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Abstract—In this paper, an equivalent ‘virtual’ SIMO (Single
Input Multiple Output) radar representation of the MIMO radar
system is established which enables the analysis of the full
MIMO system geometry. Analytical expressions are derived to
describe the key geometrical properties of the virtual array’s
manifold, which fully characterises the entire transmit-receive
system geometry.

A new family of subarrayed collinear MIMO array structures
is presented for obtaining uniform linear virtual arrays. It is
shown that this reduces the required radar platform size by up
to a half, compared to popular existing methods, without reducing
virtual array aperture.

NOTATION

a,A Scalar

a,A Column Vector

A Matrix

(·)T , (·)H Transpose and conjugate transpose

IN (N ×N) identity matrix

1N (N × 1) vector of ones

|·| Absolute value

‖·‖ Euclidean norm of vector

ab Element-by-element power

exp(a) Element-by-element exponential

E{·} Expectation operator

�, ⊗ Hadamard and Kronecker product

I. INTRODUCTION

An arrayed multiple input multiple output (MIMO) radar

is a radar system which employs two antenna arrays: one

to transmit and one to receive. For each of these arrays,

the antenna elements are distributed in three-dimensional real

space about a common reference point. More specifically, the

focus of this paper is “collocated” MIMO radar (wherein

transmit and receive arrays are sufficiently close together that

target bearings are the same for both arrays) [1], as opposed

to widely-spaced MIMO radar configurations [2].

Array signal processing in multiple-target MIMO radar is

concerned with the task of exploiting the arrays’ geometries

(antenna locations) in order to detect, resolve and estimate

the various parameters of multiple radar targets. In this con-

text, detection performance is defined as the capability of
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the system to correctly estimate the number of targets, K.

Then, resolution performance refers to the system’s ability

to subsequently yield unique parameter estimates for those

K targets. Estimation performance is then determined by the

accuracy of those parameter estimates, following successful

resolution.

The key to designing and analysing an array system in

general lies in understanding the array manifold, which is

a geometric object that completely characterises the array.

Specifically, the array manifold is defined as the locus of

all the response vectors (manifold vectors) of the array over

the feasible set of signal/target parameters. A branch of

mathematics dedicated to the investigation of the properties of

such geometric objects (curves, surfaces, etc.), is differential

geometry. The profound and fundamental importance of the

array manifold’s shape has been extensively investigated in

the literature using differential geometry [3]. However, until

now, these methods have been applied only to the receiver

array of the array system. Therefore, in MIMO radar (where

there also exists an arrayed transmitter), it has not previously

been possible to fully characterise the whole transmit-receive

system geometry within such a framework.

In this paper, an equivalent ‘virtual’ SIMO (Single Input

Multiple Output) representation of the MIMO radar system

is established which allows direct analysis of the full MIMO

system geometry. The virtual array concept has already been

introduced in the MIMO radar literature (see, for example,

[4,5]). However, existing theory focuses on specific methods

for explicitly obtaining and exploiting the output of the virtual

array. For example, by exploiting transmit signal diversity

with respect to code division [6], frequency division [7] or

time division [8]. In this paper, a more general approach is

taken, whereby the properties of the virtual SIMO system are

identified and analysed without making any assumptions about

how this structure might be exploited in practice. Using this

general virtual SIMO representation, a study of the fundamen-

tal geometric properties of the MIMO configuration is then

presented.

The virtual array representation also provides useful insight

into the problem of MIMO radar array design (i.e. determining

where physical antennas should be placed). To this end, an

investigation of the popular uniform linear virtual array is

presented. In particular, a new family of subarrayed collinear



MIMO array configurations are introduced which allow the

physical size of the MIMO radar platform to be significantly

reduced, compared to traditional approaches.

The remainder of the paper is organised as follows. In

Section II, the MIMO radar received signal model is derived.

In Section III, the equivalent virtual SIMO radar representation

of the MIMO radar system is derived and analysed. In Section

IV, a novel approach to uniform linear virtual array design is

proposed. The paper is concluded in Section V.

II. MIMO RADAR SYSTEM MODEL

Fig. 1: Baseband representation of the MIMO radar system.

Consider the arrayed MIMO radar system of Figure 1,

which employs an array of N transmitting antennas and an

array of N receiving sensors. The two arrays are assumed to

be collocated, i.e. they are located sufficiently close together

in space that target bearings are the same for both arrays.

