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Speech separation and cocktail party problem
Convolutive ICA and constrained convolutive ICA
Computational auditory scene analysis and ideal binary
mask

A hybrid approach of convolutive ICA and binary masking
Ideal ratio mask and kurtosis ratio

Soft time-frequency mask: A model based approach for
stereo source separation (determined and
underdetermined)

Convolutive source separation of underwater acoustic
signals
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Speech separation problem S

In a natural environment, target speech is usually corrupted by
acoustic interference, creating a speech segregation problem

. Also known as cocktail-party problem (Cherry’53) or ball-room
problem (Helmholtz, 1863)

= Speech segregation is critical for many applications, such as
automatic speech recognition and hearing prosthesis

Potential techniques for the speech separation problem
= Beamforming

= Blind source separation
= Speech enhancement

=« Compuational auditory scene analysis

“No machine has yet been constructed to do just that [solving the
cocktail party problem].” (Cherry’57)

www.surrey.ac.uk



Cocktail party problem
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Blind source separation & UNIVERSITY OF

. . SURREY
independent component analysis
Mixing Process _ Unmixing Process
51 P X / "
si | H | oxi by Independen}
Unknown :Known: 5 |Optimize

Mixing Model: X = Hs Q@Scaling Matrix ]
De-mixing Model: y = Wx = WHs =PDs

Permutation Matrix ]

www.surrey.ac.uk



Scale and permUtatiOn UNIVERSITY OF
ambiguities: an example SURREY
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Blind source separation for instantaneous mixtures with the JADE algorithm
(SNR=30dB): (a)(b) original sources; (c)(d) mixtures; (e)(f) separated sources
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Convolutive BSS:
mathematical model

Compact form: ¥ — H&‘

H,, (D)

_HMI ()

UNIVERSITY OF

SURREY

Hy (1)

HMN(t)_ Sy (1)

NPl

—Convolution

P

_'xM (t)_

Expansion form: X(72) = ZZhU (P)Sj (n—p)

Jj=1 p=0
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Transform convolutive BSS SUIRREY
into the frequency domain

_xl(a)) i

Xy (@)

Convolutive >
BSS problem
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Multiple complex-valued
instantaneous BSS problems
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De-mixing operation IR Or

Y(w,t))=Ww)X(w,t) Vo

where W(w)eC"™™ Vo
Y(w,t)=[Y(®@,?),....Y, (@0,t)] €C"

Parameters in W(w) determined such that
Y, (®,1),..., Yy (@,t) become mutually

indep endent.

L. Parra and C. Spence, “Convolutive blind source separation of nonstationary
sources,” IEEE Trans. Speech Audio Process., vol. 8, no. 3, pp. 320-327, May 2000.
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Joint diagonalisation criterion S RREY

Exploiting the non-stationarity of signals measured by
the cross-spectrum of the output signals,

R, (0,k)=W(@)[R (0, )]W" (w)

Cost Function:

J(W(®)) = argmm ZZF(W)((O 1)

w=] t=1

where F(W)(w,1) =|R, (@,1) —diag[R, (o, )]Hi

www.surrey.ac.uk



Frequenc?y domain BSS & % QUIRREY
permutation problem
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Constrained .convolutive |ICA: SUIRREY
penalty function approach

Introducing additional constraints could further improve the separation
performance, such as unitary and non-unitary constraints to prevent the
degenerate trivial solutions to the unmixing matrix, as shown in Wang et
al. (2005).

Penalty function can be used to convert the constrained optimisation
problem into an unconstrained one.

IW(Ww) = T(W(w)) + S, kildi(W(w))

T K
J(W) = arg‘;'%lin Z Z{F(W)(w? k) + kG(W)(w, k)}

www.surrey.ac.uk
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Sound demonstration SURREY

Sources Mixtures Parra&Spence Our approach

Two speaking ﬂ‘:ﬂé ,(ﬂ’é @g @5

sentences artificially B

mixed together - > . .
I8 (e (JE (E

A man speaking

W. Wang, S. Sanei, and J. A. Chambers, Penalty function based joint diagonalization approach
for convolutive blind separation of nonstationary sources, in IEEE Trans. Signal Processing, vol.

