otherwise.

(7

V=D Y]y ®)

where [.]1.x denotes the first N rows of a matrix. Next, given
the whitened data samples z, the independent component anal-
ysis is employed to estimate an orthogonal matrix U. Having
estimated the matrices of U and V, the final filter matrix is ob-
tained using (5) (see Fig. 2). The BSIF descriptor has been found
to yield very useful features for static texture description in var-
ious applications [46], [49]. In particular, the BSIF descriptor
has been found to provide more discriminative representations
than other well known descriptors such as LBP [35] or LPQ
[47].
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Fig. 2. Eight17 x 17 BSIF filters (N = 8) obtained for the XY plane.

III. SpATIO-TEMPORAL BSIF: BSIF-TOP

The BSIF approach can be naturally extended to the spatio-
temporal domain by considering a three-dimensional slice of an
image sequence instead of a 2D patch as the data to be filtered. In
this case, the data to learn the filters is formed by vectorizing 3D
image blocks which are then processed by PCA and ICA trans-
formations as in the spatial case to produce the filters. This pro-
cedure, in fact, leads to learning 3D filters applicable to (slices
of) image sequences. However, there are certain drawbacks in
following this approach. The whitening transformation used re-
duces the dimension of the data down to NV, where N is the
number of filters employed. In the case of 3D spatio-temporal
data, the size of the data grows linearly with the temporal dimen-
sion. For instance, considering an image patch of size 9 x 9 in
the spatial case, a corresponding slice of image sequence would
be of size 9 X 9 x ¢, where t is the temporal dimension. Consid-
ering the same value of 9 for 7, the dimensionality of the data
after vectorizing would be 729. In this case, if one reduces the
dimensionality from 729 to a similar dimension as in the spa-
tial case (i.e., 8), a large portion of high-frequency content of
the data would be lost (note that the dimensionality in the spa-
tial case would be reduced from 81 to 8). Hence, in practice a
larger number of eigenvectors in the whitening transformation
should be retained and as a result more filters are required to
extract informative features from 3D data. However, increasing
N would lead to an exponential growth in histogram bins (the
number of histogram bins is 2%V) and thus increases the com-
putational cost drastically. An alternative approach is to con-
sider the image sequence on three orthogonal planes, similar in
spirit to the LBP-TOP approach [34]. Such an approach helps
the LBP operator handle a larger number of neighboring points
on each plane while reducing the computational complexity of
the dynamic texture descriptor. In the LBP-TOP approach, an
image sequence is considered as a stack of XT" planes in axis Y,
YT planes in axis X, and XY planes in axis T, where the YT’
and X7 planes capture information about the space-time tran-
sitions of the video sequence and correlations between the time
and spatial domains and the XY plane represents spatial infor-
mation, as seen in Fig. 3. Following the same procedure for the
BSIF descriptor would have a computational overhead only by
a factor of three compared to the BSIF descriptor operating in
the spatial case only. Moreover, larger temporal support region
variations can be considered for filtering operations if desired.
Once the BSIF codes for all frames are computed, a histogram
is constructed for each plane. Finally, three histograms corre-
sponding to three orthogonal planes are concatenated to form
the BSIF-TOP descriptor.
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Fig. 3. (a) Image sequence. (b) Sample frame in the X'} plane. (c) Sample frame in the X T plane. (d) Sample frame in the ¥ 7" plane.

For the spatio-temporal BSIF descriptor, the same procedure
as in the static BSIF is followed to learn three sets of filters, each
on a different plane: XY, XT' and YT'. In other words, the
training data is constructed using randomly chosen patches on
each of the three XY, XT', and YT planes. Once the covariance
matrices are estimated for each plane and the data is prepro-
cessed using the inferred whitening transformations, three ma-
trices are learnt via ICA and finally used to produce three sets of
filters, each of which is specific to a different plane. Some filters
obtained for the XY plane are depicted in Fig. 2. For training,
we use an external set of random image sequences of dynamic
textures collected from the web.

A. Multiscale Analysis

Suppose the size of each individual BSIF filter is fixed at
d?. In this case, using a larger number of filters (increasing
N) would include more high-frequency components into the
descriptor. This is because the NV eigenvectors of the covariance
matrix of the training data are sorted in a descending order
with respect to their corresponding eigenvalues and increasing
N would include more eigenvectors corresponding to smaller
eigenvalues into the whitening transformation. Conversely,
using a fixed number of filters N, by increasing the size of
each filter, the variations of the signal over a larger support
region are taken into account. In others words, the descriptor
now captures low-frequency contents of image sequence. It
has been observed that using eight filters (N = 8) results in an
acceptable frequency response, able to capture a wide range of
frequency content of images [46]. Hence, the number of filters
in all experiments in this work is fixed to eight, producing an
eight-bit binary code for each pixel.

