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Abstract: The paper describes a novel method to group data points into clusters. Our method
is derived from the assumption of Gaussian distribution of the points. We apply the clustering
method to the well-known Iris flower data set and we suggest a nonlinear discriminant analysis
of the data for a more sophisticated classification. To the best knowledge of the authors this
paper shows the best classification result for the Iris data so far.
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1. INTRODUCTION

Clustering is the partition of a set into subsets so that
the elements in each subset share some common treat.
For some entities such as convoys of vehicles, crowds of
people, and dust clouds, data clustering is an important
procedure and it is at the core of pattern recognition and
classification. Measurements of such entities are usually
represented by points in a well-defined space. The points
can represent observations of position, activity or other
features, related to the data. In most cases the initial task
in understanding such data is to study relations among
the points to classify into groups with similar attributes.

A clustering of data is required in a number of disciplines
such as marketing research (Punj and Stewart (1983)),
gene expression study (D’haeseleer (2005)), and image
processing (Shi and Malik (2000)). The literature for the
problems of clustering and classification is huge. To solve
classification/clustering problems there are a number of al-
gorithms based on various approaches such as determinis-
tic approach (Huang (1998)), probabilistic approach (Lau-
ritzen (1995)), simulated annealing based approach (Selim
and Alsultan (1991)), evolutionary process based approach
(Krishna and NarasimhaMurty (1999)), tabu-search based
approach (Pan and Cheng (2007)), hierarchical approach
(Karypis et al. (1999)), density based approach (Ester
et al. (1996)). In particular one of the authors has recently
reported Hamiltonian based clustering algorithm and its
applications in Casagrande and Astolfi (2008); Casagrande
et al. (2009a); Casagrande and Astolfi (2009); Casagrande
et al. (2009b). The core idea of the Hamiltonian approach
is to regard the clustering function as a Hamiltonian func-
tion and to determine the level lines as the trajectories of
the corresponding Hamiltonian system.

⋆ This work has been supported by the Engineering and Physi-
cal Sciences Research Council (EPSRC) and the MOD University
Defence Research Centre on Signal Processing (UDRC) project
“Hamiltonian-based cluster-tracking and dynamical classification”.

In this paper we propose a novel clustering/classification
algorithm. Within our framework we firstly use the def-
inition of cluster with notions from graph theory (see
Augustson and Minker (1970); Zahn (1971); Wu and
Leahy (1993); Aksoy and Haralick (1999); Shi and Malik
(2000); Shi et al. (2005) for examples of graph theoretic
approaches to clustering problem). Then we develop a
classification method with the assumption of Gaussian
distribution of the data. The proposed method yields two
advantages: we do not need to tune any parameter and the
method is applicable to measured data in high dimensional
space.

Throughout the paper we discuss the Iris data as an
application example of our classification method. Ander-
son (1935) has proposed this data set which presents the
geographic variation of Iris flowers and these data have
been used as a benchmark for the linear discriminant
analysis in Fisher (1936). The data set has been considered
many times in the literature of clustering research such
as Cannon et al. (1998); Domany (1999); Dubnov et al.
(2002); Paivinen (2005); Vathy-Fogarassy et al. (2006). To
the best knowledge of the authors the classification result
of the paper is the best for the Iris data so far.

The paper is organised as follows. In Section 2 we give an
introduction to the Iris flower data set. In addition we give
a definition of cluster based on graph theory and describe
the problem of so-called ‘touching clusters’ studied in Zahn
(1971). Section 3 introduces the clustering idea for the Iris
data with the assumption of Gaussian distribution and
illustrates the classification result. Particularly, in Subsec-
tion 3.1, we make use of nonlinear discriminant analysis to
deal with the limitation of the previous approach. Finally
Section 4 provides a summary and some conclusions.
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Table 1. Anderson’s Iris flower data set.