53, no. 5, pp. 1654-1669, May 2005. www.surrey.ac.uk
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Auditory scene analysis SURREY

« Listeners parse the complex mixture of sounds arriving at
the ears in order to form a mental representation of each
sound source

« This perceptual process is called auditory scene analysis
(Bregman’'90)
« Two conceptual processes of auditory scene analysis
(ASA):
— Segmentation. Decompose the acoustic mixture into
sensory elements (segments)

— Grouping. Combine segments into groups, so that
segments in the same group likely originate from the
same sound source

www.surrey.ac.uk
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Computational auditory SURREY
scene analysis (CASA)

« Computational auditory scene analysis (CASA)
approaches sound separation based on ASA principles

— Feature based approaches
— Model based approaches

« CASA has made significant advances in speech
separation using monaural and binaural analysis

 CASA challenges
— Reliable pitch tracking of noisy speech
— Unvoiced speech
— Room reverberation

www.surrey.ac.uk



Ideal binary mask (IBM) SURREY

Auditory masking phenomenon: In a narrowband, a
stronger signal masks a weaker one

Motivated by the auditory masking phenomenon, the
Ideal binary mask has been suggested as a main goal
of CASA (D.L. Wang’05)

The definition of the ideal binary mask
1 ifts(t, f)—n(t, f)=6
m(t, f) = {

0 otherwise

— S(t, f): Target energy in unit (¢, f)
— n(t, f): Noise energy

— 0: A local SNR criterion in dB, which is typically
chosen to be 0 dB

— Optimality: Under certain conditions the ideal binary
mask with 8 = 0 dB is the optimal binary mask from
the perspective of SNR gain

— It does not actually separate the mixture!
www.surrey.ac.uk



IBM illustration (after DeLiang Wang).i,
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Recent psychophysical tests show that the ideal binary mask results in dramatic
speech intelligibility improvements (Brungart et al.’06; Li & Loizou’08)

www.surrey.ac.uk
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|ICA versus IBM SURREY

« [CA: Excellent performance if (no or low )
reverberation or noise is present in the mixture.
For highly reverberant and noisy mixtures, the
performance is limited.

« |IBM: Excellent performance if both target and
background interference are known. Otherwise,
the IBM has to be estimated from the acoustic
mixture, which however remains an open
challenging task!

www.surrey.ac.uk
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A multistage approach 3% SURREY
fusing ICA and IBM B
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Musical noise ¥ SURREY

Tonal components that

" have high level of isolation
V

Perception as

musical noise

Frequency [Hz]
Frequency [Hz]

Example of musical noise generation: the input signal on the left plot
is corrupted by white Gaussian noise, and the output signal on the

right plot is obtained by applying a source separation algorithm to the
input. Figure due to Saruwatari and Miyazaki (2014)

H. Saruwatari and R. Miyazaki, “Statistical analysis and evaluation of blind speech extraction

algorithms,” in G. Naik and W. Wang (eds), Blind Source Separation: Advances in Theory,
Algorithms and Applications, Springer, May, 2014

www.surrey.ac.uk
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Kurtosis ratio SURREY

Correlation:0.84

kurt,,, Harmful
T proc |
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Relation between kurtosis ratio and human perceptual score of degree
of musical noise generation. Figure due to Saruwatari et al. (2014).

H. Saruwatari and R. Miyazaki, “Statistical analysis and evaluation of blind speech extraction
algorithms,” in G. Naik and W. Wang (eds), Blind Source Separation: Advances in Theory,
Algorithms and Applications, Springer, May, 2014
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Cepstral smoothing ~ UNIVERSITY OF
to mitigate musical noise ' SURREY

Converting mask from spectral domain to cepstral domain:

Smoothing with various smoothing level to different frequency bands
(low smoothing to envelop and pitch band to maintain its structure,
more smoothing to other band to remove the artefacts):

Mi(l,m) = 3 M(Lm — 1) + (1 — )M (l,m) i=1,2,
(Vo W 1E{0,. 00 Lo}
ﬁa’f’pirch if [ =1 pitch

kﬁflpfﬂk lf f ~ {(zﬂm;_l_ 1)7...1K}\zp,‘mﬁg
zpf.'cft — al—gmaxf{yc(zani)“!ow < [ < zh:‘gﬁ}:

L

71 =

Transform back to the spectral domain:
H{(k m) = exp(DFT{M;(l, m)|o..x-11):

www.surrey.ac.uk
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Sources and mixtures
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Output of convolutive ICA and IBM ’@3 SE A
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Output of cepstral smoothing ' UNIVERSITY OF
SURREY
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Sound demos:
simulated reverberant mixtures

';{/'%t::ggms ConvICA Estimated IBM

E E E
WE WE E

Speakers

Mixtures .
ConvICA Estimated IBM
RT,=150ms Y !