As noted earlier, the other parameter controlling the fre-
quency content of the feature is the filter size. While smaller
filters capture high-frequency variations of texture, larger filters
are better suited to deal with blurring effects and low-fre-
quency content. In this work, this trade-off is moderated via a
multiscale extension of the BSIF-TOP descriptor. In order to
construct a multiscale representation, the sizes of the filters are
varied to capture information at multiple scales in the spatial
and temporal domain, i.e., d = {3,5,...17}. We have learnt
filters in eight scales and in each scale eight filters are learnt.
As such, the dimension of the final spatio-temporal multiscale
BSIF descriptor is 6144. The results of BSIF coding in the XY
plane for a sample frame is depicted in Fig. 4.

(h)

Fig4 (a) Sample frame. (b)—(i) BSIF code images at different scales in the X'Y”
plane.

B. MBSIF-TOP Spatio-Temporal Texture Descriptor

In the proposed approach to multiresolution analysis,
BSIF-TOP operators at Z scales are first applied to all frames
of an image sequence in three orthogonal planes. A grey level
code for each pixel at each resolution is thus obtained. The
BSIF-TOP pattern histogram for the resulting coded sequence
in the scale of s in each plane, h,, is computed by

hS = [h27 hi7 ey hf—l]

Ko=) WBSIF.(p)=i} xs€[l,2,...,7],
péEplane
L =256 ©)

where p is a pixel in a specific plane, 1{.} is the indicator func-
tion equal to one when its argument is true and zero otherwise,
and L is the number of histogram bins. The size of the BSIF
filter at scale s is d x d where d = 2 x s + 1. When the dynamic
textures to be compared are of different temporal/spatial sizes,
h, is normalized to yield a coherent description, i.e., probability
density.

P

= i 1,
Zi:o h.s
By concatenating all the histograms computed at different scales

into a single vector, the multiresolution dynamic texture de-
scriptor on each plane is obtained.

(10)

s =

qplane = [77’17 %’27 . (11)

. 7]~L2]



2104

Once the histograms are obtained on the XY, XT, and YT
planes, three histograms are concatenated to form the final
spatio-temporal descriptor for the image sequence as

[ XY XT YT]

q=la""q 'q (12)

The proposed spatio-temporal descriptor multiscale bina-
rised statistical image features on three orthogonal planes
(MBSIF-TOP) has different levels of locality. First, it cap-
tures the information at multiple resolutions at the pixel level.
This is achieved via a multiresolution representation on three
orthogonal planes. The distribution of codes in each plane is
represented via plane-specific histograms. At a higher level, the
global content is represented by the concatenation of histograms
from different planes at different scales. The histograms of two
image sequences are finally compared using the x? distance
measure

x* (a1, q2) = (13)

(aa(f) - q2(i))°
2 Wt a®

IV. EXPERIMENTAL EVALUATION

In this section a detailed evaluation of the proposed method
is provided on various databases for the task of dynamic texture
representation and recognition.

A. UCLA Data Set

In order to assess the performance of the proposed descriptor,
in this section a detailed evaluation of our method in various sce-
narios on the UCLA database [26], [50] is presented. The UCLA
database comprises 50 sets, corresponding to 50 scenes, each
represented by four sequences of a dynamic texture, for a total
of 200 sequences. These include boiling water, fountains, fire,
waterfalls, plants and flowers swaying in the wind, etc. Each se-
quence is comprised of 75 frames in a resolution of 160 x 110
pixels. We use a version of this database where each sequence
is clipped to a 48 x 48 window that contains the key statistical
and dynamical features [50], [26].

50-Class Breakdown: Fifty distinct classes are considered in
this scenario. Previous methods evaluated in this case have used
different portions of the database as training and test data as
follows.

