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Class of Widely Linear Complex Kalman Filters
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Abstract— Recently, a class of widely linear (augmented)
complex-valued Kalman filters (KFs), that make use of aug-
mented complex statistics, have been proposed for sequential
state space estimation of the generality of complex signals. This
was achieved in the context of neural network training, and has
allowed for a unified treatment of both second-order circular
and noncircular signals, that is, both those with rotation invariant
and rotation-dependent distributions. In this paper, we revisit the
augmented complex KF, augmented complex extended KF, and
augmented complex unscented KF in a more general context, and
analyze their performances for different degrees of noncircularity
of input and the state and measurement noises. For rigor, a
theoretical bound for the performance advantage of widely linear
KFs over their strictly linear counterparts is provided. The
analysis also addresses the duality with bivariate real-valued
KFs, together with several issues of implementation. Simulations
using both synthetic and real world proper and improper signals
support the analysis.

Index Terms— Augmented complex Kalman filter, complex
circularity, complex Kalman filter, extended Kalman filter,
unscented Kalman filter, widely linear model.

I. INTRODUCTION

COMPLEX-VALUED signals arise in a variety of applica-
tions, from communication systems to radar and electric

grid. A complex or quaternion representation of bivariate
real-valued signals, such as in the case of multidimensional
wind data [1]–[4], may also provide a convenient analysis
framework, as well as natural means to understand some
fundamental characteristics of such signals and the trans-
formations they undergo, for instance phase and magnitude
distortions.

The second-order statistical properties of complex signals
are characterized by their covariance and pseudocovariance
functions. The covariance captures the information concerning
the total power of the signal, while the pseudocovariance
conveys the information about the power difference and cross-
correlation between the real and imaginary parts of the signal.
Conventional complex-valued signal processing algorithms
have generally been designed, explicitly or implicitly, based
solely on the covariance, making them suited to only second-
order circular (proper) complex signals, that is, those with
rotation invariant probability distributions. Proper signals are
characterized by a vanishing pseudocovariance, however, most
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real-world signals are almost invariably second-order noncir-
cular (improper); exhibiting different signal powers in the real
and imaginary parts, correlation of the real and imaginary parts
[1], or finite sample size.

The Kalman filter (KF) is a sequential state space estimation
technique, and is an essential part of space navigation, military
technology development, neural network training [5]–[8], and
sensor fusion [9]. Complex-valued KFs have also been used
extensively [10]–[13], however, the traditional implementation
of the complex-valued KF inherently assumes second-order
circular (proper) state and measurement noises as well as
input data, and as such does not fully utilize the full available
second-order statistics of the complex signals. In our earlier
work [1], [12], we introduced widely linear KFs in the context
of neural network training, but did not elaborate on their
convergence or operation in general augmented state spaces.

The recent introduction of so called ‘augmented com-
plex statistics’ [1], [14] has highlighted that for a general
(improper) complex vector x, estimation based solely on the
covariance matrix Rx = E{xxH } is inadequate, and the
pseudocovariance matrix Px = E{xxT } is also required to
fully capture the full second-order statistics. To introduce an
optimal second-order estimator for the generality of complex
signals, consider first the mean square error (MSE) estimator
of a real-valued random vector y in terms of an observed real
vector x, that is, ŷ = E{y|x}. For zero-mean, jointly normal y
and x, the optimal estimator is linear, that is

ŷ = Hx (1)

where H is a coefficient matrix. Standard, ‘strictly linear’
estimation in C assumes the same model but with complex
valued y, x, and H. Since both the real yr and imaginary yi

parts of the vector y are real valued, we have

ŷr = E{yr |xr , xi } ŷi = E{yi |xr , xi }. (2)

Substituting xr = (x + x∗)/2 and xi = (x − x∗)/2 j yields

ŷr = E{yr |x, x∗} ŷi = E{yi |x, x∗} (3)

and from (1), we obtain the widely linear complex estimator1

y = Hx + Gx∗ = Wxa (4)

where the matrix W comprises the coefficient matrices H
and G, and xa = [xT , xH ]T is the ‘augmented’ input vector.
The full second-order information is thus contained in the
augmented covariance matrix

Ra
x = E{xaxa H } =

[
Rx Px
P∗

x R∗
x

]
(5)

