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Fractal dimension based sand ripple suppression for
mine hunting with sidescan sonar

J. D. B. Nelson and N. G. Kingsbury

Abstract—Sand ripples present a difficult challenge to current
mine hunting approaches. We propose a robust and adaptive
method that suppresses sand ripples prior to the detection stage.
The method exploits a fractal model of the seabed and the
connection between: dual-tree wavelets and local, directional
fractal dimension; interscale energy ratios, scale invariant fre-
quency localised fractal dimension, and a novel wavelet shrinkage
approach. Tests on a reasonably large, real synthetic aperture
sonar imagery dataset show that the ripple suppression method
preserves detection performance of the matched filter on non-
rippled data and significantly increases the detection performance
on data that contain ripples.

I. I NTRODUCTION

T HERE is growing interest in the analysis of sonar imagery
for automatic mine hunting. Manual inspection of such

data can be a time consuming task that requires significant and
constant concentration. It is hoped that future computer aided
systems will help eliminate distraction or fatigue and perform
faster, more consistent, processing. A practicable mine hunting
system must overcome some difficult challenges including
clutter and seabed variability. Sand ripples, which can share
some of the characteristics of mine-like objects, present one of
the major challenges for automatic mine hunting applications
[1], [2].

Amongst the most promising techniques that have the
potential to overcome the effects of sand ripples is the workof
Reed et al. [3]. They used unsupervised Markov random field
based detection to segment the image into shadow, seabed,
and object highlight regions. Cooperating statistical snakes
were used to extract highlight and shadow regions for object
classification. Some robustness to sand ripples, compared with
previous methods, was reported.

In the following, we present a method that automatically
suppresses sand ripple effects. Our scale and rotation invariant
method exploits ideas from fractal analysis to distinguish
rippled from non-rippled seabed regions. The information
obtained is used to design a space, direction, and scale adaptive
wavelet shrinkage operator that targets and attenuates the
ripple energy. Although our method is not necessarily intended
as an alternative to that of Reed et al. [3], it can potentially
facilitate the use of simpler detection/classification methods
which were previously ineffectual in the presence of sand
ripples. As an example, we will use the matched filter detector
as a validation tool to compare the detection performance with
and without ripple suppression.
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Williams and Coiras [4] recently proposed a filter bank
with 6 directions and 6 scale levels, which resembled a Gabor
basis, to detect sand ripples in synthetic aperture sonar. After
applying the 36 (undecimated) convolutions with the input
image, a ‘ripplicity’ measure was computed by taking the
difference between filter responses at mutually orthogonal
directions. Given that the location and orientation of the ripples
could be found robustly, they proposed that the heading of
the sensor should be changed to a direction parallel to the
ripple propagation in order to moderate the ripple effects.In a
sense, they ventured a hardware, as opposed to our proposed
software, ripple suppression approach. Unfortunately, owing to
variations in wave frequency and amplitude of currents, sand
ripples are not guaranteed to result in regular, linear patterns.
Rather, the ripples, as seen from above, form pseudo sinsoidal,
bifurcated, and braided patterns [5] (see Fig. 3(a)). In practice,
this could potentially mean that the hardware solution requires
that the sensor re-inspect the same region of seabed from
multiple angles each time a ripple field was encountered.

Using wavelets to preprocess sonar imagery prior to mine
detection has been attempted before. However, these methods
have only been used to denoise the sonar speckle rather than
to suppress sand ripples. Chen and Nguyen [6] employ an
undecimated, overcomplete Haar wavelet transform before a
(wavelet decomposed) matched filter is applied to each scale
level. A scale dependent threshold is then applied to the
correlation surfaces at each scale level and the resulting binary
maps are intersected to form the final binary detection map.
Unfortunately, an undecimated wavelet transform, together
with multiple instances of fully sampled matched filter op-
erations (at each scale level) is computationally expensive.
It is also unclear as to how the vertical, horizontal, and
diagonal subbands are combined, and how the scale dependent
thresholds are predetermined or generalised to unseen data.

