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Abstract—This paper considers a sub-Nyquist multiband 
spectrum sensing approach that accomplishes the sensing 
task using sampling rates significantly lower than those 
demanded by the classical uniform-sampling-based DSP. It 
deploys nonuniform randomised sampling in conjunction 
with an appropriate spectral analysis tool. Reliability 
guidelines that ensure the credibility of the sensing procedure 
amid a sought detection performance are presented. They 
demonstrate the trade-offs between the sampling rate and 
sensing time. Numerical examples are provided to illustrate 
the effectiveness of the introduced technique.   

I. INTRODUCTION  

Spectrum sensing entails scanning parts of the radio 
spectrum in search of meaningful activity, e.g. presence of a 
transmission. It has a plethora of application areas such as 
surveillance, interception and multichannel communication 
systems. The latter include the emerging cognitive radio 
paradigm which triggered intensive research into effective 
spectrum sensing techniques [1, 2]. In the scenario of 
monitoring a wideband frequency range consisting of a 
number of non-overlapping spectral subbands and without a 
priori knowledge of the signal characteristics, spectrum 
sensing methods that rely on nonparametric spectral analysis 
are regarded as adequate efficient candidates [1-4]. This 
approach is adopted here where the aforementioned scenario is 
studied, i.e. multiband spectrum sensing. 

Uniform-sampling-based DSP imposes a minimum 
sampling rate of twice the width of the monitored frequency 
range despite the subbands activity. Otherwise aliasing causes 
irresolvable detection problems [5]. If the monitored 
frequency range(s) is/are considerably wide, uniform-
sampling-based spectrum sensing approaches can demand 
excessively high sampling rates; possibly beyond the 
capability of the currently available acquisition device(s). In 
such cases, the sampling rate requirement becomes an 
impeding factor to the deployment of uniform sampling DSP 
and consequently alternatives are sought [3].    

In this paper, we consider a wideband spectrum sensing 
approach that utilises randomised sampling in conjunction 
with an appropriate periodogram-type spectral analysis tool to 
reliably perform the sensing operation. It uses significantly 
low sub-Nyquist sampling rates that are notably lower than 
those demanded by uniform-sampling-based sensing methods. 
Most importantly, we provide prescriptive guidelines on the 

required sampling rate and sensing time in a given scenario to 
meet sought probabilities of detection and false alarm, i.e. to 
ensure the reliability of the sensing procedure. It is shown that 
the sampling rate can be arbitrarily low at the expense of 
infinitely long sensing time. From a large number of possible 
randomised sampling schemes, here we address the total 
random sampling (TRS) [6] and stratified sampling with equal 
partitions (SSEP) [7].  

Based on the reliability guidelines, it is shown that the 
benefits of the adopted spectrum sensing technique become 
more visible in low spectrum occupancy environments, i.e. for 
multiband signals with sparse spectrum. Accordingly, the 
sparsity of the signal spectrum indirectly dictates the savings 
of the considered randomised-sampling-based sensing 
approach in terms of the total number of processed samples. 

Whilst the adopted methodology, commonly referred to as 
digital alias-free signal processing (DASP), does not fall under 
the compressive sensing (CS) framework, it is best suited to 
sparse signals and deploys nonuniform randomised sampling 
to ease the sampling rate requirements. However, DASP does 
not involve computationally demanding operations such as 
solving certain optimisation problems. We briefly outline in 
Section IV the differences between the CS and DASP 
methodologies in the context of spectrum sensing.  

II. MULTIBAND SPECTRUM SENSING 

A. System Model and Problem Formulation  
Consider a communication system operating over L  

predefined contiguous disjoint spectral subbands each of width 

CB , i.e. the overseen bandwidth is [ , ]in inf f B= +B  where 

CB LB= . The maximum number of concurrently active 

subbands at any particular point in time is AL . Hence the joint 

bandwidth of the active subbands never exceeds A A CB L B= . 