Iris Setosa Iris Versicolor Iris Virginica

(5.1, 3.5, 1.4, 0.2) (7.0, 3.2, 4.7, 1.4) (6.3, 3.3, 6.0, 2.5)
(4.9, 3.0, 1.4, 0.2) (6.4, 3.2, 4.5, 1.5) (5.8, 2.7, 5.1, 1.9)
(4.7, 3.2, 1.3, 0.2) (6.9, 3.1, 4.9, 1.5) (7.1, 3.0, 5.9, 2.1)

...
...

...

2. THE IRIS DATA SET AND A GRAPH
THEORETIC APPROACH

We consider the Anderson’s Iris flower data set of An-
derson (1935) to show an application of the cluster-
ing/classification method of the paper. This data set has
points in R

4 describing sepal length, sepal width, petal
length, and petal width. In the set there are three species
of Iris, i.e., Iris Setosa, Iris Versicolor, and Iris Virginica
(see Fig. 1, Fig. 2, and Fig. 3). Each species is represented
by 50 points, so the Iris data set has 150 points. Some
samples of the data set are shown in Table 1. As a method
of the separation of Iris Setosa we suggest a graph theoretic
approach (e.g. Zahn (1971)) since this approach is appli-
cable to clustering problems in high dimensional spaces.

Fig. 1. Example: Iris Setosa (Radomil (2005))

Fig. 2. Example: Iris Versicolor (Langlois (2005))

Fig. 3. Example: Iris Virginica (Mayfield (2007))

A graph G is defined as a pair (X,E), where X and E
are called vertices and edges, respectively. In this paper
X is considered as a set of the elements to be clustered
and let X = {x1, x2, · · · , xN} be the set of the data
which corresponds to N objects. Thus xi represents the

i-th objects which has n variables, i.e. xi ∈ R
n. E is a

collection of pairs of X hence an element of E (i.e. an
edge) is ei,j = (xi, xj) where xi, xj ∈ X . We then define
a ball Bi(rT ) = {x ∈ R

n : ‖x− xi‖ ≤ rT } for a positive
parameter rT and we assume the metric is the Euclidean
distance.

An edge ei,j exists in E if and only if Bi(rT ) and Bj(rT )
overlap. (Note that we can equivalently define an edge
ei,j ∈ E if and only if xj ∈ Bi(2rT ) or if and only if
di,j < 2rT where di,j (= d(vi, vj)) is the distance between
xi and xj .) In this section a cluster is defined as a maximal
connected subgraph of the graph G.

Proposition 1. Consider a set of points X = {x1, · · · , xN}
and a positive rT . We define upper triangular adjacency
matrix A = [Ac1, Ac2, · · · , AcN ] where A(i, j) = 1 if
di,j ≤ 2rT and j > i, and otherwise A(i, j) = 0. Note that
Acj and A(i, j) correspond to the jth column and (i, j)th

entry of A, respectively. All the points in X describe one
cluster if there are one or more “1” elements in each of the
columns of Ac2, Ac3, · · · , AcN .

Proof. For the case N = 2, the two points in X are in
one cluster if A(1, 2) = 1 which implies that there is 1
element in the column of Ac2. Assume that the claim holds
with N = k, where k ≥ 2. This implies that the points
x1, x2, · · · , xk are in one cluster. Now consider N = k + 1
with a new data point xk+1 and its corresponding column
vector Ac(k+1). The sufficient condition that this point
xk+1 is included in the cluster of x1, x2, · · · , xk is that the
column vector Ac(k+1) has one or more 1 elements, which
means that this new data xk+1 has at least one edge to
the cluster of x1, x2, · · · , xk. Thus the proof is completed
by mathematical induction.

Corollary 2. Consider a set of points X , a positive
rT , and an upper triangular adjacency matrix A =
[A1r, A2r, · · · , ANr]

T where A(i, j) = 1 if di,j ≤ 2rT and
j > i, and otherwiseA(i, j) = 0. Note that Air corresponds
to the ith row of A. All the points in X describe one cluster
if there are one or more 1 elements in each of the rows of
A1r, A2r, · · · , A(N−1)r.

