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Abstract— In a classic adaptive MMSE equalizer, the structure
(or the number of the free coefficients) and the decision delay
are often fixed either to some compromise values or simply
from experience, making it hard to achieve the best potential
performance. In this paper, we propose a novel method to
jointly adapt the tap-length and decision delay so that the
best performance can be achieved with minimum tap-length
and decision delay. The proposed approach needs little extra
complexity. It describes an innovative way to implement the
adaptive equalizer where not only the structure is optimized but
also the decision delay is self tuned.

I. INTRODUCTION

The adaptive minimum mean square error (MMSE) equal-
izer as a classic approach has been widely used in commu-
nications. In a traditional design, the structure (or the tap-
length) and decision delay of the equalizer are normally fixed,
making it sub-optimum in most cases. While the tap-length
refers to the number of free tap coefficients, the decision delay
determines which symbol is detected at the current time.

Both the tap-length and decision delay can significantly
affect the performance of the equalizer. On the one hand,
if the decision delay is fixed, the MMSE of the equalizer
is a monotonic decreasing function of the tap-length, but the
MMSE improvement due to length increase always becomes
insignificant when the tap-length is large enough. There exists
an optimum tap-length that best balances the performance and
complexity. Length adaptation algorithms can be used to find
the optimum tap-length of the equalizer with the decision delay
being fixed. Among varies length adaptation algorithms (e.g.
[1]–[4]), of particular interest is the fractional tap-length (FT)
algorithm due to its robustness and simplicity [4], in which the
length adaptation is based on a pseudo fractional tap-length
whose integer part gives the true tap-length. The performance
of the FT algorithm can be further improved with convex
combining of two FT algorithms [5].

On the other hand, for a given tap-length, there exists an
optimum decision delay ∆ that minimizes the MMSE. The
optimum ∆ depends on specific channels. As will be shown
later, ∆ should be set as 0 and N − 1 for minimum and max-
imum phase channels respectively, where N is the tap-length.
In general, even with accurate channel state information, it
is still not straightforward to obtain the optimum ∆ which
normally lies between 0 zero and N − 1. This can be even
more complicated if the tap-length N is also to be determined

since the optimum ∆ is different for different N . In general,
the best MMSE is achieved when N → ∞.

In classic applications, the decision delay is often chosen
based on either the pre-assumption of the channel or simply
from experience (e.g. [6, Section 9.7]). This normally requires
the tap-length to be long enough such that there exist a large
number of “appropriate” ∆ which have the similar MMSE
to that for the best ∆. Then the chance that the selected ∆
happens to be one of those “appropriate” ∆ can be high.
Obviously such approaches have no guarantee to have the
optimum ∆. Moreover, too large the tap-length contradicts
the requirement that the tap-length should remain as small as
possible without sacrificing the performance.

Delay selection is an important issue in varies equalization
approaches including blind equalization [7], decision feedback
equalization (DFE) [8] and multichannel equalization [9]–[11].
The first decision delay adaptation algorithm for a fixed length
linear equalizer was proposed in [12]. This algorithm may lose
convergence in some cases because it is based on tracking the
mean squared error (MSE) for different decision delays which
are not always reliable. A joint length and delay optimization
algorithm was proposed in [13] for the DFE equalizer but
cannot be applied in the linear adaptive equalizer. Up to now,
the only joint tap-length N and decision delay ∆ optimization
for the linear adaptive equalizer was derived in [14], in which
a linear pre-whitener is applied prior to the equalizer. The pre-
whitener makes the equivalent channel be maximum-phase so
that the two dimensional search for the optimum N and ∆
reduces to one dimensional search by letting ∆ = N − 1.
This approach is far from ideal: First, since the decision delay
is fixed as large as N − 1, it brings too much delay in the
equalization in many cases. For instance, for the minimum
phase channel, the optimum ∆ should be 0. Secondly, the
equalizer has to be longer as now both the channel and pre-
whitener need to be “equalized”. Finally, the length of the
pre-whitener needs to be adapted as well, which may diverge
the overall system if it is not well handled.

Therefore, it is of great interest to have a robust and simple
way to joint adapt the tap-length and decision delay so that
the best MMSE performance of the equalizer can be achieved
with minimum tap-length and decision delay. As generally a
two dimensional search problem, such joint approach is hard
to realize adaptively.

In this paper, we first investigate how the tap-length and



decision delay affect the MMSE performance based on an
equivalent model of the equalizer. We then propose to use
forward and backward length approaches to jointly adapt the
tap-length and decision delay. The proposed algorithm is the
first robust yet simple approach in literature for joint tap-length
and decision delay optimization. It describes an innovative way
to implement the adaptive equalizer.

