
Audio Super-Resolution Using Analysis Dictionary
Learning

Jing Dong, Wenwu Wang
Centre for Vision, Speech and Signal Processing

University of Surrey, Guildford GU 7XH

United Kingdom

Email: {j.dong, w.wang}@surrey.ac.uk

Jonathon Chambers
School of Electrical and Electronic Engineering

Newcastle University, Newcastle upon Tyne NE1 7RU

United Kingdom

Email: Jonathon.Chambers@newcastle.ac.uk

Abstract—Super-resolution is an important problem in signal
processing. It aims to reconstruct a high-resolution (HR) signal
from a low-resolution (LR) input. We consider the super-
resolution problem for audio signals in the time-frequency
domain and propose a method using analysis dictionary learning.
The input to our proposed method is the LR spectrogram matrix
of an audio signal, where some rows corresponding to high-
frequency information are lost. First, an analysis dictionary is
learned from the spectrogram of some related audio signals. The
learned dictionary is then applied in an �1-norm regularization
term for the reconstruction of the HR spectrogram. Experimental
results with piano signals demonstrate the advantage of the
learned dictionaries in reconstructing HR spectrograms.

Index Terms—Sparse representation; analysis dictionary lear-
ning; super-resolution

I. INTRODUCTION

The goal of super-resolution techniques in signal processing

is to enhance the resolution of signals. Use of super-resolution

for images is one of the most active research areas [1], [2]

in image processing. However, little work has been done in

terms of the super-resolution for audio signals. In the field of

audio signal processing, the super-resolution problem can be

cast as the problem of reconstructing high-frequency portions

of audio signals [3], leading to higher quality audio signals

for an improved listening experience. In the time-frequency

domain, the LR spectrogram YL ∈ R
k×s can be regarded as

the remaining part of the HR spectrogram YH ∈ R
m×s after

the removal of the top m− k high-frequency bins of YH , i.e.

YL = AYH , (1)

where A ∈ R
k×m is the mapping matrix for removing the first

m− k rows of YH . The super-resolution method proposed in

[3] is based on the well-known sparse synthesis model [4].

This sparse model assumes that a signal can be represented as

a linear combination of several atoms (columns) of a synthesis

dictionary. In [3], the dictionaries that can represent the HR

and the LR spectrograms are assumed to be known and the HR

spectrogram is reconstructed with its synthesis dictionary and

the sparse coefficients obtained by a pursuit algorithm based

on the LR dictionary.

The analysis model for sparse representation, as a counter-

part of the synthesis model, has drawn much attention recently

[5], [6]. For a signal y ∈ R
m, this model assumes that the

product of Ω ∈ R
p×m and y is sparse, i.e. x = Ωy with

‖x‖0 = p− l, where the �0-norm ‖ · ‖0 counts the number of

non-zero elements of its argument and 0 ≤ l ≤ p is the co-

sparsity of y. The matrix Ω is usually referred to as an analysis

dictionary [7], with each row of Ω being an atom. The vector

x ∈ R
p is the analysis representation of the signal y with

respect to Ω. In this model, the analysis dictionary Ω plays

an important role in the analysis representation of the signal

y, and the dictionaries learned from a set of training signals

show some advantages compared with pre-defined dictionaries

[7]. Thus, some algorithms for learning an analysis dictionary

have been proposed [7], [8], [9].

In this work, we propose a new method for audio super-

resolution. This method is based on the analysis model, rather

than the synthesis model used in the approach of [3]. Be-

sides, dictionary learning technique is applied in our proposed

method, while the dictionary employed in [3] is pre-defined.

Our proposed method is introduced in Section II. Simulation

results for the super-resolution of piano signals are presented

is Section III. Section IV concludes the paper.

II. PROPOSED METHOD

Based on the sparse analysis model, we assume that analysis

representation of the HR spectrogram to be reconstructed is

sparse with respect to an analysis dictionary. Since the analysis

dictionary learned from some related data usually has the

potential to adapt to a signal better as compared with a pre-

defined dictionary [7], the first stage of our proposed method

is to learn an analysis dictionary from the spectrogram of

some HR audio signals. In this stage, the Analysis SimCO

algorithm [9] is applied. After that, the HR spectrogram can

be reconstructed based on the assumption that it is sparse with

respect to the learned dictionary. This is referred to as the

spectrogram reconstruction stage. The block diagram of our

proposed method is presented in Fig. 1, where Y ∈ R
m×n

denotes the training data for the analysis dictionary learning.