The N elements of the transmit array are fed by the
(
N × 1

)
vector of baseband transmit waveforms, m̆(t) , m(t)c(t),

which are transmitted into the environment (see Point A in

Figure 1) and assumed to propagate as plane waves. It is

convenient to assume that m(t) is (element-wise) unity power

and independent of c(t). Meanwhile, the power of m̆(t) is

normalised to enforce a unity transmit power constraint.

The MIMO channel comprises K signal propagation paths,

corresponding to the transmitted signal energy reflected back

to the receiver via K radar targets. The signal return from the

kth target has complex path fading coefficient βk, while τk
models the lack of synchronisation between transmitter and

receiver due to the different target ranges. Doppler frequency

is denoted Fk and is a known function of radial target velocity,

vk:

Fk , −
2vkfc
c

(1)

where fc denotes carrier frequency and c is the speed of light.

The (N × 1) complex vector Sk , S(θk, φk) is the receiver

array manifold vector (array response vector), which models

the response of the receiver array to a plane-wave arrival from

the direction parameterised by azimuth θk and elevation φk:

S(θk, φk) , exp
(
−j[rx, ry, rz]k(θk, φk)

)
(2)

The receiver array’s sensor locations (array geometry) are

represented by the (N × 3) real matrix:

[rx, ry, rz] = [r1, r2, . . . , rN ]T ∈ RN×3 (3)

Similarly, using (·) to denote all equivalent parameters asso-

ciated with the transmit array, [rx, ry, rz], the transmit array

manifold vector is denoted Sk , S (θk, φk).

In Equation 2, k(θk, φk) is the wavenumber vector:

k(θk, φk) , 2πfc
c

u(θk,φk)︷ ︸︸ ︷
[cos(θk) cos(φk), sin(θk) cos(φk), sin(φk)]

(4)

where u(θk, φk) is the (3× 1) real unit vector pointing from

(θk, φk) towards the origin. (Equivalently, for the transmitter’s

manifold vector, u(θk, φk) = −u(θk, φk) points from the

origin to (θk, φk)). Without loss of generality, phase origins

of the transmit and receive arrays are defined at the centroids

of the arrays.

The (N × 1) baseband signal at the receiver array output (in

the presence of noise) can therefore be modelled as follows:

x(t) =

K∑
k=1

βk exp(j2πFkt)SkS
H

k m̆(t− τk) + n(t) (5)

where the spatially and temporally white, zero-mean complex

Gaussian additive noise is denoted by n(t), with covariance

matrix:

Rnn , E{n(t)nH(t)}
= σ2

nIN (6)

where σ2
n is the unknown noise variance.

III. THE VIRTUAL SIMO RADAR EQUIVALENT TO THE

MIMO RADAR SYSTEM

A key challenge in MIMO radar is to determine how the

transmit array geometry (described by [rx, ry, rz]) can be ex-

ploited effectively to enhance parameter estimation capability

at the receiver. By contrast, the receiver array geometry is

relatively straightforward to exploit in this sense, since each

element of x(t) is known to correspond to a specific receive

antenna. Therefore, (assuming a calibrated array) signals ar-

riving at the receive antennas have a known response as a

function of (θ, φ), as described by S(θ, φ). Consequently,

a wide variety of parametric approaches can be applied to

estimate (θ, φ), based upon this modelling.

One way of utilising transmit array geometry would there-

fore be to – in some sense – “virtually” transfer the transmit

antennas across to the receiver. In this way, the output of a



Fig. 2: Virtual SIMO radar equivalent of the MIMO radar

system depicted in Figure 1.

virtual SIMO array could be exploited at the MIMO radar

receiver whose response is a function of both S(θ, φ) and

S(θ, φ).

The structure of the virtual SIMO received signal can be

derived by noting that the MIMO x(t) can be rearranged as

shown in Equation 7, below (the proof of which is given in

Appendix A). From xv(t) (in Equation 7), the structure of the

equivalent virtual SIMO system can therefore be derived. This

structure is depicted in Figure 2, wherein the virtual SIMO

manifold vector has the form:

Sv,k = S
∗
k ⊗ Sk (8)

and the signal vector, m(t), has also been transferred from

transmitter to receiver and applied (element-by-element) at the

output of the virtual SIMO receiver. The virtual transmitted

signal is:

mv(t) = c(t) (9)

The virtual noise is defined implicitly by the relationship:(
1T
N
⊗ IN

)
nv(t) = n(t) (10)

It is straightforward to see that the virtual noise covariance

matrix can be assumed to take the form:

