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Abstract—Distribution and decentralisation of fusion opera-
tions are key to network centric operations (NCOs) and dis-
tributed data fusion algorithms (DDF) have been developed
to support them. These algorithms fuse data collected locally
with state estimates propagated from other nodes. If the full
advantages of NCOs are to be realised, these algorithms should
exploit local information only: no single node, for example, should
be an oracle which must maintain the entire state of the network.
Uhlmann argued that many of these could be overcome if subop-
timal solutions were used and proposed a principled suboptimal
algorithm known as Covariance Intersection (CI). CI has proved
to be a very powerful and general method for fusing data in
arbitrary networks and has been used in a range of distributed
and other applications where full correlation structures cannot be
maintained. However, CI only utilizes the mean and covariance
of the estimates and cannot exploit any additional distribution
information such as the number of modes. The generalisation
of CI to general probability distributions was first proposed by
Mahler and independently derived by Hurley. We investigate the
generalisation Covariance Intersection for multi-object posteriors
by considering specific forms of multi-object posterior and their
first-order moment densities, Probability Hypothesis Densities, as
a prerequisite study for determining tractable implementations.

I. INTRODUCTION

Current approaches to distributed multi-target multi-source
detection (DMMD) incorporate multiple hypothesis tracking
(MHT) algorithms with optimal or suboptimal Distributed
Data Fusion (DDF) algorithms.

MHT algorithms are an approximation, and require careful
tuning to provide acceptable performance. These difficulties
are compounded in distributed environments, where individ-
ual nodes make track initialisation, track merging and track
deletion decisions using local information only. This can cause
valid tracks to be pruned, and invalid tracks to be maintained.
The main reasons for these difficulties lie in the MHT algo-
rithm itself: it is computationally expensive (data association
costs are exponential in the number of measurements) and
it is only an approximate (or pseudo-Bayesian) solution.

An alternative approach to multi-object tracking is to use a
rigorous multi-object multi-sensor detection and classification
algorithm. Finite Set Statistics (FISST) [1] has provided the
first numerically tractable solution for this problem. FISST
uses the Bayesian paradigm to recursively estimate and update
a multi-object density function using a set valued measurement
received at each time step. There is no need to use complex al-
gorithms for detection, identification, and estimation of objects
across multiple sensors. The success of Finite Set Statistics for
multi-sensor multi-object tracking has been demonstrated by
the Probability Hypothesis Density (PHD) filter algorithms [2],
[3] and their Gaussian mixture implementations [4]–[6]. These
algorithms replace the exponential complexity of data associa-
tion techniques with robust, linear-complexity algorithms that
are effective in estimating both the correct number of objects
and their state vectors in data with high false alarm rates and
missed detections.

Distributed data fusion algorithms combine the state esti-
mates that are generated by a number of fusion centres or
nodes. However, the estimates from the different nodes are not
conditionally independent of one another and, if optimal fusion
is to occur, common information has to be “cancelled out” [7].
However, in most networks computing this information is
prohibitively expensive. An alternative is to use suboptimal
fusion techniques. Covariance Intersection (CI) [8] has proved
to be a very powerful and general method for fusing data in
arbitrary networks and has been used in a range of distributed
and other applications where full correlation structures can-
not be maintained. However, CI only utilizes the mean and
covariance of the estimates and cannot exploit any additional
distribution information such as the number of modes. The
generalisation of CI to general probability distributions was
first proposed by Mahler [9] and the independently derived by
Hurley [10]. This generalisation replaces the product form of
Bayes Rule with a exponential mixture density (equivalently a



weighted geometric mean). Theoretical [11], [12] and practical
analysis [13], [14] has demonstrated that this generalisation
has a sound theoretical basis. Although Mahler proposed a
method for applying FISST in distributed environments [9], his
discussion included no proofs of the validity of the proposed
method, no implementation strategy of how such a method
could be realised, and no demonstration of the performance
of the method.