The details of the analysis dictionary learning and the spectro-

gram reconstruction stages will be presented in the following

subsections.
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Fig. 1. Block diagram of our proposed method.

A. Analysis Dictionary Learning Stage

Given a set of training data Y, the analysis dictionary

learning problem can be written as [10]

{Ω∗,X∗} = arg min
{Ω,X}

‖X−ΩY‖2F
s.t. ‖X:,i‖0 = p− l, ∀i,

(2)

where X:,i is the ith column of X ∈ R
p×n. This is a general

formulation without any additional constraint on Ω apart from

the co-sparsity constraints ‖X:,i‖0 = p − l, ∀i. However,

this formulation has ambiguities caused by scaling. In one

case, when the training data Y admit exact sparse represen-

tation, there exists a dictionary Ω with which the analysis

representations of Y, i.e. X = ΩY, satisfy the co-sparsity

constraints. If the dictionary Ω is scaled by multiplying a

scalar c ∈ R, the corresponding representations c ·X = c ·ΩY
will also satisfy the constraints. Thus, the problem (2) has

infinite optimal solutions c ·Ω and c ·X. This may introduce

difficulty in optimization. On the other hand, if the data Y
admit approximate representation and ‖X − ΩY‖2F = δ,

the value of the cost function with scaled X and Ω, i.e.

‖X−ΩY‖2F = c2 ·δ, can be arbitrarily small. In other words,

the cost function is unbounded from below, which makes it

impossible to find an optimal solution. In addition, (2) has

trivial solutions where Ω contains all-zero rows.

In order to avoid these problems, unit �2-norm constraints on

the rows of Ω are applied, leading to the following formulation

of the Analysis SimCO algorithm [9]

{Ω∗,X∗} = arg min
{Ω,X}

‖X−ΩY‖2F
s.t. ‖X:,i‖0 = p− l, ∀i

‖Ωj,:‖2 = 1, ∀j,
(3)

where Ωj,: is the jth row of Ω.

The Analysis SimCO algorithm alternates between two

stages: analysis sparse coding and dictionary update. The first

stage calculates X for the given dictionary Ω. In the dictionary

update stage, Ω is updated assuming known and fixed X. The

optimization framework of Analysis SimCO is presented in

Algorithm 1.

1) Analysis Sparse Coding: The purpose of the analysis

sparse coding stage is to obtain the sparse representations X
of the training signals in Y based on a given dictionary Ω. The

exact representations X can be calculated directly by simply

multiplying the signals in Y by the dictionary Ω, that is

X = ΩY. (4)

Algorithm 1 Analysis SimCO

Input: Y, p, l
Output: Ω�

Initialization:
Initialize the iteration counter t = 1 and the analysis

dictionary Ω(t). Perform the following steps.

Main Iterations:
1) Analysis sparse coding: Compute the representations

X(t) with the fixed dictionary Ω(t) and the training

signals in Y, based on equations (4) and (5).

2) Dictionary update: Update the dictionary Ω(t+1) ←
Ω(t), using Algorithm 2.

3) If the stopping criterion is satisfied, Ω� = Ω(t+1), quit

the iteration. Otherwise, increase the iteration counter

t = t+ 1 and go back to step 1).

Since the initial dictionary is an arbitrary one, the represen-

tations obtained in this way may not satisfy the co-sparsity

constraints on X in (3). A hard thresholding operation is

therefore applied to enforce the co-sparsity

X̂ = HTl(X), (5)

where HTl(X) is the non-linear operator that sets the smallest

l elements (in magnitude) of each column of X to zeros.

The representations X̂ obtained via equation (5) are the best

approximation of the exact representations X in terms of the

error in Frobenius norm among all the matrices satisfying the

co-sparsity constraints.

2) Dictionary Update: The dictionary update stage aims at

optimizing the following problem (by fixing X in (3))

arg min
Ω

f(Ω) = ‖X−ΩY‖2F s.t. ‖Ωj,:‖2 = 1, ∀j. (6)

The Stiefel manifold Um,1 is defined as Um,1 = {u ∈ R
m :

uTu = 1} [11]. Based on this definition, the transpose of

each row in Ω is one element in Um,1. Thus, the “line”

search methods on manifolds can be utilized to deal with

problem (6). Here we use the the gradient descent line search

method on manifolds. We explain below the key points of this

method including search direction, line search path and step

size respectively. The dictionary update stage is summarized

in Algorithm 2.

