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Exploiting Sparsity in Array Optimisation, Source Separation and Tracking
Wenwu Wang and Mark Barnard
University of Surrey

We demonstrate for hydrophone array applications, but the methods are general and can be
used for other sensor arrays (such as radar and in-air acoustics).
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Signal Processing Solutions for Advanced ATR and Co-Radar

John Soraghan, Carmine Clemente, Christos llioudis, lan Proudler
Department of Electronic and Electrical Engineering, University of Strathclyde

Demo 1: Micro-Doppler (mD) ATR

Real time demonstrator (video) using
Raspberry Pl to classify between four
different classes: Individual Walking and
Running, Group Walking and Running.
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Demo 2: Communicating Radar (Co-Radar)

Demonstrator of a Real-
time co-radar system that
simultaneously transmits
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A family of novel radar waveforms that
embeds communication data while
keeping the good “Radar properties” of

information while sensing a LFM pulse.
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Autonomous Search for Hazardous Airborne Release with Mobile Robots

Michael Hutchison, Cunjia Liu and Wen-Hua Chen
Department of Aeronautical and Automotive Engineering, Loughborough University
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« Bayesian inference — a probabilistic
method to estimate the source
parameters (location, emission rate)

 Information based planning — to
guide the robot.
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Signal Processing and Game Theoretic Methods for Multi-Target Tracking

* Low complexity signal processing methods
for tracking multiple targets.
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High Performance Broadband Sensor Array Processing

Keith Thompson, Stephan Weiss and Ian Proudler

* Techniques to enable novel target
and computationally .
efficient algorithms for jammer 1 ® jammer 2
broadband sensor array '
processing;

* Broadband signal can
extend over several A ATH
octaves; '

* Potential exploitation in
Sonar, Radar, EW domains;

* Demo applications in
passive sonar - angle of
arrival estimation and BONAT Array
broadband beamforming.

Research Council
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Sparse Signal Modelling for Efficient Sensing and Imaging
Mehrdad Yaghoobi, Mike Davies

Di Wu and Cecile Cheno

« Sparse Approximation: y is the signal of interest.
+ Compressed Sensing: x is the sensing signal.

1. Raman Spectroscopy for Complex Mixture Analysis:

(Mehrdad Yaghoobi) A new spectral mixture analysis method
for the detection of hazardous mixture materials.
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www.defenceimagery.mod.uk
3. SAR Imaging and Target Characterization with

Sensor Constraints: (Di Wu) Sparsity base SAR processing
for target identification and state estimation.

linear model noise effect

- SRR -

2. Ultra Wideband Radar Electronic Surveillance:

(Mike Davies) A novel low cost and SWaP multichannel
ES system for current and future surveillance

4. High-resolution Hyperspectral Anomaly Detection
and Target Identification: (Cecile Chenot) Spectral

unmixing for the detection of unknown materials and/or
localisation of specific known targets.
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Underwater sensing: New architectures
and waveforms for better
characterisation of complex subsea
environments

Yvan Petillot
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Enabling opportunistic Reliable detection & Adaptive Waveform
self-calibration of sensor characterisation of dim Design for MIMO Active
fusion networks taraets via TBD Sensing Systems
Uney, Mulgrew, Clark Kir Herbert, Hopgood, Mulgrew
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Contextual Anomaly Detection
Neil Robertson and Alessandro Borgia

OPERATIONAL CAPABILITIES:
Classify behaviour as safe vs. threatening

Make on-line predictions about future
behaviour

Fast clustering allow us to deal with large
datasets and maintain accuracy

OPERATIONAL CAPABILITIES:

Tracking in scenarios with sparse input,
unconstrained topology, distributed
processing units

Automatic parsing of CCTV footage
Tracks prediction by generative models

Enabling anomaly detection
applications
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Efficient Computation of Complex Signal Processing Algorithms

Paulo Garcia: Power-aware design
of signal and image processing
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