II. SYSTEM MODEL

The model of the adaptive equalization is illustrated in Fig.
1, where x(n) is the transmitted information signal, H(z) is
the channel transfer function, η(n) is the channel noise, y(n)
is the received signal, z−∆ is the decision delay, z(n) is the
equalizer output, e(n) is the error signal and W (z) is the
transfer function of the equalizer.
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Fig. 1. Adaptive channel equalization

The MMSE equalizer [6] is obtained by minimizing the
MMSE cost function

ξ = E|d(n)−wT(n)y(n)|2, (1)

with respect to the tap-vector w(n), where y(n) =
[y(n), · · · , y(n − N + 1)]T which is the tap-input vector, N
is the tap-length and d(n) = x(n − ∆). The decision delay
∆ determines which symbol is being detected at the current
time n, or the current equalization output z(n) is an estimate
of x(n−∆).

The maximum potential performance of an MMSE equalizer
is achieved by the ideal equalizer with N → ∞ extending
from −∞ to ∞ as (see [15]):

w∞ = [w∞(−∞), · · · , w∞(i), · · · , w∞(∞)]T, (2)

If the decision delay is ∆, the ideal equalizer is also delayed
by ∆ and is denoted as w∞,∆(n). Then (1) can be re-written
as:

ξ = E|e∞(n)− (d̃(n)−wT(n)y(n))|2, (3)

where e∞(n) = d(n) − wT

∞,∆(n)y(n) and d̃(n) =
wT

∞,∆(n)y(n). Since E|e∞(n)|2 is a constant and
E|e∞(n)y(n)| = 0 due to orthogonality principle [6],
minimizing (3) is equivalent to minimizing

ξ̃ = E|d̃(n)−wT(n)y(n)|2. (4)

Therefore, the equalization can be regarded as the system
modelling shown in Fig. 2, where W∞(z) is the transfer
function of w∞(n) and ẽ(n) = d̃(n)−wT(n)y(n). The model
in Fig. 2 is very useful in analyzing the tap-length and decision
delay.
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Fig. 2. The equivalent model for the MMSE equalizer.

III. OPTIMUM TAP-LENGTH AND DECISION DELAY

For an equalizer with fixed decision delay ∆, if the tap-
length N is too large, some last tap coefficients will be close
to zero. Then N can be decreased by removing these near-zero
taps with little performance lost. If N is not large enough,
all tap coefficients have significant values. Then it is highly
possible that the MMSE performance can be improved with
one or more taps so that N should be increased. Thus an
optimum tap-length that best balances the MMSE performance
and complexity can be defined as the minimum N satisfying

ξ
(f)
N−K,∆ − ξN,∆ 6 E , (5)

where ξN,∆ is the mean square error (MSE) with tap-lengthN
and decision delay ∆, ξ(f)N−K,∆ is the forward trunked MSE
with the last K tap coefficients being removed from the
equalizer and E is a small positive constant.

On another hand, for a given tap-length N , there exists a
minimum ∆ that minimizes the MMSE. As is shown in Fig.
2, the equalization is equivalent to using an FIR filter to model
the unconstraint optimum equalizer W∞(z) which is shifted
by the decision delay.

The transfer function of the ideal equalizer can be expressed
as

W∞(z) =

−1∑
n=−∞

w∞(n)z−n +

n=∞∑
0

w∞(n)z−n, (6)

where the first and second summation are the non-casual and
casual terms respectively. In fact, when the noise is small, we
have W∞(z) ≈ 1/H(z) so that the non-casual and casual
terms of W∞(z) are obtained by inverting the maximum and
minimum parts of the channel, which contain the zeros outside
and inside the unit circle respectively.

Since the non-causal part cannot be modelled by the causal
FIR equalizer no matter how long the tap-length is, the
decision delay ∆ is introduced to shift non-causal terms into
the causal range. In practice, while W∞(z) has infinite number
of non-causal and causal terms, we always have w∞(i) → 0
when i → ±∞. Therefore, for an equalizer with tap-length N
and decision delay ∆, the MMSE (or the equalization error)
is contributed by, beside the noise, the non-causal terms of
z−∆W∞(z) and the causal terms with time index larger than
z−N .

The optimum ∆ that minimizes the MMSE depends on
specific channels. For the minimum phase channel that all
zeros of H(z) are within the unit circle, W∞(z) only contains



causal terms so that we should have ∆ = 0. For the maximum
phase channel that all zeros of H(z) are outside the unit circle,
W∞(z) only contains non-causal terms so that we should
have ∆ = N − 1. In general, unfortunately, there is no fixed
relationship between N and ∆. If the decision delay ∆ is too
large, too many non-causal terms of W∞(z) are moved into
the causal range so that some initial taps of w(n) are close to
zero. Then the decision delay can be decreased to move these
near-zero taps back to the non-causal range with little affect
on the MMSE performance. On the other hand, if ∆ is not
large enough, some non-causal terms with significant values
are still in the non-causal range so that the MMSE is too large.
Then ∆ should be increased to move these “significant” non-
causal terms into the causal range. Based on these observation,
the optimum decision delay is defined as the minimum ∆ that
satisfies

ξ
(b)
N−K,∆ − ξN,∆ 6 E , (7)

where ξ
(b)
N−K,∆ is the backward trunked MSE with the first K

tap-coefficients being removed from the tap-vector.
Overall, the joint optimum tap-length and decision delay is

defined as the the minimum N and ∆ that satisfy (5) and (7)
simultaneously.