1The ‘widely linear’ model is associated with the signal generating system,
whereas ‘augmented statistics’ describe the statistical properties of measured
signals. Both the terms ‘widely linear’ and ‘augmented’ are used to name the
resulting algorithms - in our work we mostly use the term ‘augmented.’
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and as such, estimation based on Ra
x applies to both proper

and improper data.
The recently introduced widely linear (augmented) complex

Kalman filter (ACKF), augmented complex extended Kalman
filter (ACEKF) [12], and augmented complex unscented
Kalman filter (ACUKF) [1] have been shown to be suitable for
the generality of complex signals, both second-order circular
and noncircular. They were applied for the training of neural
networks and exhibited superior performance when compared
with their strictly linear counterparts for improper data. How-
ever, the properties and performances of these filters were not
elaborated for the general case, and outside neural network
training, where the sources of improperness include both the
input data and system parameters, and for general data models.

In this paper, we consolidate and expand our recent work
on a class of widely linear KFs [1] and illuminate their
performances under general noncircular state and observation
noises, and for nonholomorphic state and observation mod-
els. The effect of signal noncircularity on the mean square
behavior of the conventional complex Kalman filter (CCKF),
the complex extended Kalman filter (CEKF) and the complex
unscented Kalman filter (CUKF) is analyzed in depth, and
the Cramer–Rao lower bound (CRLB) for the widely linear
KFs is established. We also illustrate that the computational
complexity of the ACKF can be significantly reduced by
exploiting the isomorphism between the bivariate real and
complex domains. A more general form of the ACEKF is
then introduced, which is able to cater to both analytic and
nonanalytic state space models, in the Cauchy–Riemann sense.
Simulations on both benchmark and real-world noncircular
data support the analysis.

II. ACKF

Consider the linear state space model given by [15]

xn = Fn−1xn−1 + wn (6a)

yn = Hnxn + vn (6b)

where xn is the state to be estimated (of dimension p ×1), yn

is the noisy observation (of dimension q × 1), the vectors wn

and vn are the zero-mean state and measurement noises2 with
covariances Qn and Rn and pseudocovariances Pn and Un ,
respectively. The matrices Fn and Hn are the state transition
and observation matrices. From (4), the corresponding widely
linear state space model is defined as3

xn = Fn−1xn−1 + An−1x∗
n−1 + wn−1 (7a)

yn = Hnxn + Bnx∗
n + vn (7b)

and can be expressed in a compact form using so called
“augmented” complex vectors, such that [1]

xa
n = Fa

n−1xa
n−1 + wa

n (8a)

ya
n = Ha

nxa
n + va

n (8b)

2In the classic derivation of the KF, the state and measurement noises are
assumed to be Gaussian, white and uncorrelated.

3The state and observation noises can also be widely linear, in which case:
wn = Cnun + Dnu∗

n and vn = Ennn + Fnn∗
n , where C, D, E, and F are

coefficient matrices and u, n are the noise models.

Algorithm 1 The ACKF algorithm
Initialize with:

x̂a
0|0 = E{xa

0}
Ma

0|0 = E
{
(xa

0 − E{xa
0})(xa

0 − E{xa
0})H

}

Prediction:

x̂a
n|n−1 = Fa

n−1̂xa
n−1|n−1 (9)

Minimum Prediction MSE Matrix:

Ma
n|n−1 = Fa

n−1Ma
n−1|n−1Fa H

n−1 + Qa
n (10)

Kalman Gain Matrix:

Ga
n = Ma

n|n−1Ha H
n

(
Ha

nMa
n|n−1Ha H

n + Ra
n

)−1
(11)

Correction:

x̂a
n|n = x̂a

n|n−1 + Ga
n

(
ya

n − Ha
n x̂a

n|n−1

)
(12)

Minimum MSE Matrix:

Ma
n|n = (I − Ga

nHa
n)Ma

n|n−1 (13)

where xa
n = [xT

n , xH
n ]T and ya

n = [yT
n , yH

n ]T , while

Fa
n =

[
Fn An

A∗
n F∗

n

]
and Ha =

[
Hn Bn

B∗
n H∗

n

]
.

The conjugate matrices A and B in (7) and (8) determine
whether the state and observation equations are strictly linear
or widely linear. For instance, if A = 0 and B = 0, the
state space becomes strictly linear, however, the augmented
state space representation should still be preferred over the
linear state space, in order to cater for noncircular state and
observation noises. This was not considered in earlier widely
linear KFs.

