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Abstract—In recent years, several algorithms for the iterative
calculation of a polynomial matrix eigenvalue decomposition
(PEVD) have been introduced. The PEVD is a generalisation
of the ordinary EVD and uses paraunitary operations to diago-
nalise a parahermitian matrix. This paper addresses potential
computational savings that can be applied to existing cyclic-
by-row approaches for the PEVD. These savings are found
during the search and rotation stages, and do not significantly
impact on algorithm accuracy. We demonstrate that with the
proposed techniques, computations can be significantly reduced.
The benefits of this are important for a number of broadband
multichannel problems.

I. INTRODUCTION

Polynomial matrix representations can elegantly express

broadband multichannel problems. The use of such formula-

tions can be found in multichannel factorisation [1], broadband

MIMO precoding and equalisation [2], polyphase analysis and

synthesis matrices for filter banks [3], broadband angle of

arrival estimation [4], broadband beamforming [5], optimal

subband coding [6], and channel coding [7] to name but a few.

These problems generally involve parahermitian polynomial

matrices, which are identical to their parahermitian conjugate,

i.e., R(z) = R̃(z) = R
H(z−1) [3].

While the eigenvalue decomposition (EVD) presents an op-

timal tool for many narrowband problems involving covariance

matrices, the broadband case necessitates a factorisation for

parahermitian polynomial matrices. Therefore as an extension

of the EVD, a polynomial matrix EVD (PEVD) has been

defined in [8], [9]. The PEVD uses finite impulse response

(FIR) paraunitary matrices [11] to approximately diagonalise

a space-time covariance matrix. Note that the PEVD also

produces spectrally majorised polynomial eigenvalues [10].

Algorithms to compute the PEVD include the original

second order sequential best rotation (SBR2) algorithm [9],

sequential matrix diagonalisation (SMD) [12] and various

evolutions of the algorithm families [13]–[16]. All of these

algorithms employ an iterative approach to approximately

diagonalise the parahermitian matrix, stopping when some

suitable threshold is reached. Both SBR2 and SMD are com-

putationally costly to compute, therefore any cost savings that

can be applied to these algorithms will be advantageous for

applications.

The focus of algorithmic cost reduction in PEVD algorithms

has typically been the trimming of polynomial matrix fac-

tors to curb growth in order [9], [17]–[20], which translates

directly into a growth of memory storage requirements and

computational complexity. Besides trimming, storage and cost

reductions have also been accomplished by considering the

symmetry of the parahermitian matrix [21]. Further, an SMD

cyclic-by-row (SMDCbR) approach [13] has been introduced

as a low-cost variant of SMD, which approximates the EVD

step inside the SMD algorithm by a cyclic-by-row implemen-

tation of the Jacobi algorithm [22].

Here we describe a method to concatenate the Jacobi

rotations in SMDCbR to reduce the computational cost of the

algorithm, and introduce thresholding to the rotation process

to eliminate the rotation of near-zero elements. In addition,

we provide another source of complexity reduction by demon-

strating that the search space of the algorithm can be reduced

without significant accuracy loss.

Below, Sec. II will provide a brief overview of the SMDCbR

method. The proposed approaches for complexity reduction

when implementing this algorithm are outlined in Sec. III.

Simulation results demonstrating the savings are presented in

Sec. IV, with conclusions drawn in Sec. V.

II. SEQUENTIAL MATRIX DIAGONALISATION

CYCLIC-BY-ROW

This section reviews aspects of the iterative PEVD algorithm

SMDCbR [13] in Sec. II-A, with an assessment of the main

algorithmic cost in Sec. II-B.

A. Algorithm Overview

The SMDCbR algorithm approximates the PEVD using

a series of elementary paraunitary operations to iteratively

diagonalise a parahermitian matrix R(z). Note that R(z) is

the z-transform of a set of coefficient matrices relating to

different lags, R[τ ]. Each elementary paraunitary operation

consists of two steps: first a delay operation is used to move

the column with the largest energy in its off-diagonal elements

to the zero lag; then an approximate EVD diagonalises the

zero lag matrix, transferring the shifted off-diagonal energy

onto the diagonal.