Versions of Proposition 1 and Corollary 2 can be given
using lower triangular adjacency matrices instead of upper
triangular adjacency matrices. Proposition 1 and Corollary
2 can be used to identify clusters in block diagonal upper
triangular adjacency matrix.

Compared to Zahn (1971) we do not use minimal spanning
trees (MST) to identify clusters. Instead we define a cluster
as maximal connected subgraph. To show this graph
theoretic approach intuitively, we consider the simple case
of Fig. 4, a flock of geese flying in a ‘V’ shape formation.
For an appropriate value of rT the geese are clustered into
3 groups in Fig. 5. By inspection the clusters are recognised
as overlapping circles.

Remark This graph-theoretic method is applicable to dy-
namic classification when the time evolution is considered
as an axis in a multi-dimensional space. For example we
are currently investigating dynamic clustering with the
placement data of moving pedestrians measured by two
Light Detection and Ranging (LIDAR) sensors.
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Fig. 4. A flock of geese flying with a formation of ‘V’.

Fig. 5. A clustering identifying the formation of a flock
of geese. The geese are clustered into 3 groups for an
appropriate size of the circles.

For the case of the Iris data set, we see that n = 4 and
N = 150 for the graph vertices X . Although the graph
theoretic approach can be applied to the cases in multi-
dimensional space we show a projection of the data onto
the 2 dimensional space for simplicity of presentation. The
projection of the Iris data point into the plane of petal
length and petal width is shown in Fig. 6. In the figure
Iris Setosa, Iris Versicolor, and Iris Virginica are plotted
in dark grey, light grey, and black, respectively.

This projection provides enough information to cluster
Iris Setosa out of the Iris data set using graph theoretic
approach (Fig. 7). Setosa is clearly a distinguished clus-
ter while Versicolor and Virginica are overlapping (Zahn
(1971)). A certain diagnosis of the two species, Iris Versi-
color and Iris Virginica cannot be accomplished using only
4 measurements (Fisher (1936)).

3. GAUSSIAN BASED CLASSIFICATION

The Anderson’s Iris flower data set cannot be classified
completely by the approach of the previous section. To
address this classification problem we assume that we have
the information of the data points of a cluster a priori
except the data point which we want to classify. Thus we

Fig. 6. Projection of the Iris data point into the plane
of petal length and petal width. Iris Setosa, Iris
Versicolor, and Iris Virginica are plotting with the
points of dark grey, light grey, and black, respectively.

Fig. 7. Clustering with a graph theoretic approach to the
Iris data set. It is clearly observed that the cluster
of Iris Setosa is separated from the clusters of other
Iris species with an appropriate size of circle rT in
the projection of petal length and petal width plane
(Fig. 6).

can obtain the centre point of this known cluster and then
the standard deviation of the distances between the data
points and the centre point of the cluster. Now we assume
that the distribution of the distances between each data
point and the centre point is normal in the cluster (this
assumption will be further discussed in Subsection 4.1).

Consider a new data point. Assume that this point has to
be classified to one of the already known clusters. Then
we know each centre point of the clusters and standard
deviation from its centre point to the data points of
each cluster, henceforth we can use these informations.
For the new data point its probability to be in a known
cluster is statistically estimated with its distance to the
centre point of the cluster by integrating the probability
density function (see Fig. 8). With the comparison of these
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Fig. 8. Example of a one-sided Gaussian probability den-
sity function, fnd(·) where

∫
∞

0 fnd(q) dq = 1. If a new
data point is found qx away from the centre point of a
cluster, we suggest an estimation for the probability to
be in the cluster as

∫
∞

qx
fnd(q) dq (= 1−

∫ qx

0 fnd(q) dq).

statistic estimations to the candidate clusters, we can try
to classify the new data point into one of the clusters.

Note that the statistic estimation does not correspond
to a probability even if we obtain this estimation by
means of the integration of a probability density function.
The estimation does not have the meaning of probability
and sum of these estimations of a new data point for
several different clusters can be more than 1. However this
estimation value can provide a comparison of possibilities
for a new data point to be classified into considered
clusters, and it is evaluated on the basis of the data set
of known clusters.