Leave-one-out scheme: Similar to the work in [23] and [50],
a leave-one-out classification procedure is followed here where
a correct decision for a test sequence is defined as having one of
the three remaining sequences of the same scene as its nearest
neighbor. The results of an evaluation of the MBSIF-TOP
descriptor in this scenario using filters of varying scales are
reported in Table I. Using a single resolution, the proposed
approach yields an encouraging performance of a 93% correct
classification rate. However, by incorporating descriptors corre-
sponding to different resolutions into the representation, better
performance is expected. Increasing the number of scales used,
the recognition performance is improved as expected. This can
be observed in the table, where an impressive performance of
99.5% is achieved using seven scales. Beyond this point, it
was observed that employing a larger number of resolutions
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TABLE 1
EFFECT OF USING A MULTIRESOLUTION BSIF-TOP DESCRIPTOR WITH
DIFFERENT NUMBER OF SCALES ON THE RECOGNITION PERFORMANCE IN THE
50-CLASS LEAVE-ONE-OUT SCENARIO ON THE UCLA DATA SET

No of Scales Used Recognition Performance

1 93%
2 95.5%
3 96%
4 96.5%
5 97%
6 97.5%
7 99.5%
TABLE II

COMPARISON OF THE PERFORMANCE OF THE PROPOSED METHOD TO
OTHER APPROACHES IN THE 50-CLASS SCENARIO ON THE UCLA DATA
SET IN A LEAVE-ONE-OUT SCHEME

Method Recognition Performance
Martin Dist.[50] 89.5%
L2 Bhattacharyya [23] 81%
MBSIF-TOP 99.5%

(b)

Fig. 5. (a) Only misclassified sequence in the UCLA database (Smoke) in the
50-class leave-one-out evaluation scheme. (b) Water sequence: the sequence
with which the system has confused smoke with.

did not improve the performance. This can be attributed to the
decreased relative sizes of each frame compared to the filter
size at the coarser scales, in addition to the correlation between
histograms of different scales. A comparison of the seven-scale
version of the proposed descriptor to the methods of [23] and
[50] in the 50-class scenario using a leave-one-out classification
rule is presented in Table II. It is evident that the proposed
method achieves the best recognition performance among other
competitors with a large margin. The only misclassified se-
quence in this case is a smoke sequence confused with a water
sequence which, when visually analyzed, have very similar
appearance/dynamic characteristics, as seen in Fig. 5.

Four cross-fold validation scheme: In [51] and [52], a dif-
ferent split of the data set is used for training and test. In these
works, 75% of the data is used for training (three sequences per
class) and the rest for test (one sequence per class). The test
is performed four times, each time using a different sequence
as the test sample. Finally, the results were averaged over four
trials. The results of the proposed method are compared against
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TABLE III
COMPARISON OF THE PERFORMANCE OF THE PROPOSED METHOD TO OTHER
APPROACHES IN THE 50-CLASS SCENARIO ON THE UCLA DATA SET
IN A FOUR CROSS-FOLD VALIDATION SCHEME

Method Recognition Performance
Distance Learning [51] 99%
KDT-MD [52] 97.5%
MBSIF-TOP 99.5%

other approaches in this scenario in Table III. The results re-
ported in the table clearly illustrate the superiority of the pro-
posed descriptor to some other approaches.

Nine-Class Breakdown: As pointed out in other works [31],
[51], examining the UCLA database reveals that many of the
sequences are semantically capturing the same scene. Exam-
ples include different scenes of windblown vegetation which
share fundamental spatio-temporal similarities as well as dif-
ferent sequences of water and fire, etc. Taking into account these
observations, in [51] the UCLA data set is reorganized into
nine semantic categories being boiling water (eight), fire (eight),
flowers (12), fountains (20), plants (108), sea (12), smoke (four),
water (12), and waterfall (16), where the numbers in the paren-
theses indicate the number of sequences for each category. Sim-
ilar to [51], we use half of the data for training and half for test.
The experiment is repeated 20 times with random splits of the
data into train and test sets. A correct classification in this case is
defined as assigning the test sequence into one of the training se-
quences from the same category based on a x? nearest neighbor
distance. The method in [51] achieves a 95.6% average correct
classification rate using a maximum margin distance learning
method. The proposed MBSIF-TOP + x2 method achieves a
98.75% correct classification rate in this scenario using a much
simpler distance metric, i.e., x? distance.