Our aim in this paper, and an accompanying paper on
practical implementations [15], is to investigate the multi-
object generalisation of Covariance Intersection proposed by
Mahler: Firstly, in this paper, by establishing tractable math-
ematical representations using specific multi-object posteriors
and secondly, in the accompanying paper [15], by examining
the behaviour of these approaches in challenging multi-sensor
scenarios. The paper is structured as follows: In the next
section, we describe the foundations of multi-object Finite-
Set Statistics. In Section III, we investigate tractable forms of
the generalised form of Covariance Intersection for multiple
target densities. The paper concludes in Section IV.

II. FINITE SET STATISTICS

In this section we describe the background material on
multi-object posteriors and their first-moment densities.

A. Multi-object Density Functions

A multi-object density function f(X) is a real-valued func-
tion of a finite set variable X = {x1, . . . , xN} [1]. Both the
number of points and the spatial locations of random finite
set X are random. The set integral over multi-object density
function is given by,∫
f(X)δX := f(∅) +

∞∑
n=1

1
n!

∫
f({x1, . . . , xn})dx1 . . . dxn,

(1)

where f({x1, . . . , xn}) is defined as the joint distribution
scaled by its cardinality,

f({x1, . . . , xn}) := n! · p(n) · f(x1, . . . , xn). (2)

The n! factorial term accounts for the fact we need to consider
all permutations in the joint distribution. The cardinality
distribution p(n) is a discrete probability distribution in the
number of objects and satisfies

∑∞
n=0 p(n) = 1.

Evaluation of the set integral in (1) is computationally
prohibitive for most engineering applications and hence any
multi-object estimation problems that require the computation
of an integral, such as the multi-object generalisation of the
Bayes filter, will require approximations. One such approxima-
tion commonly used in tracking application is the first-order
moment statistic, known as the Probability Hypothesis Density
(PHD) filter [2]. Moments of the multi-object distribution
can be determined via the probability generating functional
(p.g.fl.), which we now define.

B. Probability Generating Functionals

Multi-object density functions can be uniquely characterised
in terms of their probability generating functional (p.g.fl.). The
probability generating functional (p.g.fl.) of a (multi-object)
probability distribution f(X) on random finite set X is defined
as the expectation value of the symmetric function

hX :=
∏
x∈X

h(x), (3)

where h ≤ 1 is a test function, so that the p.g.fl. is

G[h] := E
(
hX
)

=
∫
f(X) · hXδX. (4)

The set derivative is defined by taking the functional deriva-
tives with respect to each point x in point process X =
{x1 . . . xm}, i.e.

δG[h]
δX

:=
δG[h]

δx1 . . . δxm
(5)

Moments of multi-object posterior can be obtained by taking
the set-derivative of the p.g.fl. G at h = 1, i.e.

D(X) =
δG

δX
[h]
∣∣∣∣
h=1

. (6)

In particular, the first-order moment of multi-object probability
density f(X), more commonly known as the Probability
Hypothesis Density in the target tracking literature [2], can
be found by taking the functional derivative of its p.g.fl. G
evaluated at h = 1, i.e.

D(x) =
δ

δx
G[h]

∣∣∣∣
h=1

. (7)

The PHD is a function on the single-object state space whose
integral in any particular region gives the expected number of
objects in that region.

C. Common Multi-Object Distributions

We now consider three multi-object distributions that are
commonly used in multi-object tracking applications due to
their convenient mathematical representations: The Bernoulli
process, used in the IPDA filter [16] and Joint Target De-
tection and Tracking filters [1], [17], the Poisson process,
used in the PHD filter [2], and the independent, identically
distributed (i.i.d.) cluster process used in the CPHD filter [3].
The Bernoulli process considers scenarios where there is at
most one target, so that the Bayes filter is still tractable. The
Poisson and i.i.d. processes are convenient since their moment-
densities can be computed in the PHD and CPHD filter updates
respectively.

Multi-object Density Example 1 - Bernoulli processes: This
multi-object distribution considers the scenario where there is
at most one target in the scene. Under this assumption, we
compute an exact multi-object Bayes filter since the com-
putational complexity of the set integral is not prohibitively
expensive.



