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Abstract: Classification of targets using their micro-Doppler signatures has attracted a growing interest in recent years. In
addition to their main bulk translation, targets may exhibit additional motions, such as vibrations and rotations, which
generate Doppler modulations in the echo that contain unique target features and thus can be used to perform target
recognition. Although target classification by micro-Doppler signatures has been exploited in the radio frequency regime for
radar systems, much less work has been done in acoustic. In this work, an ultrasound radar operating at 80 kHz has been
developed to gather micro-Doppler signatures of personnel targets performing various actions. The performance of a range of
classifiers and feature extraction algorithms in distinguishing between these micro-Doppler signatures is presented.
1 Introduction

The echo produced by a moving target that is illuminated by a
radar or ensonified by a sonar system contains frequency
modulations caused by the time-varying delay occurring
between the target and the sensor. The main bulk translation
of the target towards or away from the sensor induces a
frequency or Doppler shift of the echo as a result of the
well-known Doppler effect [1]. Additional movements of
small parts of the target contribute with frequency
modulations around the main Doppler shift and these are
commonly called micro-Doppler modulations. Micro-
Doppler modulations contain a signature of the target that
can be used for target recognition.

Classification of targets by micro-Doppler signatures has
been widely investigated for the radio frequency (RF)
regime and in particular for applications related to radar
systems. Chen et al. [2–4] have modelled the radar micro-
Doppler phenomenon and simulated micro-Doppler
signatures for various targets, such as rotating cylinders,
vibrating scatterers and personnel targets. The authors also
show that a time–frequency analysis of the radar return can
be used to extract micro-Doppler signatures from the
received signal, leading to additional information on the
target that can be used for classification and recognition. An
easy way to perceive target micro-Doppler modulations is to
listen to an appropriate audible version of the radar return.
Indeed, this method has been used to perform classification
of targets but it has the disadvantage of requiring the
presence of a human operators. For these reasons, the most
recent challenge that has to be addressed is to develop
micro-Doppler classification methods that allow automatic
target recognition. Various studies have looked at classifying
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targets automatically through the analysis of their micro-
Doppler signatures. For example, classification by micro-
Doppler signatures of a tracked vehicle, a wheeled vehicle
and a personnel target was performed in [5–7]. Here,
classification performance was analysed via a K-nearest
neighbourhood (K-NN) classifier and a Naı̈ve Bayesian
classifier by testing the main features of the micro-Doppler
signatures that were extracted with both the principal
component analysis (PCA) and the dynamic time warping
algorithms. The use of micro-Doppler signatures for
biometric purposes, and more specifically to identify
humans, has been at the centre of a number of works in the
last few years. In particular, there has been attempts to relate
specific components of micro-Doppler gait signatures to
parts of the body for identification purposes [8]. In [9] a
technique introduced for visual pattern recognition is applied
to human gait signatures to distinguish between different
human motions. The exploitation of micro-Doppler
information for classification has been recently extended to
the field of radar imaging and in particular to inverse
synthetic aperture radar (ISAR) [10–12] and there has also
been an attempt to exploit signatures of moving personnel
targets through multi-static radar measurements [13].

Although target classification by micro-Doppler signatures
has been widely exploited in the RF regime, there has been
rather little research done on the same topic in the acoustic
regime. An acoustic Doppler sensor operating at 40 kHz
was developed in 2007 to characterise a person’s gait
with the final goal to perform human recognition [14]. The
system was deployed to measure Doppler signatures of men
and women walking towards and away from the sensor
which were used to assess classification performance of a
Bayesian classifier. An additional active acoustic sensing
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system, still operating at 40 kHz, was developed at Johns
Hopkins University [15, 16]. The system was used to gather
micro-Doppler signatures of humans and four-legged
animals that were used to perform target classification [17].

It is desirable for an active surveillance system to operate
indiscreetly, ideally be undetectable at all times and have
minimal impact on the environmental surroundings
including on any animals other than humans. This requires
an acoustic radar to operate at frequencies outside the
hearing sensitivity of, at least, most common non-human
targets. Although humans can hear up to about 20 kHz,
common pets’ hearing system is sensitive up to much
higher frequencies; dogs, for example, can hear up to about
40 kHz and cats can hear up to 60 kHz. For these reasons,
it may be an operational requirement that an acoustic radar
operates at frequencies above 40 kHz. The use of higher
frequencies leads to an additional advantage; as the Doppler
shift is directly proportional to the carrier frequency, given
a certain frequency resolution, at higher frequencies small
movements induce a wider frequency shift and therefore a
clearer contribution to the micro-Doppler signature. On the
other hand, the increased acoustic attenuation at higher
frequencies lowers the operational range of the system.