Our objective is to devise an approach that is capable of 
scanning the monitored frequency range B and identifying the 
active subbands. Its operational sampling rates should be 
significantly lower than 2USf B≥   where 2B  is the minimum 

rate (not always achievable) that could be used when classical 
uniform sampling is deployed [5].  

B. Adopted Sensing Technique 

The introduced multiband spectrum sensing method 
utilizes a periodogram-type estimator defined by: 
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to estimate a detectable frequency representation of the 
incoming signal from a finite set of its irregularly distributed 
noisy samples ( ) ( ) ( )n n ny t x t n t= + . Whereas,  N  is the number 

of processed samples within the considered time analysis 
window 0[ , ]r r r T= +T t t ; /( 1)c N N= −  and 1c =  for TRS and 

SSEP respectively. Windowing function ( )w t  is introduced to 

suppress spectral leakage and 2( )
r

w t dtµ = ∫T . Evidently, 

spectrum sensing does not require the detailed spectral shape 
to be determined within the monitored wide frequency range. 
This premise is exploited here where a frequency 
representation that permits detection is sought and estimating 
the signal’s exact power spectral density (PSD) is not our 
objective. 

The standard deviation of a periodogram-type estimator, 
such as ( )r

eX fT , is known to be of the same order as its  

expected value. To reduce this uncertainly, we average a  K  
number  of  the ( )r

eX fT  estimator in (1) calculated over K  

windows, i.e. rT  for 1,2,r K= … , thus:  

   
1

1ˆ ( ) ( )r

K

e e
r

X f X f
K =

= ∑ T .             (2) 

This evokes shifting rT  and the repositioning/aligning of 

( )w t . For simplicity, we assume that the active subbands are 

of similar power levels and the incoming wide sense stationary 
(WSS) signal ( )x t  propagates via an additive white Gaussian 

noise channel where 2
Nσ  denotes the noise variance. 

Transmissions with non-equal power levels and cyclostationay 
signals are addressed in [6] and [7]. 

Non-overlapping uncorrelated signal windows are 
considered here. The adopted sensing procedure for each 
spectral subband comprises two steps: 1) estimating the 
magnitude spectrum at selected frequency point(s) and 2) 
comparing the magnitude(s) with pre-set threshold(s).  

We seek inspecting one frequency point per subband to 
establish its status. This can be achieved by performing 
spectral analysis within short time windows, i.e. maintaining 
relatively smooth spectrographs. The examined frequency 
points are placed at the centre of the system subbands given 
the windowing effect. The sensing problem can be formulated 
as a conventional detection binary hypothesis testing problem:  
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where kγ  is the threshold, 0,kH  hypothesis signifies the 

absence of an activity in subband k  and 1,kH  depicts the 

presence of an activity. We show below that (3) can deliver 
reliable spectrum sensing routine provided appropriately 
selected 0T , average sampling rate 0/N Tα =  and K .  

III.  RANDOMISED SAMPLING AND SPECTRAL ANALYSIS 

A. Total Random and Stratified Sampling 

The sampling instants 1{ } N
n nt =  of the TRS scheme are 

independent identically distributed random variables whose 
probability distribution functions are given by: 0( ) 1/np t T=  for 

0[ , ]r rt T∈ +t t  and zero elsewhere. With stratified sampling rT  

is divided into N  strata: 1 2, , , NS S S…  each containing one 

randomly selected sampling instant. The probability density 
function of the -thn  sampling instant is ( ) 1/ | |n np t S=  if 

nt S∈  and zero elsewhere, | |nS  is the width of nS . Here, we 

consider the case where the strata are of equal lengths, i.e. 
SSEP and | | 1/nS α= . Below, we illustrate that ( )r

eX fT with 

TRS and SSEP is a suitable tool for spectrum sensing. 