Huynh et al. [7] used several different denoising methods in-
cluding Gaussian, difference of Gaussian, and standard wavelet
shrinkage. After some experimentation with real sidescan
sonar data, they reported that wavelet shrinkage gave rise to
the best matched filter detector performance and that shrinking
only the 2nd finest scale level gave the best detection results.
Being non-adaptive purely linear operators which blur the
highlight/shadow regions associated with mines, the Gaussian
and difference of Gaussian filters in [7] gave worse results
than not performing any preprocessing.

In Section II the connection between wavelets and fractal
dimension is briefly outlined for self similar processes. Section
III introduces a fractal based model to distinguish between
rippled and non-rippled seabed regions in a scale invariant
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manner as well as a wavelet shrinkage method to suppress the
ripples. The same model motivates a modification of a matched
filter, proposed by Dobeck et al. [8], which is presented
in Section IV. In Section V, validation is carried out by
comparing the receiver operating characteristic (ROC) curves
obtained from applying a matched filter with and without the
ripple suppression preprocessing step.

II. FRACTAL DIMENSION

A. Statistical self-similarity

Of particular interest for this application are statistically self-
similar processes. That isf : R

2 7→ R, such that

E [f(γx)f(γξ)] = γ2H
E [f(x)f(ξ)] , (1)

whereH ∈ [0, 1] for someγ ∈ R. Statistical self similarity is
one of the key properties that informally defines a (stochastic)
fractal process [9]. It is satisfied by processes with power
spectraPf that satisfy the power law decay:

(Pf) (ω) ∝ ‖ω‖
−2(H+1)

. (2)

In this case , the fractal dimension off is φ , 3−H . Statistical
self-similarity is also satisfied by fractional Brownian surfaces.
These are stochastic processesBH : R

2 7→ R, with initial
conditionBH(0) = 0, such that the local increments:

(∆BH) (x) , BH(x + ∆x)−BH(x) ,

are stationary Gaussian random fields with variance

E

[

|(∆BH)(x)|
2
]

∝ ‖∆x‖
2H

.

Again, the fractal dimension is(3 − H), and the power law
(2) holds in an average power spectrum sense [9].

B. Wavelet transforms and fractal dimension

The wavelet transform of a surfacef : R
2 7→ R can be

written as

(Wf) (k,m;x) = 2−k
∫

R2

f(ξ)ψm (2−k(x − ξ))dξ ,

where ψm is a zero-mean mother wavelet with orientation
indexed bym, and wherek denotes thekth finest scale level
(k = 0 being the scale of the original ‘pixel’ coordinates), and
wherex is the spatial location. Appendix A shows that

log2 E

[

|(Wf) (k,m; ·)|
2
]

= 2k(H + 1) + Cψm,f (3)

holds for statistically self similar processes. TheCψm,f term
is independent of scalek and the right-hand-side is a linear
function of scalek. Hence, the exponentH can be computed
by measuring the average slope, over each of the directional
subbandsm, of (3) via linear least squares regression. In
practice the variance is approximated by the sample variance
1
N

∑

n |(Wf) (k,m;xn)|
2. In [10], the authors proposed the

use of the dual-tree complex wavelet transform (DTCWT) [11],
[12] to estimate local and directional fractal dimension. The
DTCWT is fast (decimated) and, with 6 strongly directional
subbands, it has good directional selectivity. The stripe di-
rections of the filters are oriented at{(30m − 15)◦}61 in an

anticlockwise direction from the horizontal (see [11], [12] for
more details). Moreover, unlike other fast wavelet transforms,
the DTCWT also has good shift invariance which ensures that
the magnitudes of its complex coefficients remain stable and
large near any singularities.