In this paper a fully coherent acoustic radar operating at
80 kHz is described together with a set of experimental
data, containing micro-Doppler signatures of personnel
targets performing various actions. The data were collected
at University College London between 2010 and 2011.
Classification performance of a K-NN classifier and a Naı̈ve
Bayesian classifier trained to distinguish between different
human motions and different personnel targets are then
presented.

2 Micro-Doppler theory

The analytic signal of a pure tone s(t) is defined as the signal
ŝ(t), such that s(t) = Real{ŝ(t)}, and is generally expressed in
polar format as

ŝ(t) = ej2pf0t (1)

The Doppler shift induced by a target moving with a
constant radial velocity v with respect to a radar or sonar
system is

fD = 2f0
v

c
(2)

where f0 is the carrier frequency of the active sensor and c is
the speed of propagation of the transmitted signal in a given
medium. In the presence of a complex target, which is
composed of number of parts N each one moving with a
velocity vi(t), the resulting Doppler shift is given by the
sum of each single Doppler shift as

fD(t) =
∑N

i=1

2f0
vi(t)

c
(3)

The analytic signal of the echo return from such a target is
given by

ŝR(t) = ej2pf0tej2pfD(t)t (4)

Mixing the received signal ŝR(t) with the transmitted signal
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ŝ(t) as follows

ŝR(t)ŝ(t)∗ = ej2pfDt (5)

allows extraction of the Doppler signature from the data. This
is the component of the signal that contains the micro-
Doppler information on the target and that can be used for
target recognition and classification. The bandwidth of the
resulting signal is normally much smaller than the carrier
frequency with the information contained in the lower
frequencies. The micro-Doppler signature can be
represented in the two-dimensional (2D) time–frequency
space by a short time Fourier transform. This is computed
by calculating the Fourier transform of a series of 50%
overlapping sliding windows xi(n) of a given length N. The
ith window is defined as xi(n) = ŝR(k)w(n), where w(n)
is a suitable weighting function and k ¼ n + i(N/2) for
n ¼ 0, . . . , N 2 1. Under these circumstances the short time
Fourier transform of the sequence ŝR(k) is given by

STFT(i, K) =
∑N−1

n=0

xi(n) e−j2p(nK/N ), K = 0, . . . , N − 1

(6)

The frequency resolution can be approximated as the inverse
of the duration of window Tw ¼ N/fs, where fs is the sampling
rate, and therefore only Doppler shifts that are greater than 1/
Tw, corresponding to velocities

v .
c

2f0Tw

(7)

will be clearly visible. Equation (7) shows that the the use of
higher frequency has the additional advantage to induce a
wider micro-Doppler bandwidth and that, given a certain
frequency resolution, small movements are more easy to
detect when the carrier frequency is higher.

3 Description of the acoustic radar

The acoustic radar developed is composed of a signal
generator, a loudspeaker, a microphone, two pre-amplifiers
that amplify the signals before transmission and after
recording and a Data AcQuisition (DAQ) card that digitises
the recorded signal. The waveforms are generated by a
National Instrument NI PXI-6733 card capable of
generating up to 500 MS amples/s (32 bit resolution) per
channel. Each card can transmit on eight channels and
therefore eight different waveforms could potentially be
transmitted simultaneously. The generated waveform is
given as in input to the preamplifier (Ultra Sound Advice
S55A) capable of generating a maximum output of 140 V
peak to peak. The loudspeaker provides a monitor output
which is 1/100 of the actual output of the amplifier. This
allows monitoring of the output and of the gain of the
amplifier. The signal is transmitted by a loudspeaker (Ultra
Sound Advice) which can nominally operate between
20 kHz and over 200 kHz. It can generate an output level
greater than 105 dB SPL (sound pressure level) between 20
and 50 kHz (measured at 0.25 m) and greater than 85 dB
SPL up to 150 kHz. The round-shaped active area of
the loudspeaker has got a 50 mm diameter [18]. In the
receive section, echoes are captured by a microphone
capsule (Ultra Sound Advice UM3 capsule). The sensitive
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element of the capsule is a 1.8 cm diameter disk made of a very
thin aluminised polyester film. Nominally, its sensitivity is
better than 257 dB from 20 to 120 kHz and better than
270 dB at 180 kHz. The maximum gain obtainable by the
amplifier is nominally ×220 at 100 kHz [19]. The amplified
received signal is digitised by a DAQ card (NI PXI-6133)
which is capable of receiving eight channels simultaneously
with a sampling frequency of up to 500 kHz per channel.
The digitised data are stored in a file and the signal
processing is performed offline with Matlab.