Rnvnv , E{nv(t)nHv (t)}
= σ2

nvIN (11)

from which it follows (using Equation 10) that:

σ2
nv =

1

N
σ2
n (12)

From Equations 9 and 12, it is evident that both the signal and

noise powers at a given virtual sensor is a factor of N smaller

than in the MIMO radar system. This is to be expected, since

the number of virtual sensors is greater by a factor of N and

the total signal and noise energies must be the same in both

systems. Importantly, the signal to noise ratios are equal in

both systems:

SNRv,k = SNRk (13)

Using Equation 8, the geometry of the virtual array can now

be derived. Noting that (S
∗ ⊗ S) = (S

∗ ⊗ 1N ) � (1N ⊗ S),

the virtual SIMO array sensor locations are given by:

[rv,x, rv,y, rv,z] ,
(
[rx, ry, rz]⊗ 1N

)
+
(
1N ⊗ [rx, ry, rz]

)
(14)

which can be viewed as a spatial convolution of the MIMO

transmit and receive arrays.

Of course, in the actual observed MIMO signal vector, x(t),

the signals at certain subarrays of the virtual array have been

summed together, as reflected by the term
(
1T
N
⊗ IN

)
.

A. Fundamental Performance Bounds of the Virtual SIMO

Radar System

The fundamental detection, resolution and estimation per-

formance bounds of a SIMO system were proven in [3] to be

a function of array geometry and the finite sampling effect. In

this respect, the array is fully characterised by the array mani-

fold, which is defined as the locus of the array manifold vector

over the feasible set of signal/target parameters. Meanwhile,

the finite sampling effect is represented by an ‘uncertainty

hypersphere’ whose radius is given by:

σe =
1√

2 (SNR× L)
(15)

Thus, by considering the circular approximation to the array

manifold, it has been shown that the fundamental detection

and resolution capabilities are characterised, respectively, by

the following threshold separations:

x(t) =
(
1T
N
⊗ IN

)
(m(t)⊗ 1N )�

K∑
k=1

βk exp(j2πFt)
(
S
∗
k ⊗ Sk

)
c(t− τk) + nv(t)︸ ︷︷ ︸

,xv(t)∈CNN×1

 (7)



∆pdet =
1

ṡ(p̆)
(σe1 + σe2) (16)

∆pres =
1

ṡ(p̆)
4

√
4(

κ̂2
1(p̆)− 1

N

) (√σe1 +
√
σe2
)

(17)

where ∆p , |p2 − p1| and p̆ , p1+p2
2 denote, respectively,

the separation and midpoint between two closely-spaced tar-

gets with locations parameterised by p1 and p2 (for some

generic directional parameter, p, e.g. azimuth or elevation).

Meanwhile, ṡ(p) is the manifold’s rate of change of arc length

and κ1(p) denotes its principal curvature (where κ̂1(p) also

takes into account the inclination angle of the manifold). For

notational brevity, dependence on directional parameter p will

often be omitted from subsequent discussion.

It was shown in [3] that fundamental estimation perfor-

mance can also be investigated through study of the Cramer-

Rao bound in the context of array manifold geometry. How-

ever, this bound depends on assumptions as to whether each

system parameter is random or deterministic, known or un-

known. Estimation error bounds are therefore omitted from the

present general discussion and the interested reader is referred

to [9].

Following the methods outlined in [10, Equation 30] for

evaluating the properties of extended array manifolds, it can

be shown from Equation 14 that:

ṡv =

√
Nṡ2 +Nṡ

2
(18)

κ̂1,v =
1

ṡ2
v

√√√√(∥∥∥Ȧ2

v

∥∥∥2

+
∥∥∥Äv

∥∥∥2

− s̈2
v

)
−

(
1T
NN

Ȧ
3

v

)2

ṡ2
v

(19)

where a dot over a symbol denotes differentiation with respect

to p and we have defined Av(p) , −[rv,x, rv,y, rv,z]k(p).

Since κ̂1,v will tend to be smaller than κ̂1 (because the

virtual manifold lies on a hypersphere of significantly larger

radius), it is important to confirm that resolution performance

is dominated by the improvement in ṡv. Indeed, it can be

shown that:

ṡ4
v

(
κ̂2

1,v −
1

Nv

)
≥

Nṡ4

(
κ̂2

1 −
1

N

)
+Nṡ

4
(
κ̂

2

1 −
1

N

)
+ 4ṡ

2
ṡ2 (20)

Due to space restrictions, a full proof of this inequality will be

published elsewhere [11]. An illustrative example comparing

ṡv(θ) and ṡ(θ) is given in Figure 3.