III. R IPPLES, FRACTAL DIMENSION, AND COMPLEX

WAVELET SHRINKAGE

A. Measuring ripples with fractal dimension

In order to help distinguish between rippled and non-rippled
patches of seabed, we consider a measure of local dual-tree
wavelet root-energy, namelyEk,m(x) ,

∣

∣(Wf) (k,m;x)
∣

∣, at
scale k, directional subbandm, and locationx. The root-
energy is plotted against thekth finest scale level in Figure 1
for a rippled and non-rippled seabed region. It can be observed
that the non-rippled region gives rise to an approximate power
law spectrum as in (2) whereas the rippled region contains
spikes in more than one directional subband that invalidate
the power law. That the relatively flat seabed follows a power
law relationship corroborates the model of Pailhas et al. [13]
who used fractional Brownian surfaces, discussed briefly inthe
previous section, to synthesise sonar imagery data of seabeds.
From (3), a surface with a power law spectrum satisfies:

Ek,m(x) ∝ 2(4−φ)k ,

whereφ (nominally∈ [2, 3]) is fractal dimension. Hence, for a
relatively flat seabed region, we arrive at the following bound
condition for a non-rippled seabed:

1

4
≤

Ek,m(x)

Ek+1,m(x)
= 2φ−4 ≤

1

2
, ∀k . (4)

Here, the root-energy at scalek is divided by the root-energy
at scalek + 1 for each location and subband direction. This
interscale wavelet energy ratio results in a value independent
of scale level. Since the bounds are independent ofk, this is
a scale invariant condition. Since the ratio only involves two
scale levels, it is akin to a frequency localised measure of
fractal dimension. Because of the space, direction, frequency
localised (approximate) nature of this measure, and because
we only want to shrink a wavelet coefficient if we have strong
evidence that it contributes to a ripple region, the upper and
lower bounds are relaxed somewhat in practice to someλ1 <
λ2.

Conversely, at scalek, subbandm, locationx, the wavelet
coefficientwk,m(x) , (Wf) (k,m;x) is deemed to contribute
to rippled seabed region if, for someλ1 < λ2 ∈ R

+:

Rk−1,m(x) ,
Ek−1,m(x)

Ek,m(x)
< λ1 (5)

or

Rk,m(x) ,
Ek,m(x)

Ek+1,m(x)
> λ2 . (6)

In this way, we can distinguish between rippled and non-
rippled regions. By considering the distance between the
interscale energy ratio and the bounds, we also have a measure
of how certain we are that a given region contains ripples.
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(a) Non-rippled seabed
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(b) Wavelet energy.
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(c) Rippled seabed
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(d) Wavelet energy.

Fig. 1. A patch of non-rippled seabed (a), gives rise to a wavelet amplitude
spectrum (b) that follows a power law decay with respect to finer scales (it
decays as frequency increases). Conversely, a rippled seabed patch (c) will
invalidate the power law at one or more scales and subband directions (d).

B. Fractal-dimension-based complex wavelet shrinkage

Given an imagef , a general wavelet shrinkage procedure
can be summarised by:

(i) Take wavelet transform: w = Wf
(ii) Shrink wavelet coefficients: w∼ = Sw
(iii) Take inverse wavelet transform:f∼ = W−1w∼

More specifically, for the ripple suppression application the
shrinkage operation in the second step is designed to reduceor
threshold any coefficientswk,m(x) that contribute the ripples.
To this end, the shrinkage operator is applied to the wavelet
coefficients via:

w∼

k,m(x) = Sk,m(x)wk,m(x) , S : (k,m;x) 7→ [0, 1] . (7)

The shrinkage functionSk,m(x) , S−

k,m(x)S+
k,m(x) adapts

to scale, direction, and location according to the minimax
functions:

S−

k,m(x) = min

(

1,max

(

0,
Rk−1,m(x)− λ0

λ1 − λ0

))

(8)

S+
k,m(x) = min

(

1,max

(

0,
λ3 −Rk,m(x)

λ3 − λ2

))

(9)

These functions are plotted and explained in Figure 2. Note
that this strategy differs from the standard wavelet shrinkage
approach which shrinks wavelet coefficients that have small
absolute values or are uncorrelated with respect to space or
scale.