Eight-Class Breakdown: Similar to earlier work [31], as the
number of sequences corresponding to plants far exceeds that of
the other classes, eight classes are used in this experiment after
discarding the plant sequences. In this case, similar to [31], 50%
of the dataset is used for training and 50% for test. A correct
classification for the MBSIF-TOP + x? method in this case is
defined as assigning the test sequence into one of other training
sequences from the same category based on a nearest neighbor
rule. The results of this test for the proposed method along with
two other approaches reporting the best known results are given
as confusion matrices in Table IV. As in the 50-class scenario,
in the proposed approach the only misclassified sequence is
a smoke sequence confused with water. The average recogni-
tion rate in this scenario for the proposed descriptor is ~97.8%,
significantly better than other two methods having averages of
80% for the method in [31] and 54.12% obtained by the ap-
proach in [50]. The impressive performance in the proposed ap-
proach is achieved despite using a simple nearest neighbor clas-
sifier based on the x? distance on the MBSIF-TOP histogram
which emphasizes the discriminatory capacity of the proposed
descriptor.
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B. Dyntex Data Set

The DynTex dataset is a varied data set of dynamic textures
[53]. Although it has been used for dynamic texture recognition,
different methods have used different experimental configura-
tions such as different categories and subsets. Among others,
the work in [34], [54] provides a precise characterization of the
configuration used. In their experiments, a version of the data
set comprised of 35 categories is employed. Each sequence is
divided into eight nonoverlapping sub-sequences by randomly
cutting the sequence in X and Y dimensions. Two additional
sequences were generated by randomly cutting in the temporal
axis. In this way, 10 samples of each class are obtained which
are all different from each other in image size and sequence
length. All these samples are finally used in the dynamic texture
recognition experiment. Such sampling scheme in effect makes
the recognition more challenging. The experiment is conducted
using the leave-one-group out scheme, i.e., a single sample per
class is picked to form the test set and the rest are used as the
training data. In our experiments, each class is represented by
all the feature vectors of the samples in the training set. A test
sample is assumed to be classified correctly if it has one of the
training samples as its nearest neighbor in the feature space. The
classification rates of the proposed method along with other ap-
proaches are summarized in Table V. It can be observed from
Table V that the proposed method performs very well compared
to other approaches.

More recently, in order to make the evaluations on the
DynTex consistent, different subsets have been compiled and
labelled. In these subsets, only a single dynamic texture is
present in each sequence without any panning or zooming of
the camera. These are the Alpha, Beta, and Gamma subsets.
The Alpha dataset is composed of 60 dynamic textures divided
into three classes, the Beta dataset is composed of 162 dynamic
textures divided into 10 classes, and the Gamma dataset is
comprised of 275 dynamic textures, each belonging to one
of 10 classes. Similar to [55], we use a leave-one-out cross
validation scheme. The recognition results obtained on the
aforementioned subsets along with the results obtained in [55]
are presented in Table VI. From the table, one can observe that
the proposed approach achieves better performance on all three
subsets. While on the Alpha subset the improvement compared
to the method of [55] is moderate, on the Beta and Gamma
subsets the proposed descriptor achieves considerably better
recognition performance by more than 20%.

C. Dyntex + + Data Set

The DynTex database [53] is a diverse set of dynamic tex-
ture videos intended for the evaluation of spatio-temporal tex-
ture classification. Although some evaluations have been per-
formed on the DynTex database, a second version of this data set
is compiled (Dyntex + +) having a number of appealing prop-
erties [51]. In creating this new version of the Dyntex data set
the goal was to organize the raw data in the DynTex database so
as to provide a richer benchmark that will be nearly similar to the
UCLA benchmark data set. The sequences in the Dyntex + +
data set include only a representative dynamic scene without
any background or other dynamic patterns. In addition, there is
only one spatio-temporal texture present in each sequence in this
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TABLE IV
CONFUSION MATRICES FOR THE EIGHT SEMANTIC CATEGORIES OF THE UCLA DATA SET
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TABLE V TABLE VI

COMPARISON OF THE PERFORMANCE OF THE PROPOSED METHOD TO OTHER
APPROACHES ON THE DYNTEX DATA SET

Method Recognition performance
LBP-TOP [34] 97.14%

DFS [54] 97.63%
MBSIF-TOP 98.61%

data set. There is no zooming or panning in the sequences and
the ground truth labels of all the sequences are provided. In this
data set, the sequences are filtered, preprocessed, and labelled.
In total, there are 36 classes, each represented by 100 sequences.