Suppose that we have a probability density function f
on a random set X , where X contains random variable x
with probability p, with x distributed according to probability
density f(x), or it is empty with probability 1− p, i.e.

f(X) =
{

1− p, X = ∅
p · f(x), X = {x} (8)

We refer to this process as a Bernoulli process. It can be shown
that this density integrates to 1 as follows.∫

f(X)δX : = f(∅) +
∫
f({x})dx (9)

= (1− p) + p

∫
f(x)dx = 1.

The probability generating functional of a Bernoulli process
is given by

G[h] =
∫
hY f(X)δX = f(∅) +

∫
h(x)f({x})dx (10)

The PHD of a Bernoulli process is characterised by the first
order statistical moment of the p.g.fl. evaluated at h = 1,

D(x) =
δ

δx
G[h]

∣∣∣∣
h=1

= f({x}) = p · f(x). (11)

Multi-object Density Example 2 - Independent, identically
distributed (i.i.d.) cluster processes: Let p(n) be the cardi-
nality distribution of the point process X and let f(y) be a
probability density function on state space X . For any random
set Y = {y1, . . . , yn} with |Y | = n, define the multi-object
probability distribution

f(Y ) := n! · p(n) · f(y1) . . . f(yn). (12)

The p.g.fl. of an independent identically distributed (i.i.d.)
point process is

G[h] =
∞∑
n=0

p(n)
(∫

h(u) · f(u)du
)n

. (13)

The intensity function, or PHD, of an i.i.d. process is found
with

D(x) =
δ

δx
G[h]

∣∣∣∣
h=1

= f(x)
∞∑
n=1

n · p(n), (14)

which is the product of the single-object density f(x), and the
expected number of objects

∑∞
n=1 n · p(n).

Multi-object Density Example 3 - Poisson point processes:
Suppose that in equation (12), that the cardinality distribution
p(n) is given by

p(n) =
exp (−λ)λn

n!
, (15)

and the multi-object distribution is

f(Y ) := e−λ · λn ·
∏
yi∈Y

f(yi). (16)

The p.g.fl. of a Poisson point process is given by

G[h] = exp
(
µ

∫
h(x)f(x)dx− µ

)
(17)

The intensity function, or PHD, of a Poisson point process is
found by taking the functional derivative of (17), evaluated at
h = 1, i.e.

D(x) :=
δ

δx
G[h]

∣∣∣∣
h=1

= µ · f(x), (18)

where µ gives the expected number of objects that are dis-
tributed according to f(x).

III. GENERALISED COVARIANCE INTERSECTION FOR
MULTI-OBJECT POSTERIORS

The generalisation of Covariance Intersection was proposed
by Mahler specifically to extend FISST to suboptimal dis-
tributed environments [9], and this generalisation has proved
to be extremely valuable for distributed estimation in the
single-target case [11]–[14]. However, despite the fact that
these equations were introduced for multi-object posteriors,
no authors to date have attempted to analyse or apply these
equations.

For robust distributed data fusion for fusion of two multi-
object posteriors, f0(X|Zk0 ) and f1(Y |Zk1 ), that are condi-
tioned on measurement set sequences, Zk0 and Zk1 , from two
different sensor suites, into a fused multi-object posterior,
fω(X|Zk0 , Zk1 ), Mahler proposed the following generalisation
of Covariance Intersection [9],

fω(X|Zk0 , Zk1 ) =
f0(X|Zk0 )(1−ω)f1(X|Zk1 )ω∫
f0(Y |Zk0 )(1−ω)f1(Y |Zk1 )ωδY

, (19)

and an approach for finding the optimal value of parameter
0 ≤ ω ≤ 1 in an information-theoretic sense that yields
a consistent improvement in performance over either sensor
individually. Note that the above integral is not an integral
in the conventional sense but rather a set-integral that inte-
grates over all joint target-spaces, considering each cardinality
(number of targets) [1]. Thus this integral is not practical
for more than a few targets and so approximation strategies,
such as the PHD filter [2], are required. In the next sections,
we derive explicit formulae for specific tractable types of
fused multi-object posterior and first-moment densities as a
prerequisite for investigating the multi-object fusion rules in
practical scenarios.