B. Target Frequency Representations  

Given that the components of the summation in (1) are 
independent with respect tont , the estimator expected value is: 

2
2( )

( ) ( ) ( ) ( )
( 1)

r r S N
TRS e X

N P
C f E X f f W f

N

σ µ
α

+
 = = + Φ ∗  −
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for TRS where 2[ ( )]SP E x t=  is  the power of the incoming 

WSS signal, ( )X fΦ  is its PSD and ∗  denotes the convolution 

operation. Whilst, for the SSEP scheme: 
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where 0 ( ) 0.5fη≤ ≤  assuming inf B>>  for simplicity, refer 

to  [7] for further details.  

It is noticed from (4) and (5) that [ ( )]r
eE X f= T  consists of 

a detectable feature given by the signal windowed PSD 
2( )* | ( ) | /X f W f µΦ  plus components that merely act as 

amplitude offsets. They do not undermine the detectability of  
the spectral components in ( )r

TRSC fT  and ( )r
SSEPC fT  pertaining 

to an active subband. The aforementioned additional 
components are commonly referred to by smeared-aliasing; a 
phenomenon associated with randomised sampling and 
depends on the characteristics of the used scheme. Thus, the 
adopted estimator with TRS and SSEP poses as a legitimate 
tool to sense the activity of the overseen system subbands. 

To save on computations, one frequency point per subband 
is examined in (3). Achieving the minimum possible sensing 
time 0T KT=ɶ  is highly desirable for any detection technique. 

Accordingly, appropriately short rT  is employed in (2) to 

minimize Tɶ  and aid maintaining low resolution spectrographs 
without overshadowing the distinguishable features in 

[ ( )]r
eE X f= T , i.e. 2( ) | ( ) |X f W f µΦ ∗ . It was noted in [6] and 

[7] that 0 / CT n B≥ , 1n ≥ , serves as a practical guideline . 

IV.  RELIABLE SPECTRUM SENSING 

The reliability of a sensing approach is reflected by its 
ability to meet a sought system behaviour that is commonly 
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expressed by the receiver’s operating characteristics (ROC). In 
this section we deploy the ROC to derive the pursued 
dependability conditions. 

A. Reliability Guidelines 

According to central limit theorem and for a large number 

of averaged windows, ̂ ( )eX f  becomes normally distributed, 

moderate value of K  suffices in practice. Hence we have: 

( )2
0 0

ˆ ( ) ( ), ( )e k k kX f m f fσ∼ N  and ( )2
1 1

ˆ ( ) ( ), ( )e k k kX f m f fσ∼ N  

for 0,kH  and 1,kH  respectively. We note: ˆ( ) [ ( )]k e km f E X f=  is 

the estimator mean and equal to that in (4) or (5) whereas 

{ }2 ˆ( ) Var ( )k e kf X fσ = is the estimator variance. The formulas 

for the latter were omitted due to space limitations (refer to [6] 
and [7] for more details). Using the detection decision 
described by (3), the probability of a false alarm in a particular 
subband is given by : 

           ( ) { } ( ), 1, 0, 0 0Pr ( ) / ( )f k k k k k k kP H H Q m f fγ γ σ = = −      (6) 

and the probability of correct detection is: 

          { } ( ), 1, 1, 1 1( ) Pr ( ) / ( )d k k k k k k kP H H Q m f fγ γ σ = = −       (7) 

where ( )Q z  is the tail probability of a zero mean and unit 

variance normal distribution. Due to nonuniform sampling, the 
false alarm can be triggered not only by the present noise but 
also by the present smeared-aliasing at all frequencies.  