Algorithm 2 Dictionary Update Stage

Input: Ω(t), X(t), Y
Output: Ω(t+1)

Main Steps:
1) Calculate the search direction, based on equations (7)

and (8).

2) Find a proper step size α using golden section search

[12].

3) Update the dictionary Ω(t+1) ← Ω(t), based on

equation (9).
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The steepest descent direction is used as the search direc-

tion, i.e. the negative gradient of the objective function with

respect to Ω as follows

H = −∇f(Ω)

= −∂‖X−ΩY‖2F
∂Ω

= 2XYT − 2ΩYYT .

(7)

The search direction of the jth row of Ω, i.e. the projection

of each row of H onto the tangent space of Um,1, is [11, pp.

49]

h̄j = Hj,:(I−ΩT
j,:Ωj,:). (8)

The line search path for the jth row of Ω can be written as

Ωj,:(α) =

⎧⎪⎨
⎪⎩

Ωj,: if ‖h̄j‖2 = 0,

Ωj,: cos(α‖h̄j‖2) + (h̄j/‖h̄j‖2) sin(α‖h̄j‖2)
otherwise,

(9)

where α is the step size.

In order to find a proper step size α, we apply the golden

section search method [12]. This method consists of two

stages. In the first stage, it finds a range which contains a

local minimum and within which the objective function is

unimodal. In the second stage, the golden section ratio is used

to successively narrow the range until the minimizer is located

and thus α is determined.

B. Spectrogram Reconstruction Stage

Based on the assumption that the HR spectrogram to be

reconstructed is sparse with respect to the learned analysis

dictionary Ω, the audio spectrogram reconstruction problem

can be cast as the following optimization problem

arg min
ŶH

‖ΩŶH‖1 + λ

2
‖YL −AŶH‖2F , (10)

where λ is the Lagrangian multiplier to balance the data

fidelity term ‖YL − AŶH‖2F and the regularization term

‖ΩŶH‖1. The alternating direction method of multipliers

(ADMM) [13], [6] is applied to tackle this problem.

The optimization problem (10) is equivalent to the following

equality-constrained convex optimization problem

arg min
ŶH ,Z

‖Z‖1 + λ

2
‖YL −AŶH‖2F

s.t. Z = ΩŶH .

(11)

The introduction of the variables in Z is to eliminate the

optimization variables in ŶH appearing in the �1-norm term of

(10) and thus make the alternating update of variables possible.

The augmented Lagrangian method is applied to convert

(11) to an unconstrained optimization problem. In particular,

using a dual parameter B ∈ R
p×s, the augmented Lagrangian

function for (11) is generated by adding a penalty term

〈B,ΩŶH − Z〉 and an extra quadratic term related to the

constraint Z = ΩŶH , leading to the new objective function

as follows

Lγ(ŶH ,Z,B) =‖Z‖1 + λ

2
‖YL −AŶH‖2F

+ γ〈B,ΩŶH − Z〉+ γ

2
‖ΩŶH − Z‖2F

=‖Z‖1 + λ

2
‖YL −AŶH‖2F

+
γ

2
‖B+ΩŶH − Z‖2F − γ

2
‖B‖2F ,

(12)

where γ > 0 is a penalty parameter.

The ADMM algorithm iteratively updates each of the vari-

ables {ŶH ,Z,B}, while keeping the rest fixed. In the tth
iteration, it consists of the following steps

Ŷ
(t+1)
H = arg min

YH

Lγ(ŶH ,Z(t),B(t)) (13)

Z(t+1) = arg min
Z

Lγ(Ŷ
(t+1)
H ,Z,B(t)) (14)

B(t+1) = B(t) + (ΩŶ
(t+1)
H − Z(t+1)). (15)

For (13) and (14), there are closed-form solutions [13]

Ŷ
(t+1)
H = (λATA+γΩTΩ)−1(λATYL+γΩT (Z(t)−B(t)))

(16)

and

Z(t+1) = ST 1
γ
{ΩŶ

(t+1)
H +B(t)}, (17)

where ST 1
γ

is the entrywise soft-thresholding operator defined

by

ST 1
γ
(β) =

⎧⎨
⎩

β − 1

γ
· sgn(β) if|β| ≥ 1

γ
,

0 otherwise.
(18)

with sng(β) returning the sign of β. It is worth noting that

the information of the known LR spectrogram YL should be

kept in the estimated HR spectrogram ŶH , but the updated

Ŷ
(t+1)
H obtained by equation (16) cannot guarantee this. Thus,

a projection is applied after updating the HR spectrogram via

(16), i.e.