The SMDCbR algorithm is initialised with an approxi-

mate diagonalisation of the lag-zero coefficient matrix R[0]
by means of its modal matrix Q(0) from S

(0)(z) =
Q(0)

R(z)Q(0)H. Note that the unitary Q(0) — obtained from



a cyclic-by-row approximation to the EVD of the lag-zero slice

R[0] — is applied to all coefficient matrices R[τ ] ∀ τ .

In the ith step, i = 1, 2, . . . I , the SMDCbR algorithm

performs a paraunitary transform such that

S
(i)(z) = U

(i)(z)S(i−1)(z)Ũ
(i)
(z) , (1)

whereby

U
(i)(z) = Q(i)Λ(i)(z) . (2)

The product (2) comprises of a delay matrix

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)−1

z−τ (i)

1 . . . 1
︸ ︷︷ ︸

M−k(i)

} , (3)

and a unitary matrix Q(i), with the result that U (i)(z) in (2)

is paraunitary by construction.

It is convenient for subsequent discussion to define an

intermediate variable S
(i)′(z) where

S
(i)′(z) = Λ(i)(z)S(i−1)(z)Λ̃

(i)
(z) , (4)

followed by a rotation

S
(i)(z) = Q(i)

S
(i)′(z)Q(i)H . (5)

The parameters of Λ(i)(z) and Q(i) in the ith iteration

are determined by the position of the dominant off-diagonal

column in S
(i−1)(z) •—◦ S(i−1)[τ ],

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖2 , (6)

where

‖ŝ
(i−1)
k [τ ]‖2 =

( M∑

m=1,m 6=k

|s
(i−1)
m,k [τ ]|2

) 1
2

(7)

and s
(i−1)
m,k [τ ] represents the element in the mth row and kth

column of the coefficient matrix at lag τ , S(i−1)[τ ].
Due to the parahermitian symmetry in S(i−1)[τ ], the shifting

process in (4) moves both the dominant off-diagonal row

and column into the zero-lag coefficient matrix; therefore,

the modified norm in (7) serves to measure half of the total

energy moved into the zero-lag matrix S(i)′[0]. This energy

is transferred onto the diagonal by the unitary matrix Q(i) in

(5) that approximately diagonalises S(i)′[0] by means of an

approximate EVD.

At the ith iteration, SMDCbR calculates an approxima-

tion to the EVD of the zero-lag slice using a sequence of

n = 1 . . . P Jacobi rotations Q(i,n) ∈ CM×M . Each rotation

takes the form of an M × M identity matrix, but with

the four elements at the intersections of rows and columns

{m(i,n), k(i,n)} defined by
[

cosφ(i,n) ejθ
(i,n)

sinφ(i,n)

−e−jθ(i,n)

sinφ(i,n) cosφ(i,n)

]

. (8)

The rotation angles φ(i,n) and θ(i,n) in (8) are determined by

the target element at row m(i,n) and column k(i,n) in the slice.

Each Jacobi rotation transfers the energy of an off-diagonal

element onto the diagonal. The process used in SMDCbR can

n = 1 2 3 4

5 6 7

8 9
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Fig. 1. Values of n used for cyclic-by-row sequence of Jacobi rotations in
one Jacobi sweep for a 5× 5 matrix with start sand end point ❝ .

be described as a cyclic-by-row implementation of the Jacobi

algorithm [22]. The term CbR refers to the ordering of the

rotations in a sequence like that of Fig. 1, referred to as a

Jacobi sweep. While in a standard EVD these are repeated

until e.g. off-diagonal elements are suppressed below a given

threshold, SMDCbR employs only one Jacobi sweep at each

iteration. This equates to a fixed number of P = M(M−1)/2
Jacobi rotations for a matrix of size M × M to provide the

unitary Q(i) in (5),

Q(i) = Q(i,P )Q(i,P−1) · · ·Q(i,2)Q(i,1) =
P∏

n=1

Q(i,n) . (9)

The iterative process continues for I steps, say, until S(I)(z)
is sufficiently diagonalised with the dominant off-diagonal

column norm

max
k,τ

‖ŝ
(I)
k [τ ]‖2 ≤ ρ , (10)

below an arbitrarily small threshold ρ. This completes the

SMDCbR algorithm and generates an approximate PEVD

given by

S
(I)(z) = H

(I)(z)R(z)H̃
(I)

(z) , (11)

with

H
(I)(z) =

I∏

i=0

U
(i)(z) (12)

based on the product defined in (9).