Consider the augmented covariance matrices of wa
n =

[xT
n , wH

n ]T and va
n = [vT

n , vH
n ]T , that is

Qa
n = E{wa

nwa H
n } =

[
Qn Pn

P∗
n Q∗

n

]
(14)

Ra
n = E{va

nva H
n } =

[
Rn Un

U∗
n R∗

n

]
(15)

where the pseudocovariances are the off-diagonal block
terms. The ACKF is a minimum MSE estimator x̂a

n|n =
E[xa

n |ya
0, ya

1, . . . , ya
n] of xa

n based on the observations
{ya

0, ya
1 , . . . , ya

n}, and is summarized in Algorithm 1.

A. Convergence Analysis

When the state and observation noises are circular, and
the state and observation equations strictly linear, the CCKF
and ACKF are equivalent, that is, they yield the same state
estimate and MSE at every time instant. These conditions can
be summarized as follows:

Qa
n =

[
Qn 0
0 Q∗

n

]
, Ra

n =
[

Rn 0
0 R∗

n

]
,

Fa
n =

[
Fn 0
0 F∗

n

]
, and Ha

n =
[

Hn 0
0 H∗

n

]
. (16)
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The correspondence between CCKF and ACKF for proper
data and under the same initialization (even when initial
filter parameters are incorrect) can be illustrated as follows.
Consider the predicted MMSE matrix, which can be expressed
as a Riccati recursion, that is

Ma
n+1|n = Fa

n−1Ma
n|n−1(F

a
n−1)

H

−Fa
n−1M

a
n|n−1(H

a
n)H[Ha

nMa
n|n−1(H

a
n)H +Ra

n ]−1

×(Ha
n)Ma

n|n−1(F
a
n−1)

H + Qa
n. (17)

Notice that the computations of Ma
n|n−1 and Ma

n|n are indepen-
dent of the observation vector and as such can be calculated
before any measurements are observed. By substituting (11)
into (13) and using the matrix inversion lemma, the augmented
MSE matrix Ma

n|n can be expressed as

Ma
n|n = Ma

n|n−1 − Ma
n|n−1(H

a
n)H

×[Ha
nMa

n|n−1(H
a
n)H + Ra

n

]−1Ha
nMa

n|n−1

= [
(Ma

n|n−1)
−1 + (Ha

n)H (Ra
n)−1Ha

n

]−1
. (18)

Substituting (18) into (11) allows for the Kalman gain to be
expressed as

Ga
n = [(Ma

n|n−1)
−1 + (Ha

n)H (Ra
n )−1Ha

n ]−1(Ha
n)H (Ra

n )−1

= Ma
n|n(Ha

n)H (Ra
n )−1. (19)

For the same state and MSE initialization of both CCKF and
ACKF (even when these quantities are not necessarily the true
values), we have

x̂a
0|0 = [̂

xT
0|0, x̂H

0|0
]T

Ma
0|0 =

[
M0|0 0

0 M∗
0|0

]

where x̂0|0 and M0|0 are, respectively, the initial state and MSE
for the strictly linear CCKF. Substituting the expressions in
(16) into (19) yields

Ga
n =

[
Gn 0
0 G∗

n

]
(20)

where Gn = Mn|n(Hn)
H (Rn)

−1 is the Kalman gain for the
CCKF at time instant n. Observe that CCKF and ACKF have
the same Kalman gain, even though for ACKF it takes a block-
conjugate structure, by substituting (20) into (12) it follows
that the two filters yield identical state estimates.

Remark 1: For circular state and observation noises with
strictly linear state and observation equations (that is, the
conditions illustrated in (16)), the ACKF and CCKF have iden-
tical performances, and consequently the same convergence
properties, when identically initialized.