Consider a Gaussian distribution function fnd(q) for a
cluster where q is the distance to the centre point of the
cluster. Thus, to define the function fnd(q), we should
have the centre point and the standard deviation of the
distances from the centre point to the data points of the
cluster. Note that, due to the positivity of the distance to
centre point, the Gaussian distribution function should be
one-sided, hence ∫

∞

0

fnd(q) dq = 1.

The suggested probability-like estimation can be obtained
as ∫

∞

qx

fnd(q) dq = 1−

∫ qx

0

fnd(q) dq,

where a new data point to be classified is located qx
away from the centre point of the considered cluster (see
Fig. 8). This estimation is proportional to the closeness of
the new data point to the centre point. By the suggested
estimation, the closer a new point is to the centre point of
a cluster, the more likely the new point is included in the
cluster.

Now we consider only the 100 Iris Versicolor and Iris
Virginica data points in the Anderson’s Iris flower data set
(the light grey and the black points plotted in Fig. 6). The
50 Iris Setosa data points are not considered in this section

since the Iris Setosa can be completely classified by means
of several methods such as Casagrande and Astolfi (2008)
or the graph-theoretic method in Section 2. Note that the
perfect classification of Iris Setosa is also achieved by the
method of this section while this is not further discussed
in the paper due to page limitation.

We study the problem of estimating the probability that
a data point is classified in one of the two categories, Iris
Versicolor or Iris Virginica, based on the remaining 99 data
points, which we assume known.

For a cluster, the light grey or the black points in Fig. 6,
we obtain the centre points and the standard deviations
of distances of all available 99 points in each cluster to its
centre point. For the data point which we are interested
in, we obtain the distances to the centre points of the
two clusters. Then the likeliness of the data point to be
included in the clusters can be estimated on the basis of
each probability density function.

The classification result is shown in Fig. 9. The light grey
circles and the black circles correspond to the Anderson’s
data points of Iris Versicolor and Iris Virginica, respec-
tively, as in Fig. 6. Note that Fig. 9 represents a part of
Fig. 6 or Fig. 7. The centre points of the light grey and
the black clusters are (4.260, 1.326) and (5.552, 2.026), re-
spectively. The light grey and black clusters have standard
deviations of the distances of the data to each centre point,
0.2786 and 0.2878, respectively.

We apply the suggested classification method to the 100
points one by one and the decision result is indicated with
light grey and the black ‘star’ mark. The decision is made
based on the comparison of two estimations to each cluster.
Light grey star and black star imply that the data point is
regarded as Iris Versicolor and Iris Virginica, respectively.
Thus a light grey star mark in a light grey circle and a
black star mark in a black circle show that the decision is
consistent with the Anderson’s Iris data set.

In Fig. 9 three inconsistent star marks are presented: two
black stars in two light grey circles and one light grey star
in one black circle. However some of the data points in the
figure are overlapping. With this Gaussian based method 5
data samples are incorrectly classified, which implies that
145 samples are correctly classified.

This 96.67% classification success rate is a very good
result for the Anderson’s Iris data set, as stated in Vathy-
Fogarassy et al. (2006). Note that we do not need to
set up any parameters in this methodology. To achieve
the performance of our Gaussian based classification some
parameters have to be fine-tuned in Vathy-Fogarassy et al.
(2006).

3.1 Nonlinear Discriminant Analysis

In the previous approach we use only the information
of petal length and petal width. Particularly the Iris
Versicolor group and the Iris Virginica group have a
(4.8, 1.8) point and two (4.8, 1.8) points in the plane of
petal length versus petal width, respectively. Thus we have
to use other information on the Iris data set, sepal length
or sepal width, to identify cluster of such points projected
to (4.8, 1.8) in the plane.
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Fig. 9. Classification result of the 100 Iris data points of
the two species, Iris Versicolor and Iris Virginica in the
Anderson’s Iris flower data set. Note that this figure
is part of Fig. 6 or Fig. 7. The centre points of the
light grey and the black clusters are (4.260, 1.326) and
(5.552, 2.026), respectively.