C. Ripple suppression algorithm

To summarise, the ripple suppression algorithm proceeds as
follows.

Rk−1 = Ek−1/Ek

S−

λ0 λ1
0

1

Rk = Ek/Ek+1

S+

λ2 λ3
0

1

Fig. 2. The dual-tree wavelet adaptive shrinkage functions. The function
S−, given by (8) is designed to threshold or shrink wavelet coefficients that
give rise to a wavelet energy ratioRk−1 that is low enough to satisfy (5). On
the other hand, the shrinkage functionS+ given by (9) thresholds or shrinks
coefficients that give rise to an energy ratioRk that is large enough to satisfy
(6).

• Compute the DTCWT coefficients of the inputf :

wk,m(xn)←[ (Wf)(k,m;xn) ,

at scalek, in subband (direction)m, at locationxn.
• Estimate local root-energyEk,m(x) ←[

∑

χ |wk,m(xn)|,
in some spatial neighbourhoodχ of x.

• Compute ratioRk,m(x) ←[ Ek,m(x)/Ek+1,m(x). In
practice, the sampling rate is proportional to2k; therefore
Ek+1,m is up-sampled by a factor of 2 to computeRk,m.

• Compute ratiork,m(x)←[ down-sampled (by a factor of
2) version ofRk−1,m.

• Compute adaptive shrinkage functions:

S−

k,m(x) ←[ min

(

1,max

(

0,
rk,m(x) − λ0

λ1 − λ0

))

S+
k,m(x) ←[ min

(

1,max

(

0,
λ3 −Rk,m(x)

λ3 − λ2

))

• Combine functions:Sk,m(x)←[ S−

k,m(x)S+
k,m(x).

• Apply shrinkage:w∼

k,m(x)←[ Sk,m(x)wk,m(x).
• Take inverse DTCWTf∼ ←[W−1w∼

k,m.
• f∼ is a ripple suppressed version of input imagef .

In the results provided later, the shrinkage thresholds were
set to {λn} = {0, 0.25, 2.5, 3.5} and the size of the spatial
neighbourhoodχ was set to 256-by-256 pixels. In practice,
we found that the success of the ripple suppression method
was not unduly sensitive to these parameters choices; improve-
ments (compared to no suppression) in detection performance
were realised even when the parameters were varied signifi-
cantly.

IV. M ATCHED FILTER

Since objects protruding above the seabed tend to be more
reflective than the sediment they return a higher intensity sig-
nal back to the sensor. Moreover, such objects will also block
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the signal from reaching the seabed behind them, thus creating
a shadow region. This motivated Dobeck et al. to construct a
matched filter that comprises a highlight region, dead-zone,
and shadow region [8]. Depending on seabed elevation, the
shadow length will vary significantly with respect to range.
Consequently the shadow component of the matched filter
is varied in length as a function of range. In studies where
sand ripples are not present or considered, the matched filter
detector of Dobeck et al. has received some attention, c.f. [6],
[7], [14].

To validate the ripple suppression method described in the
previous sections, we compare detection results obtained from
using a matched filter, similar to that of Dobeck et al, with and
without the ripple suppression preprocessing step. Although
the matched filter is too simplistic to accurately and uniquely
represent the wide variety of potential targets, it is merely
intended as an initial detection step to discard any regionsof
the data that are very unlikely to contain mine-like-objects. A
classifier can then be trained and tested on positive responses
to the detector. The matched filter operation can be described
as the 2-dimensional cross-correlation

g(x) ,
∑

n

h(xn)f(x + xn) , (10)

between imagef , and filterh. Putting(x, y) , x, the matched
filter is constructed with

h(x) , h0(x)h1(y) .