B. MSE Performance Analysis

We next illuminate the MSE performances of the CCKF
and ACKF in order to provide insight into the behavior of
KFs for the generality of complex signals, both second-order
circular and noncircular. From the state space model given
by (6a) and (6b), the KF estimate x̂n|n of the state xn is
based on the all observations up to time n, and can be

written as a linear combination of the observation sequence,
zn = [

yT
1 , yT

2 , . . . , yT
n

]T , that is

x̂n|n = E{x0} + Wnzn (21)

where Wn is the minimum MSE weight matrix, which is the
solution to the normal equation, that is

Wn = Rxz,n,nR−1
z,n (22)

with Rxz,n,n = E
{
(xn − E{xn})(zn − E{zn})H

}
and Rz,n =

E
{
(zn − E{zn})(zn − E{zn})H

}
. The MSE is then given by

Mn|n = E
{
(xn − x̂n|n)(xn − x̂n|n)H

}
= Rx,n − Rxz,n,nR−1

z,nRH
xz,n,n . (23)

The KF is summarized by state estimate (mean) in (21)
and covariance estimate in (23), although the computational
complexity (dimensions) of these expressions increase with
time, nonetheless, they are general and suffice for the analysis
of the MSE performances of CCKF and ACKF.

Consider (6a) in its non-recursive form

xn = Fn:0x0 +
n∑

i=1

Fn:i wi (24)

where x0 is the initial state,4 and the state transition matrix
has the properties

Fn:i = FnFn−1 · · · Fi , Fi:i = I and F0 = I.

This allows us to express the state covariance matrix as

Rx,n = Fn:0Rx,0FH
n:0 +

n∑
i=1

Fn:i Qi FH
n:i (25)

and the observation covariance as

Ry,n,m = E{ynyH
m }

=
⎧⎨
⎩

HnRx,nHH
n + Rn, if n = m

HnRx,nHH
m , if n < m

HnRx,mHH
m , if n > m.

(26)

We have made the usual assumptions that the measurement
noise vn is orthogonal to the current and previous states, and
the state noise is white. The cross-correlation between the state
and observation can then be expressed as

Rxy,n,m = E
{

xnyH
m

}
n ≥ m

= E
{

xn(Hmxm + vm)H
}

= Rx,mHH
m (27)

while the cross-correlation between the state xn and the
observation sequence zn , and the covariance of the observation
sequence are, respectively, given by

Rxz,n,n = [
Rxy,n,1 Rxy,n,2 · · · Rxy,n,n

]
(28)

4Without loss of generality, we assume E{x0} = 0.
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and

Rz,n =

⎡
⎢⎢⎢⎣

Ry,1 Ry,1,2 · · · Ry,1,n

Ry,2,1 Ry,2 · · · Ry,2,n
...

...
. . .

...
Ry,n,1 Ry,n,2 · · · Ry,n

⎤
⎥⎥⎥⎦ . (29)

Based on the expectations of (21) and (24), observe that the
estimate x̂n|n is unbiased, that is

E{en|n} = E{(xn − x̂n|n)} = 0

and, as such, the mean characteristics of the conventional
complex KF do not change for noncircular state and obser-
vation signals. Equation (23) shows that the mean square
characteristics of the CCKF are dependent on the covariance
matrices of the state and observation noises but not on their
pseudocovariances, leading to the following remark.

Remark 2: The noncircularity of the state and observation
noises does not affect the performance of the linear conven-
tional complex KF.

For the ACKF, the state estimate and the MSE matrix are
given by expressions similar to (21) and (23), that is

x̂a
n|n = E{xa

0} + Wa
nza

n = E{xa
0} + Ra

xz,n,n(R
a
z,n)−1za

n

Ma
n|n = E

{
(xa

n − x̂a
n|n)(x

a
n − x̂a

n|n)H
}

= Ra
x,n − Ra

xz,n,n(R
a
z,n)−1Ra H

xz,n,n (30)

where the matrix form of the augmented (widely linear) MSE
Ma

n|n can be written as
[

Mwl,n|n Pwl,n|n
P∗

wl,n|n M∗
wl,n|n

]
=
[

Rx,n Px,n

P∗
x,n R∗

x,n

]
−
[

Rxz,n,n Pxz,n,n

P∗
xz,n,n R∗

xz,n,n

]

×
[

Rz,n Pz,n
P∗

z,n R∗
z,n

]−1 [Rxz,n,n Pxz,n,n

P∗
xz,n,n R∗

xz,n,n

]H

.