In practice, the user describes the desired performance of 
the detector by the two probabilities: 

     ,f k kP ≤ ∆    and   ,d k kP ≥ ℓ                (8) 

for one or more of the system subbands. Given (6) and (7), we 
can write: 

     ( ) ( )1 1
1 0 0 1( ) ( ) ( ) ( )k k k k k km f m f Q f Q fσ σ− −− ≥ ∆ − ℓ         (9) 

which defines the reliability condition of the sensing procedure. 
By substituting the mean and variance values and taking a  
conservative approach, it can be shown that (9) leads to:    

( ) ( ) ( ) ( )
2

1
0 1 1 1

0

2 1

( 1)
A

TRS k k k

B NT SNR
T Q Q T Q

N α

−
− − −

 + 
 ≥ ∆ − −  −  

ɶ ℓ ℓ (10) 

where 2/S NSNR P σ= . This is the combined lower limit on the 

sensing time TRSTɶ  and the average sampling rate α  of (2) to 

satisfy (8) for TRS where 0/TRSK T T= ɶ . For SSEP it is:  

( ) ( ) 2
1 1 1 1

0

2 ( ) 1 ( ) 2 0.5

( ) /

A k k A

SSEP
A

B Q SNR Q B SNR
T

B T

α
α

− − − −  ∆ + − + +  ≥  −  

ℓ
ɶ  

(11) 

It is noted that (10) and (11) assume worst expected system 
conditions where AL subbands are active (i.e. maximum 
spectrum occupancy) and smeared-aliasing has the most 

harmful effect on the detection process. The latter is more of an 
issue with SSEP due to its smeared-aliasing variations across 
B . Formulas (10) and (11) give a combined conservative 
guideline on the required sensing time and average sampling 
rate for predefined detection probabilities, maximum expected 
spectrum occupancy AB  and signal to noise ratio. It is a clear 
illustration of the trade-offs between the sampling rate and the 
sensing time in relation to achieving dependable sensing. 
According to (10) and (11), we can use remarkable low sub-
Nyquist sampling rates for the sensing operation at the expense 
of longer sensing time. In fact the average sampling rate can be 
arbitrary low for TRS and SSEP. A closer look at (10) and (11)
will show that SSEP demands longer sensing time compared to 
TRS. However, SSEP lends itself to more practical 
implementations in hardware compared to TRS and other 
randomised schemes (see [7] for more details). Overlapping 
and correlated signal windows can be easily incorporated into 
the introduced approach using existing results in literature on 
variance reductions, e.g. Welch periodograms.  

Equations (10) and (11) clearly show that the required 
sensing time and/or the sampling rate are proportional to 
spectrum occupancy AB , i.e. the sparsity level of the multiband 
signal in the frequency domain. In fact, it can be shown that 
notable saving can be made on the total number of processed 
samples (function of sampling rate and sensing time) only for 
very sparse signals where spectrum occupancy is low AB B<< . 

B. Existing Sensing Techniques 

Table 1 depicts a list of spectrum sensing techniques 
highlighting their abilities to conduct multiband detection, 
sampling rate requirements and computational complexities 
[1-4]. The latter is an indicative measure where the energy 
detector is used as a benchmark. Energy detector involves 
taking the FFT of the signal and averaging. A technique which 
entails computationally demanding operations, e.g. solving an 
optimisation problem, is considered high complexity. 

 

TABLE 1. SPECTRUM SENSING APPROACHES 
 

Approach Minimum 
Sampling rate 

Multiband Computational 
Complexity 

Energy detector Nyquist   Low 
Multitaper estimator Nyquist  High 

Wavelet-based Nyquist  Moderate 

CS-based Sub-Nyquist  High 

Adopted Method Sub-Nyquist  Low 

Matched filtering  Nyquist  Low 
Feature detector Nyquist   Moderate 

Covariance detector Nyquist   Moderate 

From Table 1, it is noticed that only the introduced approach 
and compressive-sensing-based ones permit sub-Nyquist 
sampling rates. They furnish considerable savings on the 
digital data acquisition and alleviate the sampling rate 
limitation of DSP for wideband signals. The simplicity and the 
low computational complexity of the adopted approach are its 
main advantages over CS techniques. The latter methods 
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involve solving underdetermined sets of linear equations. CS 
methods similar to that in [4] impose a minimum sampling 
rate of 4 AB  (still sub-Nyquist in low spectrum occupancy 