IV. SPATIALLY EFFICIENT UNIFORM LINEAR VIRTUAL

ARRAY DESIGN

From Equation 14, it is evident that a specific (desired)

NN -element virtual array geometry is not necessarily achiev-

able via any possible arrangement of the available N + N
physical MIMO antennas. Conversely, a given (achievable)

virtual array geometry may be constructible via a multitude

Fig. 3: Rate of change of arc length for the virtual array and

receiver array, for a MIMO radar system with [rx, ry, rz] =
0 −1.5 0
0 −0.5 0
0 0.5 0
0 1.5 0

 and [rx, ry, rz] =

 −1 0 0
0 0 0
1 0 0

, for

targets lying in the x-y plane. Total length of the virtual array’s

θ-curve is approximately 3.74 times larger than the receiver

array’s.

of different arrangements of the MIMO antennas. For these

reasons, array design is not straightforward in MIMO radar.

One achievable virtual array geometry that has received partic-

ular research interest is the “filled” (λ2 -spaced) uniform linear

virtual array [6,12]. In this section, it will be shown that

the traditional method for achieving a uniform linear virtual

array makes inefficient use of the available space on the radar

platform. Therefore, a new family of subarrayed collinear

MIMO geometries is defined and shown to offer superior

spatial efficiency.

The following notation is first defined to describe the desired

NN -element virtual array:

rv,x = ULANN (21)

where ULAA denotes the x-coordinates of the A-element,
λ
2 -spaced uniform linear array (in units of λ

2 ):

ULAA ,
[
−1

2
(A− 1) ,−1

2
(A− 1) + 1, . . . ,

1

2
(A− 1)

]T
(22)

Although this configuration is incapable of elevation estima-

tion and can operate (unambiguously) across only 180◦ of

azimuth, it does provide particularly powerful performance

close to array broadside (θ ≈ 90◦). Another advantage is the

simplicity of analysis. Specifically, by adapting [13, Appendix

B], system performance is characterised by the following

quantities:



ṡv(θ) =
π sin (θ)√

12

√
NN

(
N

2
N2 − 1

)
(23)

κ̂1,v(θ) =

√√√√ 3(3N
2
N2 − 7)

5NN(N
2
N2 − 1)

(24)

The traditional method found throughout the MIMO radar

literature for obtaining this structure of rv,x is:

rx = NULAN and rx = ULAN (25)

or, by symmetry:

rx = ULAN and rx = NULAN (26)

However, it would not seem that alternative methods for

obtaining the filled linear virtual array have been explored

in detail. To this end, we define a new family of subarrayed

configurations by noting that Equation 21 can be rewritten as:

rv,x = 1N ⊗

rx︷ ︸︸ ︷
N subULAN

+
(
N subN

(
ULABsub

⊗ 1Nsub

)
+
(
1Bsub

⊗ULANsub

))︸ ︷︷ ︸
rx

⊗1N

(27)

where the transmit array has been separated into Bsub subarray

"blocks", each of which comprises N sub , N
Bsub

elements

(and receiver array spacings have been increased accordingly).

Alternatively, it could be the receiver array that is divided into

subarrays, but the transmit array is considered here.

Note that the same virtual array is produced for any (in-

teger) values of N sub and Bsub. Therefore, without affecting

the fundamental direction-finding capabilities, we may freely

choose values of N sub and Bsub to gain advantages according

to some other criterion. For example, it will now be shown

that the physical size of the MIMO radar platform can be

minimised, while maintaining maximum (filled) virtual array

size.

To begin, we note (from Equation 14) that the sum of the

apertures of the transmit and receive arrays is constrained to

be equal to the virtual array aperture:

∆rv,x ,
Virtual aperture︷ ︸︸ ︷

max
(
rv,x

)
−min

(
rv,x

)
= max (rx) + max (rx)−min (rx)−min (rx)

= (max (rx)−min (rx))︸ ︷︷ ︸
Transmit aperture ,∆rx

+ (max (rx)−min (rx))︸ ︷︷ ︸
Receive aperture ,∆rx

(28)

where, from Equation 27, the respective MIMO apertures are:

∆rx = NN − (N − 1)N sub − 1 (29)

∆rx = (N − 1)N sub (30)

Therefore, in order to minimise the overall physical span of

the N + N MIMO antennas, we simply place the transmit

and receive arrays’ centroids at the same point in space and

then make their respective apertures as similar as possible.