IV. JOINT TAP-LENGTH AND DECISION DELAY
ADAPTATION

While the tap-length and decision delay are jointly opti-
mized by satisfying both (5) and (7), accordingly, they can be
adapted by the forward and backward length adaptation as is
shown below.

A. Forward length adaptation
At time n, we assume the decision delay is fixed at ∆

which is obtained from the previous backward adaptation at
time (n − 1). The forward length adaptation is then applied
with the fractional length algorithm to adapt the tap-length [4].
To be specific, letting nf be the pseudo fractional tap-length
which can take real positive values, the length adaptation rule
is constructed as:

nf (n+ 1) = (nf (n)− α)− γ ·
[∣∣eN(n)(n)

∣∣2 − ∣∣∣e(f)N(n)−K(n)
∣∣∣2] ,

(8)
where α and γ are small positive numbers, eN(n)(n) is the er-

ror signal of the equalizer with tap-length N(n), e(f)N(n)−K(n)
is the forward trunked error signal with the last K tap coeffi-
cients being removed from the equalizer. α is the leaky factor
and satisfies α ≪ γ. Initially we can have nf (0) = N(0).

The “true” tap-length N(n) is adjusted only if the change
of nf (n+ 1) is big enough as:

N(m+ 1) =

{
⌊nf (n+ 1)⌋, |N(n)− nf (n+ 1)| > δ
N(m), otherwise

(9)
where δ is a positive threshold value and ⌊.⌋ rounds the
embraced value to the nearest integer. Note that we use a
different time index m for N because the length adjustment
may happen in both forward and backward approaches at time
n.

In the forward approach, the tap-length adjustment is ap-
plied at the “end” of the tap vector. Specifically, if N(n+ 1)
is increased by K, K zero taps are appended after the last tap,
and otherwise the last K tap-coefficients are removed from the
tap-vector. Or we have

w(n) =

{
[w1, · · · , wN(n), 0, · · · , 0]T, δN (m) > 0[
w1, · · · , wN(n)−|δN(m)|

]T

, δN (m) < 0
(10)

where δN (m) = N(m+ 1)−N(m).

B. Backward length adaptation

While the forward length adaptation adjust the tap-length at
the “end” of the tap-vector, based on the symmetry between
the cost functions of (5) and (7), a backward approach can be
applied to search for the optimum decision delay defined (7).

To be specific, if the initial tap-coefficients are large, the
decision delay should be increased, for instance by δN , to
shift more non-causal terms into to the casual range. At
the same time, the tap-length should also be increased by
padding δN zero taps before the first tap to prevent the last
δN tap-coefficients from moving out of the equalization range.
Similarly, if the decision delay is decreased by δN , the tap-
length should also be decreased by removing the first δN from
the equalizer. Therefore, the decision delay adjustment should
be synchronized with the tap-length adjustment applying at
the “beginning” of the tap-vector.

Similar to the forward approach, we define nb as the
fractional backward tap-length with the adaptation rule as:

nb(n+ 1) = (nb(n)− α)− γ ·
[∣∣eN(n)(n)

∣∣2 − ∣∣∣e(b)N(n)−K(n)
∣∣∣2] ,
(11)

where e
(b)
N(n)−K(n) is the backward trunked error signal of

the equalizer with the first K tap-coefficients being removed.
Initially we set nb(0) = nf (0).

If the change of nf (n+1) is big enough, the tap-length N
is adjusted as

N(m+ 1) =

{
⌊nb(n+ 1)⌋, |N(n)− nb(n+ 1)| > δ
N(m), otherwise

(12)
Unlike the forward approach, the tap-length adjustment here
is applied at the “beginning” of the equalizer as

w(n) =

{
[0, · · · , 0, w1, · · · , wN(n)]

T, δN (m) > 0[
w|δN(m)|+1, · · · , wN(n)

]T

, δN (m) < 0
(13)

where δN (m) = N(m+ 1)−N(m).
The decision delay adjustment is synchronized with (12) as

∆(n+ 1) = ∆(n) + δN (m), (14)

We must ensure ∆(n) ≥ 0 at all time to maintain causality as
otherwise the equalizer is detecting future data.