The terms Px,n and Pz,n are the pseudocovariances of the
state and observation sequence, respectively, while Pxz,n,n =
E{xnzT

n } is the pseudo-correlation between the state and obser-
vation sequence. The inverse of the augmented covariance
matrix (Ra

z,n)−1 can be expressed as
[

Rz,n Pz,n
P∗

z,n R∗
z,n

]−1

=
[

C D
D∗ C∗

]

where

C = (Rz,n − Pz,nR∗−1
z,n P∗

z,n)−1

D = −(Rz,n − Pz,nR∗−1
z,n P∗

z,n)−1Pz,nR∗−1

and the widely linear (augmented) MSE for the ACKF can be
written as

Mwl,n|n = Rx,n − Rxz,n,nCRH
xz,n,n − Rxz,n,nDPH

xz,n,n

−Pxz,n,nD∗RH
xz,n,n − Pxz,n,nC∗PH

xz,n,n . (31)

After some tedious algebraic manipulations and following
the approach in [16], the difference between the CCKF and
the ACKF is found to be:

�Mn = Mn|n − Mwl,n|n
= (Pxz,n,n − Rxz,n,nR−1

z,nPz,n)

×(R∗
z,n − P∗

z,nR−1
z,nPz,n)

−1

×(Pxz,n,n − Rxz,n,nR−1
z,nPz,n)H . (32)

Remark 3: Equation (32) is always positive semidefinite
owing to the positive definiteness of the matrix (R∗

z,n −
P∗

z,nR−1
z,nPz,n), and consequently �Mn = 0 only when

(Pxz,n,n − R−1
xz,n,nRz,nPz,n) = 0. Therefore, the widely linear

ACKF always has the same or better MSE performance than
the strictly linear CCKF.

Remark 4: The CCKF and ACKF are equivalent when the
observation sequence is circular (Pz,n = 0), and the state and
observation sequences are jointly circular (Pxz,n,n = 0).

C. Duality Analysis of ACKF and Real-Valued KF

Due to the topological isomorphism between augmented
complex vectors and bivariate real vectors, the ACKF has a
dual bivariate real-valued KF, a property which can be used to
significantly reduce the computational complexity of ACKF.
For any complex vector z = zr+ jzi ∈ Cq , the duality mapping
is given by

za =
[

z
z∗
]

=
[

I jI
I − jI

]
︸ ︷︷ ︸

≡Jz

[
zr
zi

]
︸︷︷︸
=zr

(33)

where I is the identity matrix and the invertible orthogonal
mapping5 Jz : C → R has the property J−1

z = (1/2)JH
z [17].

Based on this isomorphism, the real bivariate state space cor-
responding to the augmented complex state space is given by

xr
n = Fr

n−1xr
n−1 + wr

n

yr
n = Hr

nxr
n + vr

n (34)

where xr
n = J−1

x xa
n , yr

n = J−1
y ya

n , Fr
n−1 = J−1

x Fa
n−1Jx, Hr

n =
J−1

y Ha
nJx, wr

n = J−1
x wa

n , and vr
n = J−1

y va
n . The corresponding

real-valued covariance matrices for the state and observation
noises, wr

n and vr
n , are given by

Qr
n = E{wr

nwr H
n } = J−1

x Qa
nJ−H

x

Rr
n = E{vr

nvr H
n } = J−1

y Ra
n J−H

y .

Following a similar analysis to that in [1], it can be shown
that the ACKF and its dual real-valued KF have the same
performance. Assuming that ACKF is initiated at time (n − 1),
with initial state x̂a

n−1|n−1 and MSE matrix Ma
n−1|n−1, the

corresponding dual real-valued KF initialization is given by:
x̂r

n−1|n−1 = J−1
x x̂a

n−1|n−1

Mr
n−1|n−1 = J−1

x Ma
n−1|n−1J−H

x . (35)

It is now straightforward to show that the state and MSE matrix
predictions of ACKF and its dual real KF are related as

x̂r
n|n−1 = J−1

x x̂a
n|n−1

Mr
n|n−1 = J−1

x Ma
n|n−1J−H

x (36)

and that the augmented Kalman gain is related to its
corresponding real-valued Kalman gain by the following

5The matrix Jz is of dimensions 2q × 2q.
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expressions:
Ga

n = Ma
n|n−1Ha H

n [Ha
nMa

n|n−1Ha H
n + Ra

n ]−1

= JxMr
n|n−1JH

x J−H
y Hr H

n JH
x

×[JyHr
nJ−1

x JxMr
n|n−1JH

x J−H
x Hr H

n JH
y + JyRr

nJH
y ]−1

= JxMr
n|n−1Hr H

n [Hr
nMr

n|n−1Hr H
n + Rr

n]−1J−1
y

= JxGr
nJ−1

y . (37)