4 Classification of personnel targets

4.1 Description of the experiment

The data containing micro-Doppler signatures were gathered at
UCL between 2010 and 2011. The microphone and the
loudspeaker were arranged in a pseudo mono-static
configuration next to each other as shown in Fig. 1. Their
active areas were contained on the same plane
perpendicularly to the ground floor with their phase centres
positioned 12 cm far from each other and both at a height of
105 cm with respect to the ground floor. During the
experiments the personnel targets were facing the
microphone and the loudspeaker at a distance of 2 m. A 10 s
long CW tone at 80 kHz with 0.3 V amplitude was generated
with the NI PXI-6733 card to ensonify the targets. The gain
of the loudspeaker pre-amplifier, that was measured by using
the monitor output, was about 20 dB. Echoes were recorded
with the microphone and then sampled at a rate of 500 kHz.
Micro-Doppler signatures were gathered for three different
personnel targets undertaking various actions

† walking
† running
† walking while carrying an object in one hand
† walking while carrying an object with both hands
† walking with a heavy backpack on the shoulders

The physical characteristics of the targets are given in
Fig. 2. When walking or running the targets were moving
on a Pro Fitness manual treadmill and were ensonified
from the back to avoid any masking effects. This was
deployed to remove the main Doppler shift contribution
from the Doppler signatures, and to keep the signal-to-
noise ratio of the received signal as constant as possible
during the recording. Also the treadmill removed any
movement constraint on the targets and therefore allowed
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longer recordings. A measure of the background noise and
background clutter were taken.

4.2 Data pre-processing

A recording of the background clutter was removed from the
raw data for each target recording. The analytic signal of the
difference signal was mixed with the complex conjugate of
the analytic signal of the transmitted tone to obtain the
baseband signal containing the micro-Doppler signatures.
The analytic signals were obtained by applying the Matlab
Hilbert.m function to the original real signals. The mixer
output was filtered with an ideal low-pass filter cutting off all
the frequencies over 2.5 kHz. It was experimentally
observed, in fact, that the micro-Doppler signatures were
contained within the frequencies below 2.5 kHz. The
resulting signal was down-sampled of a factor 50 leading to
a final sampling frequency of 10 kHz. This was done to
reduce the load of the data without altering the information
contained in the frequencies below 2.5 kHz. The short time
Fourier transform was applied to all the recordings to
visualise the recorded micro-Doppler signatures. This was
calculated by using 30 ms long 50% overlapping windows
weighted with a Hanning function and by computing their
respective Fourier transform as described in Section 2. The
measured micro-Doppler signatures for one of the two
targets taking all the action listed above are given in Figs. 3–5.

4.3 Classification performance analysis

The baseband data obtained after pre-processing containing the
micro-Doppler signatures were used to assess and compare the
performance of a Bayesian classifier and a K-NN classifier. In

Fig. 2 Physical characteristics of the three personnel targets, a
female and two males, used for the experiments
Fig. 1 Frontal and lateral view of the space arrangement of the microphone and the loudspeaker during the experiment
945

& The Institution of Engineering and Technology 2011



www.ietdl.org
Fig. 3 Micro-Doppler signature of Target A walking on a
treadmill that was facing the acoustic radar at a distance of 2 m

Fig. 4 Micro-Doppler signature of Target A walking on a
treadmill while carrying an object with the left hand