That is, it is a separable filter and it follows that (10) can be
implemented as a 1-dimensional correlation down the columns
followed by another across the rows of the image. Along the
rangex, the filter is constructed as a superposition of shifted
raised cosines, viz.:

h0(x) ,

3
∑

n=1

αnh0,n(x) ,

where n = 1, 2 and 3, correspond to the highlight, dead-
zone, and shadow regions respectively. Unlike Dobeck et al.
[8], our matched filter is constructed as a superposition of
rasied cosines rather than their step functions. Our reasoning is
motivated by the fact that the sand ripples in our data cannotbe
well approximated by pure sinusoidal plane waves. Observing
Figure 1, we see that the ripples are more like square waves. In
the frequency domain, the ripples will therefore contain higher
frequency harmonics in addition to the fundamental frequency.
The ripple suppression method will usually only suppress the
fundamental frequency. A matched filter constructed from a
superposition of square waves will also have higher frequency
harmonics which will be excited by the harmonics left over
from the ripple suppression method. On the other hand, by
shaping the matched filter into raised cosines, the matched
filter will attenuate the left-over ripple harmonics. From ex-
perimentation, we have also observed that the raised cosines
give better ROC curves than the step functions with or without
ripple suppression. The filter regions are described by

h0,n(x) ,







cos2
π

ℓn
(x− βn) , if |x− βn| ≤

ℓn
2

0 , otherwise

Without loss of generality, we assume that the data is gathered
from the starboard side of the sensor platform. We require that
the raised cosine for the highlight region is centred onℓ1/2; i.e.
β1 = ℓ1/2. The dead-zone is constructed to intersect zero at
the same location that the highlight takes its maximum; hence
β2 = (ℓ1 + ℓ2)/2. The shadow region is designed such that it
only overlaps the dead-zone at a single point and we have that
β3 = ℓ2+(ℓ1+ℓ3)/2. In order to eliminate any zero-frequency
bias, the matched filter is required to have zero mean. That is
we want

∫

h0(x) dx = 0, or αn such that

3
∑

n=1

αn

∫

h0,n(x) dx = 0 .

This implies
∑3

n=1 αnℓn = 0. We chooseα1 = 1, α2 = 1/3,
which assumes the highlight region gives a response 3 times
stronger than the deadzone. We also assume that the highlight
and deadzone lengths in the range direction are similar. I.e.
ℓ1 = ℓ2 ⇒ α3 = −4ℓ1/(3ℓ3). In the track, or cross-range
direction, the filter componenth1(y) is defined by another
raised cosine with widthℓ0. The precise choices of{ℓn}
should be tailored according to scenario dependent parameters,
which are usually known, such as sensor altitude, resolution,
and approximate target size. The shadow is also lengthened,
by increasingℓ3 = ℓ3(x), with respect to range in a piecewise
manner.

V. RESULTS

Figure 3 shows a typical result of applying a matched filter
with and without the ripple suppression step, together withthe
computed shrinkage functions and resulting ripple suppressed
image. Note that most of the ripples have an orientation thatis
roughly aligned with the 3rd subband direction of the DTCWT
(stripe direction at75◦ anticlockwise from the horizontal), and
that the associated shrinkage function (S6,3) takes low values
in a region that coincides with the ripples. The shrinkage
functions in the neighbouring directions also take low values
in the same region; this correctly captures the fact that the
ripples manifest bifurcated and braided behaviour rather than
a perfectly parallel pattern. We can see that the ripples are
indeed suppressed by the ripple suppression method and that
the non-rippled regions remain largely the same as the input
image. In this example, for both suppressed and unsuppressed
cases, the lowest (local maxima) correlation score associated
with the true positives was chosen as a threshold. All scores
above that threshold were labelled as true positives if they
were in a neighbourhood of the ground truth. Otherwise, they
were labelled as a false positive. We can see that most, if not
all, of the false positives lie in the ripples and that the ripple
suppression method gives rise to fewer false positives.