Consequently, for the state estimates x̂a
n|n and x̂r

n|n we have

x̂r
n|n = x̂r

n|n−1 + Gr
n(y

r
n − Hr

n x̂r
n|n−1)

= J−1
x x̂a

n|n−1 + J−1
x Ga

nJy(yr
n − Hr

nJ−1
x x̂a

n|n−1)

= J−1
x x̂a

n|n (38)

and the MSE matrices are related as

Mr
n|n = J−1

x Ma
n|nJ−H

x . (39)

From (38), observe that the state estimates x̂a
n|n and x̂r

n|n are
equivalent, and are related by an invertible linear mapping. To
show that ACKF and its dual real-valued bivariate KF achieve
the same MSE, recall that the MSE for the real-valued KF is
given by

εr
n = tr{Mr

n|n} (40)

where the symbol tr{·} denotes the matrix trace operator.
Similarly, the MSE corresponding to the augmented MSE
matrix Ma

n|n is given by the trace of (39), that is

tr{Ma
n|n} = tr{JxMr

n|nJH
x }

= tr{Mr
n|nJH

x Jx}
= 2 · tr{Mr

n|n} (41)

where the expression JH
x = 2J−1

x was utilized. At first, this
result appears misleading as it suggests that ACKF achieves
twice the error of its dual real-valued KF. However, this is
because the error term is counted twice by the trace of Ma

n|n ,
owing to the block diagonal structure of the augmented MSE
covariance matrix, and hence needs to be halved to express
the true augmented MSE, that is

εa
n = 1

2
tr{Ma

n|n} = εr
n .

Remark 5: The ACKF and the its dual bivariate real-
valued KF are equivalent forms of the same state space models.
They achieve identical MSE and state estimates at every time
instant, regardless of the circularity of the processed signals.

By using the bivariate real KF, the computational complex-
ity of ACKF is reduced, whereby the number of additions
and multiplications required are approximately halved and
quartered, respectively. Moreover, due to the duality between
the bivariate real-valued KF and ACKF, the stability and con-
vergence analysis for real-valued KFs also apply to the ACKF.

D. Posterior Cramer–Rao Bound (PCRB)

For time invariant statistical models, the Cramer–Rao bound
provides a theoretical performance bound for all unbiased
estimators, by establishing the lowest attainable MSE. In time

varying systems, such as the state space models where the
state is driven by random noise, the PCRB provides a lower
bound on the MSE performance of unbiased estimators [18].

For an unbiased estimator θ̂[y] of an r -dimensional random
variable θ , based on the observation y, where the joint prob-
ability density of θ and y is given by Pθ,y[�, Y], the PCRB
on the estimation has the form [18]

� = E
{
(θ − θ̂ [y])(θ − θ̂[y])H

}
≥ �−1 (42)

where � is the r × r dimensional Fisher information matrix
with elements defined as

�lk = −E
{∂2 logPθ,y[�, Y]

∂�l∂�k

}
l, k = 1, . . . , r. (43)

The inequality in (42) implies that the difference � − �−1 is
positive semidefinite. Consider a general state space model of
the form

xn = f[xn−1, wn−1] (44a)

yn = h[xn, vn] (44b)

where f and h are nonlinear, possibly time varying vector-
valued functions, while wn and vn are independent white
processes (not necessarily Gaussian). For this model, it was
shown in [19] that the Fisher information matrix corresponding
to the state xn+1 at time instant (n + 1) can be written in a
computationally efficient recursive form, that is

�n+1 = D22
n − D21

n (�n + D11
n )−1D12

n (45)

where

D11
n = E{−�xn

xn
logP[xn+1|xn]}

D12
n = E{−�

xn+1
xn logP[xn+1|xn]}

D21
n = E{−�xn

xn+1
logP[xn+1|xn]} = (D12

n )T

D22
n = E{−�

xn+1
xn+1 logP[xn+1|xn]}

+ E{−�
xn+1
xn+1 logP[yn+1|xn+1]}

and �a
b = (∂2/∂a∂b), while conditional probability densities

P[xn+1|xn] and P[yn+1|xn+1] can be computed from (44).
Consider the application of the PCRB to the linear filtering

problem characterized by the state space model in (8), where
wn and vn are assumed zero-mean independent complex dou-
bly white Gaussian noises with augmented covariance matrices
Qa

n and Ra
n , respectively, [(14) and (15)], that is, wn (and

similarly vn) has a multivariate complex normal distribution
defined as [20]

P[wn] = 1

πr (det Qa
n)1/2

× exp
(

− 1

2
(wn − E{wn})H Q−a

n (wn − E{wn})
)
.