C. The algorithm

The forward and backward length adaptation are applied
alternatively until they converge to the optimum tap-length and
decision delay. At any time n, the forward length adaptation
is first applied to adapt the tap-length at the “end” of the
tap-vector with the decision delay being fixed at what the
backward approach obtained at time n − 1. After that, the
backward length algorithm is applied to adapt the decision
delay and adjust the tap-length at the “beginning” of the tap-
vector. Since the tap-length adjustment can happen at both
forward and backward approaches at time n, we must apply
nf (n+1) = nf +δN (m) and nb(n+1) = nb+δN (m) before
(8) and (11) respectively.

For stability, the tap-length and decision delay should be
limited as Nmin ≤ N(n) ≤ Nmax and ∆(n) ≥ 0 respectively,
where Nmin and Nmax are set based on system requirements.
It is clear that, during the adaptation, ∆(n) is always smaller
than N(n) so that ∆(n) is automatically upper limited.
Accordingly, nf (n) and nb(n) adaptation must be limited to
satisfy the the constraints on the tap-length and decision delay.
To be specific, since nf (n) only affects the tap-length, its
constraint is set as same as that for N(n):

Nmin ≤ nf (n) ≤ Nmax. (15)

It is known that nb(n) adaptation may change both the tap-
length and decision delay. On the one hand, we must have
nb(n) ≤ Nmax−N(n) to ensure N(n) < Nmax. On the other
hand, nb(n) should also be larger than Nmin and N(n) −
∆(n) to ensure N(n) ≥ Nmin and ∆(n) ≥ 0 respectively.
Therefore, we have

max(Nmin, N(n)−∆(n)) ≤ nb(n) ≤ Nmax −N(n) (16)

Because the forward and backward approaches are highly
interactive, of particular importance for convergence is to make
sure that (15) and (16) are checked after the length adaption
(8) and (11) respectively at every time n.

The convergence analysis of the proposed algorithm can
follow that for the original FT algorithm [4] but is more
complicated as now there are two FT running in parallel. The
details are not shown in this paper due to the space constraint.

V. NUMERICAL SIMULATIONS

Computer simulations are given to verify the proposed
algorithm. Three channels are considered:

minimum phase : h1 = [1 0.4 0.3 − 0.1]T

maximum phase : h2 = [−0.1 − 0.3 0.4 1]T

mixed phase : h3 = [−0.1 − 0.3 0.4 1 0.4 0.3 − 0.1]T

(17)
For comparison, we deliberately let h1 and h2 be nearly
symmetric, and h3 be the combination of h1 and h2.

Fig. 3 plots the MMSE with respect to the decision delay
∆ for the mixed phase channel h3, where the tap-length N
is fixed at 5, 10, 15, 30 and ∞ respectively. It is clearly
shown that for a fixed ∆, the MMSE is a non-increasing
function of N . For a fixed N , on the other hand, there exists

an optimum ∆ that minimizes the MMSE. Overall, the joint
optimum tap-length and decision delay are the minimum N
and ∆ corresponding to the similar MMSE as the best MMSE,
where the best MMSE is achieved when N → ∞. It is shown
in Fig. 3 that the optimum N and ∆ for h3 are around 15 and
10 respectively.

For the minimum and maximum channels h1 and h2, we
can also plot the MMSE vs. N and ∆ curves which are not
shown here due to the space constraint.
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Fig. 3. MMSE vs Decision Delay for the channel h3.

Fig. 4 shows the learning curves of the length adaptation. It
is clear that the tap-lengths converges to around the optimum
values. It is interesting to observe that, the length learning
curves for the h1 and h2 converge to similar value because
h1 and h2 are nearly symmetric. On the other hand, the mixed
channel requires longer tap-length as it is the combination of
the other two.
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Fig. 4. Tap-length learning curves.

Fig. 5 plots the learning curves of the decision delay



adaptation, where it is shown that the decision delay for the
minimum phase channel h1 is 3 and those for the maximum
and mixed phase channels h2 and h3 are both around 10.
This well matches our previous analysis: First, the decision
delays for minimum and maximum phase channels should be
around 0 and N−1 respectively; Secondly, the decision delay
is determined by the maximum phase part of the channel, if
we note that the maximum phase part of h3 is just as same
as h2.
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Fig. 5. Decision delay learning curves.

Finally, Fig. 6 shows the MSE learning curves for the three
channels to indicate the convergence of the equalizer.
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Fig. 6. MSE learning curves.

VI. CONCLUSION

This paper proposes a novel approach to jointly adapt the
tap-length and decision delay of the adaptive equalizer so that
the best MMSE performance can be achieved with minimum
tap-length and decision delay. This is achieved by running

the forward and backward length adaption together at every
iteration. Numerical results have been given to verify the
algorithm. This is first joint tap-length and decision delay
adaptive algorithm in literature with little extra complexity.
It describes an innovative way to implement the adaptive
equalizer with wide applications.
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