Dimension of the book were such to obstruct the left arm from swinging

Fig. 5 Micro-Doppler signature of Target A running on a
treadmill
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particular, our main focus was to distinguish between different
personnel targets undertaking the same action or between
different actions undertaken by the same target. The time
sequences corresponding to each class were divided in 50%
overlapping windows of duration Tw. The analysis was
repeated for three different window durations; Tw ¼ 30 ms,
Tw ¼ 100 ms, Tw ¼ 150 ms. This resulted in a total number
Nw of windows for each class as indicated in Table 1. The
content of each window was organised in column vectors xi

j
where j indicates the jth window belonging to the ith class.
The first NTrain windows for each class, corresponding to the
first 1.5 s of the recorded signal, were used to train the
classifiers, so that the information used for training remained
the same in all three cases. They formed the matrix
X ¼ (X 1X 2. . .X C) representing the training set, where the jth
columns of each sub-matrix X i is

Xi(j) = xi
j, j = 1 . . .NTrain (8)

and C being the number of classes under test. The remaining
NTest windows were used to form the test set
Y ¼ (Y 1Y 2. . .Y C) where similarly the jth columns of each
sub-matrix Y i is

Y i(j) = xi
j+NTrain

, j = 1 . . .NTest (9)

The PCA, Cepstrum and Mel-Cepstrum algorithms were used
to extract Nf features from each window to reduce the
dimensionality of the data and reduce the computational load
of the classifiers [20, 21].

4.4 Feature extraction

1. PCA: The training matrix X was used to calculate the cross
correlation matrix S defined as

S = XXH (10)

where X H is the transposed and conjugate of matrix X. The Nf

eigenvector of S corresponding to its Nf largest eigenvalues
were used to form the column of a matrix A. This was used
to perform the dimensionality reduction as

D = AHY (11)

and

E = AHX (12)

D and E are the training and test sets after dimensionality
reduction, respectively. Each column of D will be referred
to as a training feature vector and likewise each column of
E represents a test feature vector.

Table 1 Total number of training windows NTrain and test

windows NTest used to assess the performance of the classifier for

each window duration Tw

Tw Nw NTrain (1.5 s) NTest

30 ms 3330 99 3231

100 ms 995 29 966

150 ms 660 19 641
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2. Cepstrum: The Cepstrum of a signal s(t) is defined as the
inverse Fourier transform of the quantity C( f ) ¼ log10|S( f ))|
where S( f ) is the Fourier transform of the signal s(t) [21].
The Cepstrum feature vector ci

j, for each window xi
j,

was calculated as the inverse Fourier transform of the
Cepstrum Ci

j as

ci
j(n) = 1

N

∑N−1

K=0

Ci
j(K)ej2p(nK/N ), n = 0, . . . , Nf − 1 (13)

with

Ci
j(K) = log10

∑N−1

n=0

xi
j(n)e−j2p(nK/N )

∣∣∣∣∣

∣∣∣∣∣ K = 0, . . . , N − 1

(14)

The feature vector corresponding to the Nw training windows of
each class were used to form the training test D as

D = c1
1 . . . c1

NTrain
. . . cC

1 . . . cC
NTrain

( )
(15)

and the remaining feature vectors were used to form the test set E
as

E = c1
NTrain+1 . . . c1

Nw
. . . cC

NTrain+1 . . . cC
Nw+1

( )

(16)

3. Mel-Cepstrum: To obtain the Mel-Cepstrum feature vectors,
the Cepstrum of each window Ci

j(K) was filtered with a bank
of non-overlapping triangular filter Hp(K ), all characterised by
the same the same bandwidth Bmel ¼ 100 MEL, to generate a
sequence Ci

melj
(K) defined as

Ci
melj

(K) =
∑N

K̂=1

Ci
j(K̂)Hp(K̂) K = Kp

0 K = Kp

⎧⎪⎨
⎪⎩

(17)

In the equation Kp corresponds to the frequency bin containing
the central frequency of the filter Hp(K ). The Mel-Cepstrum
coefficient were calculated as the inverse Fourier transform of
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the sequence Ci
melj

as

ci
melj

(n) = 1

N

∑N−1

K=0

Ci
melj

(K)ej2p(nK/N ), n = 0, . . . , Nf − 1

(18)