Ŷ
(t+1)
H ← PYL

(Ŷ
(t+1)
H ), (19)

where PYL
denotes the projection that sets the last k rows of

Ŷ
(t+1)
H to be identical to YL. The spectrogram reconstruction

stage is summarized as Algorithm 3.

III. SIMULATION RESULTS

In the analysis dictionary learning stage, two types of trai-

ning data Y were tested. The first type is the spectrogram of

a combined audio signal consisting of piano note recordings.

The database of piano note recordings, found in the website of

the University of Iowa Electronic Music Studios1, contains 261

recordings of 44.1 kHz single piano notes. We truncated each

recording to 2 seconds by removing the sections with small

amplitude in the time-domain. All of the truncated recordings

are combined as the audio signal to generate the first type of

1http://theremin.music.uiowa.edu/MISpiano.html
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Algorithm 3 Spectrogram Reconstruction

Input: Ω, YL, A, λ, γ
Output: ŶH

Initialization:
Initialize the iteration counter t = 1. Perform the

following steps.

Main Steps:
1) Update Ŷ

(t+1)
H ← Ŷ

(t)
H , based on equations (16) and

(19).

2) Update Z(t+1) ← Z(t), based on equations (17) and

(18).

3) Update B(t+1) ← B(t), based on equation (15).

4) If the stopping criterion is satisfied, ŶH = Ŷ
(t+1)
H

and quit the iteration. Otherwise, increase the iteration

counter t = t+ 1 and go back to step 1).

training data. The second type of training data is the HR spec-

trogram of the original audio signals, i.e. YH . The dictionaries

learned with these two types of training data are referred to as

“Type I dictionary” and “Type II dictionary” respectively. The

initial dictionaries of Analysis SimCO were generated with

the random variables satisfying the i.i.d. Gaussian distribution

with zero mean and unit variance and then the rows of the

dictionaries were normalized.

We tested our method for the super-resolution of piano

signals. Two pieces of 44.1 kHz piano recordings downloaded

from the “freesound” website2 were used as test signals (only

the first 262144 points, about 6 seconds, of each signal were

used). For each audio signal, a Hamming window of length

1024 with 25% overlap was applied to generate the HR

spectrogram using the short-time Fourier transform (STFT)

and thus YH ∈ R
513×431. The LR spectrogram YL was

obtained by removing several top rows of YH . The Analysis

SimCO was applied for 100 iterations. The size of Ω was

1026×513. The parameters of the spectrogram reconstruction

stage are set as λ = γ = 1.

The metric used to evaluate the performance is the nor-

malized reconstruction error in the Frobenius norm, i.e.,

δ =
‖YH − ŶH‖2F

‖YH‖2F
. (20)

The reconstruction errors averaged from ten independent

tests are plotted in Fig. 2. The two sub-figures present results

of the two test piano signals respectively. The red lines show

the results when the random initial dictionaries are used di-

rectly for spectrogram reconstrucion, without the involvement

of analysis dictionary learning. In this case, we can see that the

reconstruction errors of the two test signals are very similar.

Compared with the initial dictionary, the learned dictionaries

lead to smaller reconstruction errors, indicating better super-

resolution results. For the second test signal, the two types

2The piano recordings were downloaded from {https://freesound.
org/people/Lemoncreme/sounds/186942/} and {https://freesound.org/people/
Bradovic/sounds/164718/}.

Fig. 2. Experimental results of two audio pieces with different numbers of
removed rows in YH , using different dictionaries.

of learned dictionaries obtain similar results. However, for

the first test signal, the dictionary learned with the original

HR spectrogram (i.e. Type II dictionary) performs better than

the dictionary learned with the spectrogram of piano note

recordings. This shows that the better selection of training

data may have contribution to the super-resolution result.

IV. CONCLUSION

In this paper we have proposed a method to address

the super-resolution problem of audio signals. Our proposed

method learns an analysis dictionary from related training data

and applies this dictionary to reconstruct the HR spectrogram.

The analysis dictionary learning is achieved with the Analysis

SimCO algorithm which alternates between analysis sparse

coding and dictionary learning based on optimization on

manifolds. The spectrogram reconstruction is formulated as an

optimization with �1-norm regularization term. The ADMM

algorithm is applied to address this optimization problem.

Simulation results show that the learned dictionaries have

advantage in reconstructing the HR spectrograms as compared

with the initial dictionaries. The selection of training data is

also important in affecting the results.
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