B. Algorithm Complexity

The search step of the SMDCbR algorithm described by (6)

uses all lags of the coefficient matrix S(i−1)[τ ] ∈ CM×M . If at

the ith iteration S(i−1)[τ ] = 0 ∀ |τ | > N (i−1), for some N ∈
N, the search space encompasses ML(i−1) elements, where

L(i−1) = (2N (i−1) + 1) is the length of the parahermitian

matrix.

For each Jacobi rotation during iteration i of SMDCbR, of

which there are M(M − 1)/2, every matrix-valued coefficient

in S
(i)′(z) must be left- and right-multiplied with a sparse

unitary matrix. Accounting for the multiplication of a 4-sparse

M×M matrix with a non-sparse M×M matrix by 4M MACs,

a total of 4L(i)M2(M − 1) MACs arise to generate S
(i)(z)

from S
(i)′(z), where L(i) is the length of S(i)′(z).



Every matrix-valued coefficient in H
(i)′(z) must also be

left-multiplied with a sparse unitary matrix for each rotation.

A total of 2L
(i)
H M2(M − 1) MACs arise to generate H

(i)(z)

from H
(i)′(z), where L

(i)
H is the length of H(i)′(z).

The total number of MACs dedicated towards the rotation

step of the algorithm at each iteration is therefore given by

4L(i)M2(M − 1) + 2L
(i)
H M2(M − 1).

III. COMPLEXITY AND SEARCH SPACE REDUCTION IN

SMDCBR

To reduce the complexity of the SMDCbR algorithm,

Sec. III-A and Sec. III-B outline modification to the rota-

tion step of the algorithm to concatenate and threshold the

Jacobi rotations, respectively. Sec. III-C then details the steps

to decrease complexity further by shrinking the algorithm’s

available search space at any given iteration.

A. Reduction in Cost of Jacobi Rotations

In the approach detailed here, Jacobi rotations are performed

on the zero-lag only, before a concatenated unitary matrix is

applied to the entire parahermitian and paraunitary matrices.

This unitary matrix is equal to the product of all the sparse

rotation matrices applied to the zero-lag. The direct applica-

tion of sparse rotations to the entire polynomial matrices is

therefore avoided, which results in a reduction in complexity.

For each of the M(M − 1)/2 sparse rotations, the zero-lag

and unitary matrix must be updated. Updating the zero-lag

for each rotation involves left- and right-multiplication with a

sparse unitary matrix, costing 8M MACs; thus, a full sweep

requires 4M2(M − 1) MACs. Left-multiplying the unitary

matrix for each rotation requires 4M MACs, therefore a full

sweep encompasses 2M2(M−1) MACs. Both steps combined

therefore require 6M2(M − 1) MACs.

At each iteration, every matrix-valued coefficient in S
(i)′(z)

must be left- and right-multiplied with a non-sparse unitary

matrix. Accounting for the multiplication of 2 M×M matrices

by M3 MACs, a total of 2L(i)M3 MACs arise to generate

S
(i)(z) from S

(i)′(z).
In addition, every matrix-valued coefficient in H

(i)′(z) must

be left-multiplied with a non-sparse unitary matrix at each

iteration. A total of L
(i)
H M3 MACs arise to generate H

(i)(z)

from H
(i)′(z).

The total number of MACs dedicated to the rotation stage

per iteration is therefore 2L(i)M3 + L
(i)
H M3 + 6M2(M −

1) ≈ (2L(i) + L
(i)
H + 6)M3 ≈ 2L(i)M3 + L

(i)
H M3 if

max{L(i), L
(i)
H } ≫ 6. This is approximately equal to half of

the MACs required for the standard SMDCbR algorithm.

B. Thresholding of Jacobi Rotations

As the zero-lag matrix is approximately diagonalised at each

iteration of SMDCbR, the off-diagonal elements of S(i)′[0]
eventually only contain significant values from the shifted

dominant row and column found via (6), with the remaining

elements being approximately zero. As these elements possess

very small values, there is little merit in applying a Jacobi

rotation to transfer their energy onto the diagonal.