A. Robust fusion of Bernoulli Posteriors

In this section, we show that when the multi-object gener-
alisation of Covariance Intersection is restricted to the joint
target-detection and estimation problem, we can find an ex-
plicit expression for the resulting distribution.

Theorem: Let us assume that the posteriors f0 and f1 are
Bernoulli processes, i.e.

f0(X) =
{

1− p0, X = ∅
p0f0(x), X = {x}. (20)



f1(X) =
{

1− p1, X = ∅
p1f1(x), X = {x}. (21)

Then we can evaluate equation (21) for X = ∅ and X = {x}
explicitly. The fused probability of target existence and track
density become

pω = 1− 1
K

(1− p0)(1−ω)(1− p1)ω (22)

fω(x|Zk0 , Zk1 ) =
1

pωK
p
(1−ω)
0 pω1 f0(x|Zk0 )(1−ω)f1(x|Zk1 )ω.

(23)

Proof We first evaluate the denominator in equation (21) for
Bernoulli posteriors by expanding the set integral,

K =f0(∅|Zk0 )(1−ω)f1(∅|Zk1 )ω+ (24)∫
f0({y}|Zk0 )(1−ω)f1({y}|Zk1 )ωdy

=(1− p0)(1−ω)(1− p1)ω+

p
(1−ω)
0 pω1

∫
f0(y|Zk0 )(1−ω)f1(y|Zk1 )ωdy.

Then, for the case with no targets, i.e. X = ∅, we have

fω(∅|Zk0 , Zk1 ) =
1
K
f0(∅|Zk0 )(1−ω)f1(∅|Zk1 )ω (25)

=
1
K

(1− p0)(1−ω)(1− p1)ω,

whereas for the single-target case, i.e. X = {x}, we have

fω({x}|Zk0 , Zk1 ) =
1
K
f0({x}|Zk0 )(1−ω)f1({x}|Zk1 )ω (26)

=
1
K
p
(1−ω)
0 pω1 f0(x|Zk0 )(1−ω)f1(x|Zk1 )ω.

The resulting existence probablity and track density follow
from

pω = 1− fω(∅|Zk0 , Zk1 ), (27)

fω(x|Zk0 , Zk1 ) =
fω({x}|Zk0 , Zk1 )

pω
. (28)

B. Robust fusion of Poisson multi-object intensities

We now consider Poisson multi-object intensities. The PHD
filter makes the assumption that the multi-object process is
Poisson in order to get a closed form solution for the PHD
update. Here we consider the scenario where the posterior
multi-object PHD on each sensor is Poisson before fusion with
the generalised Covariance Intersection.

Theorem: Let us assume that the posteriors f0 and f1 are
Poisson processes, i.e.

f0(X) = exp(−µ0)
∏
x∈X

µ0 · s0(x), (29)

f1(X) = exp(−µ1)
∏
x∈X

µ1 · s1(x),

where µ0 and µ1 are the Poisson average number of objects,
each distributed according to spatial single-object density
s0(x) and s1(x) respectively. Then the PHD of the fused
posterior becomes

Dω(x) = µω · sω(x), (30)

where the expected number of objects and location density are
computed with

µω = µ
(1−ω)
0 µw1 ·

∫
s
(1−ω)
0 (y)sw1 (y)dy, (31)

sω(x) =
s
(1−ω)
0 (x)sw1 (x)∫
s
(1−ω)
0 (y)sw1 (y)dy

. (32)

Proof Substituting the Poisson posteriors into equation (21),
we get

1
K

exp (−µ0(1− w)− µ1w)
∏
x∈X

(
µ0µ1 · s(1−ω)

0 sw1

)
. (33)

where the normalising constant K is equal to

exp
(
−µ0(1− w)− µ1w + µ

(1−ω)
0 µω1

∫
s
(1−ω)
0 (y) · sw1 (y)dy

)
(34)

The p.g.fl. of the fused multi-object posterior is

Gω[h] =
1
K

∫
hXf

(1−ω)
0 (X|Z(k)

0 )fω1 (X|Z(k)
1 )δX (35)

=
1
K

∫
hX(exp(−µ0)µ0 · sX0 )(1−ω)(exp(−µ1)µ1 · sX1 )ωδX

=
1
K

exp
(
−µ0(1− w)− µ1w + µ0µ1

∫
h(y)s(1−ω)

0 (y)sw1 (y)dy
)

Taking the PHD of fω(X|Zk0 , Zk1 ), we get

Dω(x) = µ
(1−ω)
0 µw1 · s

(1−ω)
0 (x)sw1 (x). (36)

This leads to the fused expected number of objects and density
as described.