Dynamic Texture Recognition: In this section, the
MBSIF-TOP descriptor is evaluated for recognition of dy-
namic textures on the Dyntex + + data set. Following the

COMPARISON OF THE PERFORMANCE OF THE PROPOSED METHOD TO
THE METHOD OF [55] ON THE ALPHA, BETA, AND GAMMA SUBSETS
OF THE DYNTEX DATASET

Subset  The proposed method The method of [55]
Alpha 90.0 % 88.3%

Beta 90.7% 69.8%
Gamma 91.3% 68.3%

same test procedure as in [54] and [51], half of the database is
used for training and the other half for testing. In the proposed
MBSIF-TOP + x? method a test sample is assumed to be
classified correctly if it has one of the 50 training sequences
of the same class as its nearest neighbor. As in the previous
experiments, a x? distance measure is used for comparing



ARASHLOO AND KITTLER: DYNAMIC TEXTURE RECOGNITION

2107

100% 100% 100%
P > Py AL
I -
) s
| / y
100% 88% 96% 100% 100% 100% 100% 100% 84%
: | N | . ‘
100% 98% 100% 100% 100% 94% 100% 100%
= e T3 T
A il A ]
it I /
¢ i §
AR
100% 86% 100% 100% 82% 100% 86% 100% 92%

Fig. 6. Correct classification rates for different classes in the Dyntex + + database.

TABLE VII
COMPARISON OF THE PERFORMANCE OF THE PROPOSED
METHOD TO OTHER APPROACHES ON THE Dyntex + +
DATA SET USING 50% TRAINING AND 50% TEST DATA

Method Recognition performance
Distance Learning [51] 63.7%
DFA [54] 89.9%
LBP-TOP [34] 89.5%
MBSIF-TOP 97.17%

the histograms obtained from three orthogonal planes. The
results of this evaluation are reported in Table VII. It can be
observed that the proposed MBSIF-TOP descriptor achieves an
impressive performance of 97.17% correct classification rate
on this data set, improving the previous best result by more
than 7%. This is obtained despite the fact that the a simple
classifier based on x? distance is used in the current method
whereas more sophisticated classifiers are employed in some
other works. Using more complex classifiers, such as SVMs
or kernel discriminant analysis, better performance is expected
using the MBSIF-TOP descriptor; however, this is beyond the
scope of the current work as we aim at objectively gauging
the capacity of the proposed BSIF-TOP descriptor. It is worth
reiterating that the employed MBSIF-TOP filters are trained
on a separate external dataset of randomly chosen sequences
and evaluated on the Dyntex data set which demonstrates its
generalization capacity across different data sets. The correct
recognition rates for different classes of this database are given
separately in Fig. 6.

Comparison of Different Planes: In this section, the discrim-
inatory capacity of MBSIF-TOP descriptor on each individual
plane is investigated. In the MBSIF-TOP descriptor, the X T" and
YT planes capture temporal variations of patterns whereas the
XY plane captures mostly the appearance. However, as the
frames in the XY plane change over time, the histogram ob-
tained on the XY plane includes some dynamic information of
the sequence in addition to appearance. The same experimental
set up as in the previous section is followed. Table VIII reports

TABLE VIII
CORRECT CLASSIFICATION RATES FOR DIFFERENT CLASSES
IN THE Dyntex 4+ 4+ DATABASE

Descriptor used Correct recognition rate

MBSIF-TOP 97.17%
MBSIF-XY 90.50%
MBSIF-XT 94.17%
MBSIF-YT 92.94%

the correct classification rates obtained using all three orthog-
onal planes and also the X7, YT, and XY planes separately
on the Dyntex + + data set. As expected, the correct recogni-
tion rates obtained using either one of the individual planes are
much lower than considering three planes together. An inter-
esting observation from the table is that the information on each
of the XT or YT planes is more discriminative than the XY
plane. This clearly demonstrates that the proposed MBSIF-TOP
descriptor effectively captures the dynamic information present
in the sequence conveyed by the X7 and YT planes.

V. CONCLUSIONS

We addressed the representation and recognition of dynamic
textures. A multiscale descriptor based on the binarized statis-
tical image features was proposed for this purpose. The pro-
posed descriptor (MBSIF-TOP) was similar in spirit to the well
known LBP-TOP approach in the sense that it estimates his-
tograms of binary coded image sequences on three orthogonal
planes (XY, X7, and YT'). However, unlike the LBP-TOP ap-
proach, the MBSIF-TOP descriptor used the statistics of nat-
ural image sequences to enhance its representation capacity. The
code generation in the proposed approach was realized via fil-
tering operations on different regions of spatial/spatio-temporal
support. The filters employed in the proposed descriptor were
estimated via ICA in conjunction with a whitening transfor-
mation. The experimental evaluations of the proposed method-
ology on different databases clearly illustrated the merits of the
proposed descriptor for dynamic texture recognition compared
to other alternatives.
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