The first Mel-Cepstrum coefficient ci
j(0), which has been

regarded as unstable in previous work, was not used to
perform classification [22, 23]. To allow a fair comparison,
this was also done for the Cepstrum features. The Mel-
Cepstrum feature vectors corresponding to the Nw training
windows of each class were used to form the training test D as

D = c1
mel1

. . . c1
melNTrain

. . . cC
mel1

. . . cC
melNTrain

( )

(19)

and those remaining were used to form the test set E as

E = c1
melNTrain+1

. . . c1
melNw

. . . cC
melNTrain+1

. . . cC
melNw

( )

(20)

4.5 Classifiers

1. Naı̈ve Bayesian classifier: The Naı̈ve Bayesian classifier
assumes that the feature vector is a statistical process whose
element are all Gaussian distributed and statistically independent.
Under this assumption the statistical distribution of the feature
vector is given by the product of the Gaussian distributions of
each of its elements. The training set D was used to estimate the
mean value hi and the variance s2

i of the in-phase and in-
quadrature components of each element for each class as

hi =
1

NTest

∑NTest

n=1

d(i, n) (21)

and

s2
i = 1

NTest

∑NTest

n=1

(d(i, n) − hi)
2 (22)

where d(i, j) is either the in-phase or in-quadrature component
of the element (i, j) of D. The in-phase and in-quadrature
components were also assumed to be statically independent.
These resulted in a number C of probability distribution
function (pdf), each one associated to a class. The value
Table 2 Confusion matrices reporting the performance of the Naı̈ve Bayesian classifier and the K-NN classifier

(k ¼ 3) testing the walking gait of Target A and that of Target C for all feature extraction algorithms (Tw ¼ 30 ms)

PCA Cepstrum Mel-Cepstrum

Target A Target C Target A Target C Target A Target C

Naı̈ve Bayesian

Target A, % 97 3 91.7 8.3 85 15

Target C, % 11.9 88.1 27.6 72.4 24 76

Pcc ¼ 92.57% Pcc ¼ 82.03% Pcc ¼ 80.52%

K-NN

Target A, % 47.2 89.8 10.2 52.8 80.3 19.7

Target C, % 1 18.8 81.2 99 12.3 87.7

Pcc ¼ 73.1% Pcc ¼ 85.52% Pcc ¼ 84%
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of each distribution was calculated for each feature vector in
the test set which was then assigned to the class
presenting the largest value of the density function. This was
repeated for all test feature vectors to estimate classification
performance [21].
2. The K-NN classifier: The Euclidean distance between the
test feature vector, that is, a column of matrix E, and all the
training vectors was calculated. These resulted in a number
NTrain of distances for each class. The k ¼ 3 or k ¼ 5 lowest

Fig. 6 Plot of the first two Mel-Cepstrum features in the 2D plane
for Target A and Target C
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distances, depending on the number of classes under test,
were selected and the test vector was assigned to the class
that owned the highest number of training vector between
those which generated the selected k lowest distances. This
was repeated for all test feature vectors to assess
classification performance [21].

4.6 Results

Table 2 shows the classification performance that was
obtained from the comparison between the walking gait of
Target A and Target C for Tw ¼ 30 ms. This is divided in a
sub-table per classifier, each one containing the three
confusion matrices related to the three feature extraction
algorithms that were used. This allows a straightforward
comparison of the results obtained with different feature
extraction algorithms given a specific classifier. In each
confusion matrix, the percentage number is the ratio
between the number of assignments and the total number of
windows under test, given the same class. The averaged
probability of correct classification (Pcc) is given below
each confusion matrix. This was calculated under the
assumption that each class had the same a priori
probability. The parameter k of the K-NN classifier was set
equal to 3. Results show that high-level classification
performance can be obtained. In particular, for this case, the
combination PCA plus Naı̈ve Bayesian classifier leads to a
rate of correct classification over 90%. The lowest rate,
instead, is given by the PCA followed by the K-NN
classifier presenting a high number of wrong decisions
Table 3 Confusion matrices reporting the performance of the Naı̈ve Bayesian classifier and the K-NN classifier (k ¼ 5) testing the walking

gait of Target A, Target B and Target C for all feature extraction algorithms (Tw ¼ 30 ms)