In addition, based on the inspection of the pictures of the
two species (Fig. 2 and Fig. 3) it is clear that the sepal
length or sepal width could be a key discriminant factor to
distinguish these two species. To overcome the limitation
of the Gaussian based approach, we now suggest a plane
with sepal width and ‘petal area’ (e.g. the product of
petal length and petal width) for a nonlinear discriminant
analysis. This idea is initiated by inspection of Fig. 2 and
Fig. 3. See Fisher (1936) for an example of the use of linear
discriminant analysis in the solution of this problem and
see Baudat and Anouar (2000); Mika et al. (1999) for a
general introduction on nonlinear discriminant analysis.

Fig. 10 shows an implementation of the approach. The Iris
data points are plotted in the plane of sepal width versus
the product of petal width and petal length. The light grey
points and the black points correspond to the groups of Iris
Versicolor and Iris Virginica, respectively. The dotted line
shows that this nonlinear discriminant approach can be
used to discriminate between two clusters of Iris Versicolor
and Iris Virginica. Although this dotted line is linear in the
plane, we can call it a nonlinear discriminant analysis since
an axis of the plane corresponds to ‘petal length × petal
width’.

Only 3 misclassifications are found in Fig. 10, the 3
light grey points above the dotted line. Thus, with this
nonlinear discriminant analysis, classification correctness
is improved up to 98% (3 misclassifications of the 150
point of the Iris data set). Particularly only one of the
3 points projected to the (4.8, 1.8) points in the plane of
petal length versus petal width is misclassified whereas two
of the points are in the Gaussian approach.

4. CONCLUSION

We employ the idea of using the centre data point and the
standard deviation of a known cluster with assumption of
Gaussian distribution of the data point. In our Gaussian

Fig. 10. Plot of the Iris data point in the plane of sepal
width versus the product of petal width and petal
length. The light grey points and the black points
correspond to the groups of Iris Versicolor and Iris
Virginica, respectively. The dotted line discriminates
between the two groups only with 3 misclassifications.

based classification we do not require to tune any param-
eter.

The algorithm of Dubnov et al. (2002) has classified
correctly 124 samples for the Iris data set. They claim
that the result is comparable with results obtained by
other algorithms. Also it is claimed that, in Dubnov
et al. (2002), the Super-Paramagnetic pairwise clustering
algorithm of Blatt et al. (1996) has classified correctly
125 samples in the data, which is the second best result
next to the minimum spanning tree algorithm, and the
best performing algorithm on this Iris data set example is
the minimum spanning tree. More recently an improved
minimum spanning tree algorithm of Vathy-Fogarassy
et al. (2006) has shown only 5 misclassifications in the
application to the Iris data example with a fine-tuning
clustering step of their procedure.

Note that we achieve the same classification correctness
96.67% of Vathy-Fogarassy et al. (2006) without any
tuning in the classification procedure in Section 3 and
moreover we improve this classification correctness up to
98% by introduction of nonlinear discriminant analysis in
Subsection 3.1. Thus, to the best knowledge of the authors,
this paper gives the best result for the clustering problem
of the Iris flower data set.

4.1 Future Work

In Section 2 we introduce a graph-theoretic approach
based on an appropriate rT and adjacency matrix. For the
next step of this approach we need to study algorithms to
decide the value of rT and to manipulate the matrix to
obtain the corresponding block diagonal upper triangular
adjacency matrix. Then we will research cluster identifica-
tion method in the block of the matrix by Proposition 1
or Corollary 2 and we can study dynamic clustering of the
LIDAR data set which describes moving pedestrians.

In Section 3 we assume that the data point distribution to
its centre point is Gaussian and this implies that the data
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points approximately consist of a sphere formation in the
metric space. Although we can show a good classification
result for the Iris data set with this assumption, it would
be unrealistic for some geometric distribution, such as
ring (doughnut) formation, ‘V’ formation, and so forth.
Further study on this assumption is needed to apply the
classification method to various kinds of data examples.
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