Remark: Note that if we consider the single-target case in
equation (31), i.e. if µ0 = µ1 = 1, then µω 6= 1 in general, and
hence the fused intensity is no longer a probability distribution.
This could lead to a poor estimate of the estimated number of
targets with this approach.

C. Robust fusion of i.i.d. cluster intensities

We now relax the assumption of having a Poisson cardinal-
ity distribution to allow for arbitrary cardinality distributions
with i.i.d. cluster processes. In the CPHD filter, the predicted
multi-object distribution was assumed to be an i.i.d. cluster
process before computing the CPHD filter update.



Theorem: Let us assume that the posteriors f0 and f1 are
i.i.d. cluster processes, i.e.

f0(X) = n! · p0(n)
∏
x∈X

s0(x) (37)

f1(X) = n! · p1(n)
∏
x∈X

s1(x)

Then the fused PHD is

Dω(x) = sω(x) ·
∞∑
n=1

n · pω(n), (38)

where the updated i.i.d. location density and cardinality dis-
tribution are

sω(x) =
s
(1−ω)
0 (x)sω1 (x)∫
s
(1−ω)
0 (y)sω1 (y)dy

(39)

pω(n) =
p
(1−ω)
0 (n)pw1 (n)

(∫
s
(1−ω)
0 (x′)sω1 (x′)dx′

)n
∑∞
m=0 p

(1−ω)
0 (m)p(w)

1 (m)
(∫

s
(1−ω)
0 (y)sω1 (y)dy

)m .
(40)

Proof Substiting the i.i.d. posteriors into equation (21) gives

1
K
n! · p(1−ω)

0 (n)p(w)
1 (n)

∏
x∈X

s
(1−ω)
0 (x)s(w)

1 (x), (41)

where the normalising constant K is equal to
∞∑
n=0

1
n!

∫
f

(1−ω)
0 ({x1, . . . , xn})fω1 ({x1, . . . , xn})dx1 . . . dxn

(42)

=
∞∑
n=0

p
(1−ω)
0 (n)p(w)

1 (n)
(∫

s
(1−ω)
0 (x)sω1 (x)dx

)n
.

The PHD is computed with (see [1, p584])

Dω(x) =
1
K

∫
f

(1−ω)
0 ({x} ∪X) · fω1 ({x} ∪X)δX (43)

=
1
K

∞∑
n=0

1
n!

(n+ 1)!p(1−ω)
0 (n+ 1)pw1 (n+ 1)×

s
(1−ω)
0 (x)sω1 (x)

n∏
i=1

∫
s
(1−ω)
0 (xi)sω1 (xi)dxi

=
1
K
s
(1−ω)
0 (x)sω1 (x)×

∞∑
n=1

np
(1−ω)
0 (n)pw1 (n)

(∫
s
(1−ω)
0 (x′)sω1 (x′)dx′

)n−1

.

The resulting cardinality distribution and location density
follow.

Remark: Note that if we consider the fusion of two single-
object distributions, the estimated number of targets for the
fused PHD in equation (38) scales correctly to 1 in this case,
which indicates that this method is likely to better estimate
the number of targets than the Poisson PHD case.

IV. CONCLUSIONS

This paper investigates potentially numerically tractable
forms of the generalisation of the Covariance Intersection
algorithm to multi-object densities. We have shown that, for
several widely-used classes of distributions, exact closed form
solutions for the distributions exist. Given that closed forms
exist, the next job is to provide efficient implementations. We
consider these in the companion paper [15].
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