By incorporating a threshold ν during execution of the

cyclic-by-row Jacobi algorithm in SMDCbR, elements with

absolute value that fall below this threshold can be ignored.

It should be noted that ignoring Jacobi rotations in this way

reduces the accuracy of the algorithm; however, if ν is kept

sufficiently low, this approach can reduce computation time

with only a minor impact on algorithm accuracy. Furthermore,

the approach described in Sec. III-A does not benefit as

significantly as the original SMDCbR algorithm would when

employing a threshold for Jacobi rotations, as savings in

the former would only be made during the zero-lag update

step; that is, only 12M MACs would be avoided for each

missed rotation. The latter would instead experience significant

complexity reduction, as each skipped Jacobi rotation would

equate to the avoidance of 8ML(i) + 4ML
(i)
H MACs.

C. Limited Search Strategy

Based on previous work [20], [23] to reduce the parameter

search space in (6), a further cost reduction for the pro-

posed SMDCbR versions is possible by limiting the search

of maximum off-diagonal columns to a particular range of

lags surrounding lag-zero. The size of this search segment

can be determined by estimating the energy distribution in

the parahermitian matrix in current or previous executions

of the algorithm; using estimations from previous executions

can be useful when the data input to the algorithm remains

statistically similar between multiple executions of SMDCbR.

A narrow distribution of energy around the zero-lag can

therefore lead to a large decrease in search space, and vice-

versa. As the algorithm progresses, the lags closest to the zero-

lag become increasingly diagonalised, therefore the average

delay applied at each iteration increases; this can be accounted

for by gradually widening the search space around the zero-lag

as the number of iterations increases.

The search step at each iteration of the modified SMD-

CbR algorithm described by (6) uses the column norms

of the off-diagonal elements for a reduced set of the lags

of the coefficient matrix S(i−1)[τ ] ∈ C
M×M . At the ith

iteration, the search step is applied to a secondary matrix

F(i−1)[τ ] = 0 ∀ |τ | > δ(i−1), which is generated using the

L′ = (2δ(i−1) + 1) centre lags of S(i−1)[τ ]; thus, the search

space encompasses only ML′ elements. If this reduced search

space can adequately contain most of the energy from the

original parahermitian matrix, then searching for a maximum

within this search space can reduce computation time with

little impact on algorithm performance. To accommodate the

widening of the search space as the algorithm progresses, δ(i)

can be described as an increasing linear function of i.

IV. RESULTS

To benchmark the proposed approaches, this section first

defines the performance metric for evaluating differently im-

plemented SMDCbR algorithms before setting out a simula-

tion scenario, over which an ensemble of simulations will be

performed.



A. Performance Metric

Since SMDCbR iteratively minimises off-diagonal energy,

a suitable normalised metric defined in [12] is

E(i)
norm =

∑

τ

∑M

k=1 ‖ŝ
(i)
k [τ ]‖22

∑

τ ‖R[τ ]‖2F
, (13)

with ŝ
(i)
k [τ ] as defined in (7). The metric E

(i)
norm divides the

off-diagonal energy at the ith iteration by the total energy,

which remains unaltered under paraunitary operations; there-

fore the normalisation is performed using R(z), which is

only calculated once. For a logarithmic metric, the notation

5 log10 E
(i)
norm reflects that quadratic covariance terms are

squared once more for the norm calculations in (13).

B. Simulation Scenario

The simulations below have been performed over an ensem-

ble of 103 instantiations of R(z) ∈ CM×M , M = 5, based

on the randomised source model in [12]. This source model

generates R(z) = Ũ(z)D(z)U(z), whereby the diagonal

D(z) ∈ CM×M contains the power spectral densities (PSDs)

of M independent sources. These sources are spectrally shaped

by innovation filters such that D(z) has an order of 120, with a

restriction on the placement of zeros to limit the dynamic range

of the PSDs to about 30dB. Random paraunitary matrices

U(z) ∈ CM×M of order 60 perform a convolutive mixing

of these sources, such that R(z) has a full polynomial rank

and an order of 240.

The SMDCbR is below referred to as the standard, com-

pared to the following four proposed variations:

• method 1: SMDCbR with thresholding of Jacobi

rotations;

• method 2: SMDCbR with concatenation of Jacobi

rotations;

• method 3: SMDCbR with concatenation and

thresholding of Jacobi rotations;

• method 4: as in method 3 but with limiting of search

space.