It is straightforward to show that

D11
n = Fa H

n (Qa
n+1)

−1Fa
n

D12
n = −Fa H

n (Qa
n+1)

−1

D22
n = (Qa

n+1)
−1 + Ha H

n+1(R
a
n+1)

−1Ha
n+1.

The distribution of the state estimate within the ACKF frame-
work is Gaussian with a mean x̂a

n|n and covariance Ma
n|n , and
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it can be shown that the information matrix is the inverse of
the state covariance matrix at every time instant, that is

Ma
n|n = �−1

n . (46)

Remark 6: The ACKF, like the bivariate real-valued KF,
achieves the CRLB [19], [21], since it essentially estimates
the state xa

n as x̂a
n|n = E[xa

n |ya
0, ya

1, . . . , ya
n]. However, CCKF

only achieves the CRLB when the conditions in (16) are true
for all time instances, which is generally not the case.

III. ACEKF

The EKF uses linear models to approximate nonlinear
functions, and as such, the state and observation functions need
not be linear but differentiable. Consider the state space model
given by

xn = f[xn−1] + wn (47a)

yn = h[xn] + vn (47b)

where f[·] and h[·] are the nonlinear process and observation
vector-valued functions, respectively, which may depend on
the time n, and the remaining variables are as defined above.
The EKF approximates these nonlinear functions by their
first-order Taylor series expansions (TSE) about the state
estimates. Calculating the complex derivative of a function
requires the function to be analytic (differentiable) within the
rigorous conditions set by the Cauchy–Riemann equations,
though in practice, the functions f[·] and h[·] can be analytic
or nonanalytic depending on the underlying physical model.
For instance, a large class of functions, such as real functions
of complex variables, do not satisfy the Cauchy–Riemann con-
ditions thus severely restricting the set of allowable functions
for nonlinear process and observations models.

The so-called CR calculus [22] exploits the isomorphism
between the complex domain C and the real domain R2,
and makes possible the TSE of both analytic and nonanalytic
functions within the same framework. This way, the first-order
TSE of a function f [z] is given by

f [z + �z] = f [z] + ∂ f

∂z
�z + ∂ f

∂z∗ �z∗ (48)

whereby for analytic functions (in the Cauchy–Riemann
sense), the term (∂ f /∂z∗)�z∗ vanishes.

The first-order approximations of the state and observation
equations, (47a) and (47b), about the estimates x̂n−1|n−1 and
x̂n|n−1, are given by

xn = Fn−1xn−1 + An−1x∗
n−1 + wn + rn−1 (49)

yn = Hnxn + Bnx∗
n + vn + zn (50)

where the vectors rn = f [̂xn−1|n−1] − Fn−1̂xn−1|n−1 −
An−1x̂∗

n−1|n−1 and zn = h[̂xn|n−1] − Hn x̂n|n−1 − Bn x̂∗
n|n−1,

and the matrices Fn−1, An−1, Hn , and Bn are the Jacobians
defined as

Fn−1 = ∂f
∂xn−1

∣∣∣
xn−1= x̂n−1|n−1

, An−1 = ∂f
∂x∗

n−1

∣∣∣
x∗

n−1= x̂∗
n−1|n−1

,

Hn = ∂h
∂xn

∣∣∣
xn= x̂n|n−1

, and Bn = ∂h
∂x∗

n

∣∣∣
x∗

n= x̂∗
n|n−1

.

From (49) and (50), observe that if f[·] and h[·] are non-
analytic, that is, A �= 0 and B �= 0, the linearized state and
observation equations are widely linear [see (4)], and thus can-
not be implemented using the standard CEKF. However, the
state space equations become strictly linear if these functions
are analytic, since the derivatives with respect to the complex
conjugates vanish, that is, An−1 = 0 and Bn = 0.