E E E

QE Mixtures

RT,=400ms ConvICA Estimated IBM

E E E
E E E

UNIVERSITY OF

3 SURREY

Smoothed IBM

&
&
&
&

Smoothed IBM

www.surrey.ac.uk
26



Sound demos: £’ UNIVERSITY OF
. SURREY
real reverberant mixtures

&
&

E §E &

Conv. ICA Conv. ICA
con 1G4 +IBM +|IBM+Cepstral
Smoothing

T. Jan, W. Wang, and D.L. Wang, "A Multistage Approach to Blind Separation of
Convolutive Speech Mixtures," Speech Communication, vol. 53, pp. 524-539, 2011.
www.surrey.ac.uk
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Limitation of the IBM " SURREY

* Processing artefacts such as musical noise appears to have a
deleterious effect on the audio quality of the separated output.

« Not problematic for applications where the output is not
auditioned (such as ASR or databasing tasks), but may be
problematic for applications (such as speech enhancement or
auditory scene reconstruction) where the audio quality is
important.

« Recent tests by Hummersone et al. (2014) show that even
though the BM gives higher SNR to many other BSS techniques,
it gives poorer overall perceptual score (OPS) as compared with
these BSS techniques.

C. Hummersone, T. Stokes, and T. Brookes, “On the ideal ratio mask as the goal of
computational auditory scene analysis,” in Blind Source Separation. Advances in Theory,
Algorithms and Applications, G. Naik, and W. Wang (ed). , Springer, May, 2014.

www.surrey.ac.uk
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|ldeal ratio mask (IRM) UNIVERSITY OF

SURREY

s(4,.f)
s(t, f)+n(t, f)

m(t, f) =

S. Srinivasan, N. Roman, and D. Wang, “Binary and ratio time-frequency masks for robust
speech recognition,” Speech Commun., vol. 48, no. 11, pp. 1486-1501, 2006.

In terms of Hummersone et al. (2014), IRM has the following properties:

Flexible: any source can be designated as the target, and the sum
of remaining sources is typically designated as the interference.
Well-defined: the interference component may constitute any
number of sources.

Optimality: closely related to the ideal Wiener filter, which is the
optimal linear filter with respect to MMSE.

Psychoacoustic principles: IRM is perhaps a better approximation
of auditory masking and ASA principles than the IBM.

www.surrey.ac.uk



IRM v.s. IBM UNIVERSITY OF
SURREY

Overlapping objects Disjoint Allocation Duplex Perception

A\

NN IN

Visual analogies of disjoint allocation and duplex perception when objects overlap (left), the
disjoint allocation case (middle) is analogous to IBM, while the duplex perception case is
analogous to the IRM (right). Plots taken from Hummersone et al. (2014).

www.surrey.ac.uk



IRM v.s. IBM % SUIRREY

i i

i

Frequency (kHz)
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Examples of ideal (top row) and “estimated” masks (middle and bottom rows, with error
puturbations). Binary masks (left column) and ratio masks (right column). Plots due to
Hummersone et al. (2014).

www.surrey.ac.uk
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Soft time-frequency mask: SURREY

a model based approach for binaural source separation

a

a

Information considered: mixing vector (MV), binaural cues
(interaural level difference (ILD), interaural phase difference
(IPD))

Model and algorithm used:

« For each time-frequency point, the cues are modelled as
Gaussian distributed, and a mixture of Gaussians are
therefore used to model the joint distribution of the cues.

« The model parameters estimated and refined using the
expectation maximisation (EM) algorithm

Soft mask generation: the probability that each source present

at each time-frequency point of the mixtures is therefore

estimated by the EM which leads to a soft mask that can be
used to separate the sources.

www.surrey.ac.uk
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Soft mask SURREY

l(t) L m, Llo Ci
‘STFT (m,f) i (m,f) IL.D WL logp(ci )
—> R I
T(t)E R(m,
STET (m f)a (m’f)) IPD We logp(ci| )
> DL
> R x(m,f) Wz logp(ci| )
» MV
M

i N Li(t)
, Lifmf| [ISTET % A
3| TFmask |- Yi=S;
Ri(m,f) ) ISTFT |"i(*

A. Alinaghi, P. Jackson, Q. Liu, and W. Wang, "Joint Mixing Vector and Binaural Model Based Stereo
Source Separation", IEEE Transactions on Audio Speech and Language Processing, 2014. (in press)
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Signal model : S O

N

Z si(t) % hik(t) * ng(t) +ny(t).