Naı̈ve Bayesian PCA Cepstrum

Target A Target B Target C Target A Target B Target C

Target A, % 85.2 14.2 0.5 89 6 5.1

Target B, % 15.7 39.8 44.5 36 29.8 34.1

Target C, % 3 30 67 23.7 28.5 47.8

Pcc ¼ 64.04% Pcc ¼ %

Naı̈ve Bayesian Mel-Cepstrum

Target A Target B Target C

Target A, % 80.7 12.2 7.2

Target B, % 32.5 23.8 43.8

Target C, % 21.8 21.3 57

Pcc ¼ 53.78%

K-NN PCA Cepstrum

Target A Target B Target C Target A Target B Target C

Target A, % 30 24.6 27.6 78.2 9 4

Target B, % 1.3 19.4 74 21 30.1 36.6

Target C, % 0.2 10.6 87 11.6 20 57.4

Pcc ¼ 44.80% Pcc ¼ 55.23%

K-NN Mel-Cepstrum

Target A Target B Target C

Target A, % 70.5 12.7 8

Target B, % 13.6 31.1 40.2

Target C, % 5.3 26.5 54

Pcc ¼ 51.86%
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when Target A is given. Overall, in all other cases, correct
classification performance is above 80%. Fig. 6 shows the
magnitude of the first two Mel-Cepstrum features of each
class, in the 2D plane, giving a visual idea of the degree of
separability between the two classes [21].

The confusion matrices obtained from the comparison of
the walking gaits of all three targets, for Tw ¼ 30 ms, are
given in Table 3. The parameter k of the K-NN classifier
was set to 5 and all cases that could not univocally be
assigned to any of the three classes were treated as
unknowns and counted to average performance.
Classification performance drops for both the classifiers and
all feature extraction algorithms, all presenting a high rate
of wrong decisions between Target B and Target C. The
highest rate of correct classification is achieved by the PCA
algorithm followed by the Naı̈ve Bayesian classifier and this
is equal to 64%. The drop in performance may be due to
differences in the gait of Target B and Target C that cannot
be resolved by the feature extraction algorithms. This

Fig. 7 Plot of the first two Mel-Cepstrum features in the 2D plane
for Target A, Target B and Target C (TW ¼ 30 ms)
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appears clear by looking at Fig. 7 where the magnitude of
the first two Mel-Cepstrum features of each class are plot
against each other on the 2D plane. A substantial
overlapping between the features related to Target B and
those related to Target C can be observed. Classification
performance improves when the duration of the windows
increases. Table 4 reports the results for the same case but
with the window duration set to Tw ¼ 150 ms. The
probability of correct classification on the average improves
of 20% up to a correct rate of 71% given by the
combination of the PCA algorithm followed by the Naı̈ve
Bayesian classifier. The plot of the magnitude of the first
two Mel-Cepstrum features, given in Fig. 8, shows a higher
degree of separability between the three classes that clearly
leads to the improvement in performance. The same
behaviour is observed for all feature extraction algorithms.

Table 5 reports the results obtained when the classifiers
were trained to distinguish between the same personnel
target, Target B, undertaking two different actions for

Fig. 8 Plot of the first two Mel-Cepstrum features in the 2D plane
for Target A, Target B and Target C (TW ¼ 150 ms)
Table 4 Confusion matrices reporting the performance of the Naı̈ve Bayesian classifier and the K-NN classifier (k ¼ 5) testing the walking

gait of Target A, Target B and Target C for all feature extraction algorithms (Tw ¼ 150 ms)

Naı̈ve Bayesian PCA Cepstrum

Target A Target B Target C Target A Target B Target C

Target A, % 81.4 16.3 2.2 84.3 4 11.9

Target B, % 8.9 49.3 41.8 3 58.8 38.2

Target C, % 2.2 13.6 84.3 2 1.9 96.3

Pcc ¼ 71.66% Pcc ¼ 70.77%

Naı̈ve Bayesian Mel-Cepstrum

Target A Target B Target C

Target A, % 62.7 11.2 26

Target B, % 11.6 54.1 34.3

Target C, % 3.4 1.3 95.3

Pcc ¼ 70.7%

K-NN PCA Cepstrum Mel-Cepstrum

Target A Target B Target C Target A Target B Target C Target A Target B Target C

Target A, % 0 15.9 83.5 57.3 12.5 25.6 63.2 11.6 21.1

Target B, % 0 61.8 38.2 3 52.7 41.2 5.6 59.4 28.7

Target C, % 0 1.4 98.6 0.2 0.9 98.1 9.2 1.2 88.8

Pcc ¼ % Pcc ¼ 69.37% Pcc ¼ 70.05%
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Table 5 Confusion matrices reporting the performance of the Naı̈ve Bayesian classifier and the K-NN classifier (k ¼ 5) testing the micro-