environments). Other CS approaches , e.g. [3], aim to estimate 
the signal autocorrelation function from its compressed 
samples. They presume that the reconstructed empirical 
autocorrelation function from one signal realization is 
identical to the WSS signal exact autocorrelation function 
assuming infinitely long sensing time. On the other hand, the 
introduced technique can use arbitrary low sampling rates and 
explicitly provide the required sensing time to achieve certain 
desired probabilities of detection using (10) and (11). Due to 
space limitations, a detailed comparison with numerical 
examples is outside the scope of this paper. 

V. SIMULATIONS  

Consider a multiband system comprising 20L =  subbands 
where 5CB =  MHz. The system subbands are located in 

1.35,1.45f ∈    GHz frequency range.  A Blackman window is 

employed where 0 0.8 T sµ= . 16QAM signals with maximum 
bandwidths and similar power levels are transmitted over the 
active subbands. A spectrum occupancy of 10% is assumed, 
i.e. 2AL =  and 10AB = MHz. A sampling rate 70α = MHz is 
used and the SNR is -0.2 dB. For the specified probabilities: 

0.95dP ≥  and 0.08fP ≤  for all the system subbands, the 

required sensing time is 9.6 TRST sµ≥ɶ  and 12K ≥  in (2) for 

TRS whereas for SEEP 11.2 SSEPT sµ≥ɶ  and 14K ≥ according to 
(10) and (11). Figures 1 and 2 show the simulated ROC of the 
adopted method for various sensing times and a threshold 
sweep (10000 independent experiments are used per plot). 

Figures 1 and 2 confirm the moderate conservative nature 
of the given reliability conditions where the desired 
performance is achieved for 9.6 TRST sµ≥ɶ  and 11.2 SSEPT sµ≥ɶ , 
i.e. as recommended by (10) and (11). This affirms the 
effectiveness of the derived reliability guidelines. If uniform 
sampling (US) is deployed the minimum valid bandpass 
sampling rate that would avoid aliasing within B  is 224 MHz.  
Thus, by adopting the introduced randomised-sampling-based 
method around 67% saving on the sampling rate is achieved in 
comparison to uniform sampling. It is unambiguously clear that 
spectrum sensing with randomised sampling offers tangible 
benefits in terms of the sampling rates rendering notable 
reductions in the data acquisition requirements.  

On the other hand, the total number of processed signal 
samples TN  is dependent not only on the sampling rate but 

also on the sensing time. Figure 3 depicts TN  versus changing 

spectrum occupancies for TRS, SSEP and uniform sampling. 
Cyclostationary BPSK transmissions are assumed to be 
present, whereas the rest of the parameters are similar to the 
above example. It can be noticed that the savings in terms of 
the total number of processed samples of the randomised-
sampling-based approach becomes more visible as the 
spectrum occupancy declines, i.e. the signal sparsity level 
increases. This agrees with the general framework of 
compressive sensing which capitalises on the sparsity premise.  

 

Figure 1. ROC of the adopted technique with TRS for various TRSTɶ  and a 

threshold sweep. Asterisk is (0.08,0.95); minimum sought performance. 

 
Figure 2. ROC of the adopted technique with SSEP for various SSEPTɶ  and a 

threshold sweep. Asterisk is (0.08,0.95); minimum sought performance. 

N
T

 
Figure 3. Total number of processed samples for varying spectrum 
occupancies. TRS, SSEP and uniform sampling are shown. 

VI.  CONCLUSION 

A sub-Nyquist spectrum sensing approach was reviewed. Its 
simplicity and low computational complexity are among its 
key merits. This paper serves as an impetus to further research 
on randomised sampling based techniques. This includes 
looking at their applicability to areas such as radar signal 
processing where reducing the sampling rate is highly 
desirable especially that the treated signals are typically very 
sparse when expressed in an appropriate basis/frame. 
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