1—=1

rg(t)

frequency transform, such as STFT

‘ Sparsifying the mixtures with a time-

N
(m, Z Si(m, f)- Hix(f) - Ni(m., f)+ Ni(m, f).
i=1

Assuming the sparsity, each time-frequency
point will be dominated by one source

Xg(m. f) = Xga(m, f) - NE(m, f) + N (m, f)

where th(m f) = 5; (?Tl f) H@k(f)

www.surrey.ac.uk
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Es_,tl_matlng cues from mixtures: e QIRREY
mixing vector

x(m. f) = Si(m, f)hi(f)+n*(m.f).
.  x(m.f)
X 2= T T

~ STEZ(”?’? f) ' ﬁt(f) + ﬁa'(-;rn? f)

W(f)x(m, [)

2 1) = I Hx(m, I

|z—(a}’z).a;||°
_ exp | — p
P(m. f) = ( T )
ay(f) ~ W(f){la;(f) |
[TW (f)h;(f)]]

H. Sawada, S. Araki, and S. Makino, “"Underdetermined convolutive blind source separation via frequency
bin-wise clustering and permutation alignment,” JEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 3,
pp. 516-527, March 2011. www.surrey.ac.uk
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EStimating cues from mixtures: A
ILD/IPD cues % SURREY

ot g) = as ()

< an (201 g (im0
o(m. f) = 4(2&@

o o (B0 (D)

p(m, f) = N (a(m, £)lpa(f). 07 (f)).
P (m. £) = N(&(m. fir(f)I€r (£).0%())

M. I. Mandel, R. J. Weiss, and D. P. W. Ellis, "Model-based expectationmaximization source separation and
localization,” IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 2, pp. 382-394, February 2010.

www.surrey.ac.uk
36



GMM model * _ %ﬂ'ﬁsﬁﬁﬁ’f

Log-likelihood of the observations:

L(O) = Zlogp(o(m f),a(m, f),z(m, f)|O)

m, f
= ZlogZ{uﬁw pp (m. f)
m, f 1, T

p(m. f) - pg(m. ) }.
Model parameters:

O = {giT? Tirs His iy iy i L111‘}

www.surrey.ac.uk
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Pa ramet_er estlm_atl_on via W UIRREY
expectation maximization

d The E-step calculates the expected value of the log-likelihood
function with respect to the observations of the IPD, ILD, and MV,
under the current estimates of the parameters.

o In other words, given the estimated parameters © and the
observations, and assuming the statistical independence of the
cues, the probability of each source occupying at each time-
frequency point of the mixture is calculated:

vir(m, ) = K -y - pi;- (T”' f)- pi(m, f)- pz‘B (T”‘ f)

www.surrey.ac.uk
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Parameter estimation via 4 UNIVERSITY OF
. . U3 SURREY
expectation maximization

d The M-step calculates the model parameters (mean and variance):

ILD: s alm, Hrie(m, f) IPD: £ (f) = S o(m, fi7)vir (m, f)
palf) = > o Vir (m, f) " > m Vir(m, f)

2( ) _ Zm(a(m, f) - P"?l(f))g ZT .UE'T(Z-’?'Z-, f) o—? (f) — Zm(é(?n f: T) - E;-";T(f))gy?:?' ('T??-. f)
i) = D .z Vir(m, f) ' Sl > o Vir(m, f) '
MV.

Weights:
Ri(f) = Z vir (m, f)z(m, f)z" (m, f), .
at(f) - eigenveCtor(Ri(f))max(A)- L'tT - ﬁ Z Vit (??L f)

Zmﬂ_ vir(m, f)||z — (aiHZ).ai‘|2

(M =1) > . vir(m, f)

www.surrey.ac.uk
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2D representatiOn of the £’ UNIVERSITY OF

observation vectors SURREY
, [ 1f=3.85 kHz
oo o s1at0°
ol o e A g2 at 10°
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N 5 [e% | 9 | o f
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A unit cylinder wall is used to visualise the observation vectors after
normalisation and whitening, in frequency channel 3.85 kHz, for two

different sources that are close to each other.
www.surrey.ac.uk
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Unwrapped 2D plane ¥ SURREY

05 1
tan™ (|Z,|/1Z,))
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MV v.s. binaural cues: £ UNIVERSITY OF
3 SURREY
closely spaced sources

06, 08 _ 1 06, 08 1
tan"" (IZ,11Z,)) tan™" (IX,1/[X,])
Scatter plot and probability contours (dashed lines) for sources in room A at 0° in

circles, and 10° in triangles with decision boundaries by solid lines based on mixing
vectors and binaural cues in the frequency band of 3.85 kHz.

www.surrey.ac.uk
42



MV v.s. binaural cues:

e ~ UNIVERSITY OF

sources placed far from each other ~

06 . 08 1 14 e S

06, 08 1
tan™ (X, 11X,

Scatter plot and probability contours (dashed lines) for sources in room A at 0° in circles, and
80° in triangles with decision boundaries by solid lines based on mixing vectors and binaural
cues in the frequency band of 3.85 kHz.