Doppler signatures of Target B walking normally and Target B walking with a heavy weight on the shoulders. Results are given for all

feature extraction algorithms (Tw ¼ 30 ms)

PCA Cepstrum Mel-Cepstrum

B-WN B-WBP B-WN B-WBP B-WN B-WBP

Naı̈ve Bayesian

B-WN, % 87.5 12.5 60 40 70 30

B-WBP, % 23.4 76.6 9.6 90.4 14.6 85.4

Pcc ¼ 82.05% Pcc ¼ 75.21% Pcc ¼ 77.7%

K-NN B-WN B-WBP B-WN B-WBP B-WN B-WBP

B-WN, % 96.5 3.5 57.8 42.2 77.2 22.8

B-WBP, % 46.5 53.5 7 93 19 81

Pcc ¼ 75% Pcc ¼ 75.38% Pcc ¼ 79.12%
Tw ¼ 30 ms. In particular, results are related to the
comparison between Walking Normally (Class B-WN) and
Walking with a BackPack (Class B-WBP). The parameter k
of the K-NN classifier was set to 3. Results show that it is
possible to achieve correct classification performance over
80%. The highest level of performance is achieved by the
PCA algorithms and the Mel-Cepstrum algorithm for the
Naı̈ve Bayesian classifier. Fig. 9 shows the magnitude of
the first two Mel-Cepstrum features for each class in the 2D
plane.

Overall performance varies depending on the target and the
type of actions under test. In particular, as expected, results
corroborate that the closest the classes under test, the highest
the drop in performance. Classification of a target walking
normally against the same target walking with an object in a
hand proved to be highly challenging and showed, on the
average, a drop of the performance to about 60% for
Tw ¼ 30 ms. On the average, classification performance
tends to increase as the window duration Tw becomes longer.

These results show that acoustic radar micro-Doppler
signatures can be easily obtained and give valuable
information on target characteristics. Further research is
needed to determine exactly the observation time that is
required to achieve robust classification performance and

Fig. 9 Plot of the first two Mel-Cepstrum features in the 2D plane
for Target B walking normally (Class B-WN, green) and Target B
walking with a heavy backpack on the shoulders (Class B-WBP,
brown)
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whether other classification methods and additional features
can be used to aid target classification.

5 Conclusions and future work

An acoustic radar operating at 80 kHz was developed for
collection of micro-Doppler signatures of moving targets,
doubling the frequency used in previous works. The
acoustic radar was deployed in a set of experimental trials
in which micro-Doppler signatures of various personnel
targets undertaking a number of actions were collected in a
highly indoor cluttered environment. These were used to
test a K-NN and a Naı̈ve Bayesian classifier trained to
distinguish between walking gaits of different targets or
between different action undertaken by the same targets.
Results show that the acoustic radar can be successfully
deployed at short ranges to collect micro-Doppler signatures
of moving targets. Classification performance results show
that the information contained in these acoustic signatures
can be used to perform identification and recognition of
personnel targets. Data have been gathered and analysed for
a range of personnel target motions and good levels of
classification have been achieved. Although the acoustic
radar can only survey short ranges because of the high
attenuation of sound waves in air, it can be successfully
deployed in indoor environments, such as airports, to
monitor, for example, the flow of passengers through doors
or security checks with the potential to identify suspicious
behaviour. In addition to this, the acoustic radar offers an
easy and inexpensive way to collect micro-Doppler
signatures of a wide range of targets, often difficult to
obtain, that can be used to analyse human walking gaits or
other types of behaviour in a number of applications.

Future work will look at understanding how additional
features such as geometrical features (i.e. the signature
period or the signatures maximum Doppler shift) or how
the history of the current features (i.e. the time variation
of the Cepstrum or MEL-Cepstrum coefficients) can be
deployed to enhance classification performance. Extending
the work presented in this paper to the underwater regime is
also under consideration.
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