(a) The desired 36-element filled uniform linear virtual array, which is

produced by both Fig. 4(b) and Fig. 4(c).

(b) Traditional approach occupies 30 half-wavelengths.

(c) Proposed approach occupies 20 half-wavelengths.

Fig. 4: For (N ×N) = (6× 6), the proposed method reduces

radar platform size by a third, compared to existing methods.

A black square denotes a virtual SIMO sensor, blue ‘·’ denotes

a MIMO transmit antenna and red ‘x’ denotes a MIMO receive

antenna.

Specifically, we obtain the N sub which minimises the absolute

difference (squared) between the apertures:

N
opt

sub ,
[[

arg min
Nsub

(∆rx −∆rx)
2

]]
N

(31)

where [[·]]N denotes rounding to the nearest integer factor of N
(since a useful solution must provide integer values for N sub

and Bsub). Simply rounding in this way is valid due to the

symmetric, convex (parabolic) nature of the objective func-

tion in Equation 31. Equating the derivative of the objective

function to zero then leads to:

N
opt

sub =

[[
NN − 1

2(N − 1)

]]
N

(32)

For sufficiently large receive arrays (N � 1), it is clear that

N
opt

sub is given by the nearest valid integer to N
2 . In fact, if N

is even-valued and N ≥ 3, a useful rule of thumb is that using

two subarrays is always optimal:

N
opt

sub = N
2

B
opt

sub = 2

}
if N ≥ 3

and N is even
(33)

An illustrative example is given in Figure 4. In general, as

array sizes become large, it can be shown that the proposed

method allows radar platform size to be reduced by up to a

half.

If N is odd (or, in particular, if it is prime) then spatial

efficiency may be especially poor. For example, it is shown



in Figure 5 that a MIMO radar with (N ×N) = (7× 11)
requires a (marginally) larger radar platform than is required

for (N ×N) = (7× 16), despite providing a significantly

smaller virtual aperture (NN = 77, compared to 112).

(a) Optimal configuration for (N × N) = (11 × 7). A physical MIMO

aperture of 66 half-wavelengths provides a 77-element virtual array.

(b) Optimal configuration for (N × N) = (16 × 7). A physical MIMO

aperture of 63 half-wavelengths provides a 112-element virtual array.

Fig. 5: Linear arrays comprising prime numbers of antennas

are particularly spatially inefficient. Blue ‘·’ denotes transmit

antenna and red ‘x’ denotes receive antenna.

V. CONCLUSION

In this paper, an equivalent ‘virtual’ SIMO (Single Input

Multiple Output) radar representation of the MIMO radar

system was established. Contrary to the existing literature,

this representation allowed the properties of the virtual SIMO

system to be identified and analysed without making any spe-

cific assumptions about how the structure might be exploited

in practice. The fundamental performance capabilities of the

MIMO radar configuration were investigated using differential

geometry.

A new family of subarrayed linear MIMO array structures

was presented. It was shown that, given a limited amount of

available space on the radar platform, this approach allowed

significantly larger virtual arrays to be realised, compared to

traditional methods.

APPENDIX A

PROOF OF EQUATION 7

In this appendix, the following relationships will be used:

aHb = (a∗ � b)T 1 (34)

vec (ABC) =
(
CT ⊗ A

)
vec (B) (35)

(a� b)⊗ (c� d) = (a⊗ c)� (b⊗ d) (36)

Thus, we proceed by rearranging Equation 5 as follows

(where a number above an equals sign denotes the relevant

relationship):

x(t) =

K∑
k=1

βk exp(j2πFkt)SkS
H

k m(t)c(t− τk) + n(t)

(34)
=

K∑
k=1

βk exp(j2πFkt)Sk
(
S
∗
k �m(t)

)T
1Nc(t− τk) +n(t)

(35)
=

K∑
k=1

βk exp(j2πFkt)
(
1T
N
⊗ IN

)
·

vec

(
Sk1

(
S
∗
k �m(t)

)T)
c(t− τk) + n(t)

(35)
=

K∑
k=1

βk exp(j2πFkt)
(
1T
N
⊗ IN

)
·((

S
∗
k �m(t)

)
⊗ (Sk � 1N )

)
c(t− τk) + n(t)

(36)
=

K∑
k=1

βk exp(j2πFkt)
(
1T
N
⊗ IN

)
·((

S
∗
k ⊗ Sk

)
� (m(t)⊗ 1N )

)
c(t− τk) + n(t)

which leads directly to Equation 7.
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