Validation of the ripple suppression preprocessing step was
carried out by comparing the receiver operating characteristic
(ROC) curves obtained from applying a matched filter with
and without the ripple suppression preprocessing step over61
rippled images and 140 non-rippled images, most of which
comprised 14 megapixels. The data is real synthetic aperture
sonar data and was acquired by the NATO Undersea Research
Centre (NURC) and provided to us by the DSTL Data Centre.
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TABLE I
NUMBER OF FALSE POSITIVES INCURRED IN ORDER TO RECOVER90%,

95%, 98%, 99%,AND 100%OF THE TOTAL NUMBER OF TRUE POSITIVES.

Number of Number of false positives
Seabed type true pos. No suppression Suppression

Non-rippled

270 22 21
285 59 60
294 259 253
297 460 473
300 806 793

Rippled

127 6320 2029
134 10468 3345
138 15032 7753
140 38348 18209
141 55719 19427

Both

397 2585 676
419 7854 2256
432 15332 4683
437 22640 8494
441 57457 21143

To construct the ROC curves, a series of thresholds indexed
by t, say, were applied to the correlation surface and the
number of true positivesp+(t), and false positivesp−(t),
recorded. Then,p+(t) was plotted againstp−(t). To combine
curves(p−n , p

+
n )N1 overn = 1, . . . , N images, we simply plot

∑N

n=1 p
+
n (t) against

∑N

n=1 p
−

n (t).
Figure 4 shows the ROC curves for the suppressed and un-

suppressed methods for the rippled, non-rippled, and combined
dataset. On the rippled and combined dataset, we observe that
the matched filter achieves better detection results when the
ripple suppression method is used. For the non-rippled data,
the suppressed and unsuppressed methods give very similar
results, as expected and required.

Table I records the number of false positives incurred in
order to recover a certain percentage of the true positives.
For example, the table shows that all the mines (targets) in
the rippled data can be detected at a cost of 55,719 false
positives with no suppression and 19,427 false positives with
suppression: a reduction of some 65%.

VI. CONCLUSION

We have introduced the technique of fractal dimension
based dual-tree wavelet shrinkage to suppress sand ripplesin
sonar imagery. Results on a reasonably large dataset indicate
that the method can act as a useful preprocessing stage, prior to
mine detection. It is worth pointing out that the matched filter
detector discussed here is a separate development to the ripple
suppression step. It is anticipated that our ripple suppression
method could also enhance other previous and current mine
detection strategies. This method is only intended as the first
phase in a larger detection/classification system. As in previous
detector/classifier mine hunting approaches, it is anticipated
that a classification phase will further reduce the number of
false positives incurred by the detection phase.
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types combined.
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(a) Sonar image (b) Ripple suppressed image
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(d) Suppressed correlation surface

Fig. 3. The shrinkage functionsSk,m at scalek, subband directionm are computed adaptively from the synthetic aperture sonar image (a) using (8) and
(9). The shrinkage operation results in the ripple suppressed image (b). If no suppression is applied prior to application of the matched filter, the result is the
correlation surface shown in (c). The yellow (resp. red) rings show the location of the true (resp. false) positives. Sub-figure (d) shows the resulting correlation
surface when suppression is applied before the filter.
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APPENDIX A
FRACTAL DIMENSION OF SELF SIMILAR PROCESSES

Since wavelets are zero mean, the variance of the transform
is E

[

|(Wf) (k,m; ·)|
2
]

=

2−2k

∫

R2

∫

R2

E

[

ψm(2−k(· − x))ψm(2−k(· − ξ))f(x)f(ξ)
]

dxdξ .

After a change of variables, this is

22k

∫

R2

∫

R2

ψm(x)ψm(ξ) E
[

f(· − 2kx)f(· − 2kξ)
]

dxdξ .

Invoking self-similarity (1), and puttingxn = n2k∆x, we
haveE

[

|(Wf) (k,m;xn)|
2
]

=

22k(H+1)

∫

R2

∫

R2

ψm(x)ψm(ξ) E [f(n∆x−x)f(n∆x−ξ)] dxdξ ,

and the integrand is independent ofk, which yields (3).
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