www.surrey.ac.uk
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MV v.s. binaural cues: s SLUIRREY

KL divergence measure
OEDY {p(z(m, Nlas(f).3(5)) -

ﬂ;ﬂ_p(Z(T Plas (£ ()
8 2l ) az(f) 22 (f ))}
i |z—(a;" z).a;||?
exp ( — >
pla(m, flai(f). (1)) = ((Tn e )

_p(x(m, f)[1)
" p(x(m, £)[2)
where p (X(m,f)\") = pp(m, f) - py(m, f)
(a(m, f)li) = N(a(m, f )‘Hz (f).mi (f))
'(w(m Pli, ) = N(o(m, ;7)€ (£)s 0 (f))

www.surrey.ac.uk
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MV v.s. binaural cues: £ UNIVERSITY OF
KL divergence difference (KLMV — KL Binauraly SURREY
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o

The difference between the KL divergences obtained respectively from the MV and the binaural
models. The KL divergence between the two source models is calculated based on binaural
cues and MV cues in room A (RT=0.32s), where one source is placed at 0° and the other at
10° (left plot), and 80° (right plot) respectively.
www.surrey.ac.uk
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MV V.S. blnaural Cues: 1 gﬂﬁ'{w
High reverberations

wi(F) = 3 {patm. Pla(p). ()

m

p(z(m, f)la(f).~(f)) }
a"(f),v(f)) )

log p(z(m, f)

- additive noise | convolutive noise
mixing vector (MV) 2.10 2.31
[PD 2.70 2.01
[LD 3.39 3.29

KL divergence between the clean and noisy signal models for three different cues
and two types of noise averaged over all frequencies.

www.surrey.ac.uk
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Experimental set-up s SURREY

« 15 utterances, sampled at 16 kHz, spoken by both male and
female are selected from TIMIT database.

« BRIRs measured by Hummersone at University of Surrey was
used.

« For each T60, and angular configuration, 15 pairs from those 15
selected utterances were chosen, and then convolved with the
BRIRs to generate the binaural mixtures.

ROOM ACOUSTICAL PROPERTIES IN INITIAL TIME DELAY GAP (ITDG),
DIRECT-TO-REVERBERANT RATIO IN TERMS OF (DRR) AND
REVERBERATION TIME Tgo [32].

Room Type ITDG [ms] | DRR [dB] | Tgo [s]
A a medium office 8.72 6.09 0.32
B a small class room 9.66 5.31 0.47
C a large lecture theatre 11.9 3.82 0.68
D a large seminar room 21.6 6.12 0.89

www.surrey.ac.uk
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Results on real room mixtures: S
two sources case SURREY

14 1 1 1 1 14 :
12 12} R oom B .. i
10,, . P ‘5" 10 ________ o
o 8
z
x 6
(]
w 47
ol 7 ‘ ‘
—o— Mandel : : : :
ol | —+—Sawada |{ qgf .- L L L L i
—¥— Proposed : : : :
-2 : : -2
0 20 40 60 80 100 O 20 40 60 80 100
14 14

SDR (dB)

0 2I0 4I0 6I0 8I0 100 2 0 2I0 4I0 6I0 8I0 100
Angle (deg) Angle (deg) vw.surrey.ac.uk
48



Results on three sources case UNIVERSITY OF
SURREY
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Diffuse noise
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Sound demos { Ly

2-source case:
Mandel et al. Sawada et al. Alinaghi et al.
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Convolutive source separation: from room
acoustics to underwater acoustics?
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Computer simulated underwater acoustic propagation model in a simplied

ocean environment.

Downloaded from http://en.wikipedia.org/wiki/Underwater_acoustics

www.surrey.ac.uk
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Blind separation of underwater &S
acoustic signals
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A. Mansour, N. Benchekroun, and C. Gervaise, “Blind separation of underwater
acoustic signals,” Proc. ICA, Lecture Notes in Computer Science, Volume 3889, pp
181-188, 2006.
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Blind separation of underwater &S
acoustic signals
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Summary & future work s QUIRREY

We have covered the following:

dConcept of convolutive source separation
dMethods for performing convolutive source separation, such as

Convolutive ICA and frequency domain ICA
(permutation/scaling ambiguities)
Time-frequency masking (CASA, 1IBM, IRM, etc)
Integrating ICA/IBM

Music noise problem & mitigation

Model-based convolutive stereo source separation
(ILD/IPD, MV, etc.)

dApplications from room acoustics to underwater acoustics
QFuture work include improving source separation performance in
highly noisy environment, and/or missing data scenarios.

www.surrey.ac.uk
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