During iterations, a stopping threshold of ρ = 10−6 was

used. The standard and proposed SMDCbR implementations

are run over I = 200 iterations, and at every iteration step

the metric defined in Sec. IV-A is recorded together with the

elapsed execution time.

C. Diagonalisation

The ensemble-averaged diagonalisation according to (13)

was calculated for the standard and proposed implementations.

The algorithms incorporating a threshold of ν = 10−3

during diagonalisation (methods 1, 3, and 4) are functionally

different to those without this step, but very similar diagonal-

isation performance over algorithm iterations can be seen in

Fig. 2. The diagonalisation versus algorithm execution time

for all methods is shown in Fig. 3. The curves demonstrate

that for M = 5, the lower complexity associated with the

reduced implementations translates to a faster diagonalisation

than observed for the standard realisation.
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Fig. 2. Diagonalisation metric vs. algorithm iterations for the proposed and
standard implementations for M = 5.
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Fig. 3. Diagonalisation metric vs. algorithm execution time for the proposed
and standard implementations for M = 5.

Thresholding of the Jacobi rotations in method 1 has a sig-

nificant impact on the performance of the algorithm versus the

standard algorithm; however, thresholding the same rotations

in method 3 does not have such a high impact versus method 2.

This is as a result of the thresholding in method 1 eliminating

sparse rotations which would have been applied to all lags,

while the thresholding in method 3 only eliminates sparse

rotations from the zero-lag update step. Despite the small

relative impact of thresholding in method 3, this algorithm

performs marginally better than all algorithms with a full

search space.

Fig. 4 demonstrates that the method 3 becomes more

effective relative to method 1 as the spatial dimension M
increases, for various values of threshold ν. It can be seen that

the benefits of the proposed rotation concatenation approach

exceed what could be expected from the calculated complexity

reduction, owing to the well-suited nature of the utilised

Matlab software for matrix multiplication. Increasing the value

of ν decreases the accuracy of both methods, but also reduces

the total execution time of method 1 such that it approaches

the execution time of method 3. It should be noted that using

a threshold of ν = 0 in method 1 is equivalent to using the

standard SMDCbR algorithm.

Fig. 3 also indicates the potential performance gain when

limiting the search space to those lags deemed likely to contain

high energy. As the algorithm’s search step is a relatively

inexpensive process compared with the shifting and rotation

stages, the performance gain observed is small but significant.

Time profiling in Matlab has shown that the use of the limited

search strategy reduces the search time by 50.6% for the

simulation used to generate Fig. 3. In this simulation, the

search space in the proposed method has been reduced to

approximate the 95% confidence interval of absolute delays

applied in method 3 in a previous ensemble of 103, following
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Fig. 5. Parahermitian matrix length L(i) and absolute applied delay |τ (i)|
versus iteration number for methods 3 and 4.

the assumption that these values were normally distributed.

Using this information, the search space reduction parameter

evolution was identified as δ(i) = 0.15i+ 24.

D. Impact on Order of Parahermitian Matrix

The impact of search space reduction on algorithm operation

was investigated for method 4, which was shown to perform

the best in Sec. IV-C. Fig. 5 shows the ensemble average abso-

lute delay |τ (i)| applied to a column in iteration i of methods 3

and 4, alongside the length L(i) of the parahermitian matrix in

both algorithms. From this figure, it is clear that the reduction

in search space does not significantly impact the average delay

applied — and thus the order of the parahermitian matrix —

at each iteration of the proposed algorithm.

V. CONCLUSION

In this paper, we have proposed a series of steps to reduce

the complexity of an existing cyclic-by-row SMD algorithm.

We have shown through simulation that this reduction in com-

plexity translates to an increase in diagonalisation speed of the

algorithm with minimal impact on its accuracy. Furthermore,

it has also been demonstrated that a reduction in the search

space does not significantly impact the rate of growth of the

parahermitian matrix.

When designing PEVD implementations for real applica-

tions, the potential for the proposed techniques to reduce com-

plexity and memory requirements offers benefits. In addition,

the complexity reductions proposed here can be extended to

any cyclic-by-row PEVD algorithm by adapting the search and

rotation operations accordingly.
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