In order to provide deeper insight into the widely linear
state and observation models, an ‘augmented’ state space
representation is thus required, this will also cater for the full
second-order statistics of the state and measurement noises.
To this end, consider the nonlinear augmented state space
model given by

xa
n = fa[xa

n−1] + wa
n (51a)

ya
n = ha[xa

n] + va
n (51b)

with fa[xa
n−1] = [

fT [xa
n−1], f H [xa

n−1]
]T

and ha[xa
n] =[

hT [xa
n], hH [xa

n]
]T. The linearized augmented state space can

be expressed as

xa
n = Fa

n−1xa
n−1 + wa

n + ra
n−1 (52a)

ya
n = Ha

nxa
n + va

n + za
n (52b)

where ra
n = [

rT
n , rH

n

]T , za
n = [

zT
n , zH

n

]T , and Fa
n =

[
Fn An

A∗
n F∗

n

]

and Ha =
[

Hn Bn

B∗
n H∗

n

]
.

Note that Fa
n = (∂fa/∂xa

n) and Ha
n = (∂ha/∂xa

n).
Therefore, in contrast to the conventional CEKF, the

ACEKF allows the state and observation models to be widely
linear, and thus naturally caters for the noncircularity of the
state and measurement noises. The derivation of the ACEKF
follows from the derivation of the CEKF [1, Ch. 15.4],
however, utilizes the augmented state space model, and is
summarized in Algorithm 2.

Algorithm 2 The ACEKF algorithm
Initialize with:

x̂a
0|0 = E

{
xa

0

}
Ma

0|0 = E
{
(xa

0 − E{xa
0})(xa

0 − E{xa
0})H

}

Prediction:

x̂a
n|n−1 = fa [̂xa

n−1|n−1] (53)

Prediction Covariance Matrix:

Ma
n|n−1 = Fa

n−1Ma
n−1|n−1Fa H

n−1 + Qa
n (54)

Kalman Gain Matrix:

Ga
n = Ma

n|n−1Ha H
n

(
Ha

nMa
n|n−1Ha H

n + Ra
n

)−1 (55)

Correction:

x̂a
n|n = x̂a

n|n−1 + Ga
n

(
ya

n − ha [̂xa
n|n−1]

)
(56)

Covariance Matrix:

Ma
n|n = (I − Ga

nHa
n)Ma

n|n−1 (57)
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The novelty of the ACEKF algorithm presented in this
paper is that it does not assume a specific state or observation
models, that is f[·] and h[·], which makes it a more general
form of the ACEKF presented in [12]. Moreover, by utilizing
the CR calculus, we have shown how the ACEKF can be
used for the generality of complex state space models, both
holomorphic and nonholomorphic.

A. Duality Analysis of ACEKF and Real-Valued EKF

Similar to the ACKF, the ACEKF has a real-valued EKF
counterpart, which gives the same estimate at every time
instant. Based on the isomorphism between augmented com-
plex and real-valued vectors in (33), the nonlinear real-valued
state space corresponding to the augmented complex state
space (51) is given by

xr
n = fr [xr

n−1] + wr
n (58a)

yr
n = hr [xr

n] + vr
n (58b)

where fr [xr
n] = J−1

x fa[xa
n], hr [xr

n] = J−1
y ha[xa

n] and the
remaining variables are as defined above. The relationship
between the augmented complex and real Jacobians Fa

n and
Fr

n is established by comparing the first-order TSE of both
sides of the relationship fr [xr

n] = J−1
x fa[xa

n], which leads to

Fr
n = J−1

x Fa
nJx = ∂fr

∂xr
n

∣∣∣
xr

n=x̂r
n|n

and similarly Hr
n = J−1

y Ha
nJx = ∂hr

∂xr
n

∣∣∣
xr

n=x̂r
n|n−1

.

The duality between the ACEKF and the real-valued EKF
can be established by showing that at every time instant n, the
following relationships holds:

x̂r
n|n−1 = J−1

x x̂a
n|n−1

Mr
n|n−1 = J−1

x Ma
n|n−1J−H

x

Gr
n = J−1

x Ga
nJy

x̂r
n|n = J−1

x x̂a
n|n

Mr
n|n = J−1

x Ma
n|nJ−H

x .

Therefore, the ACEKF and the bivariate real-valued EKF
essentially implement the same state space model, but operate
in different domains. However, if the state space is naturally
defined in the complex domain, it is desirable to keep all of
the computations in the original complex domain in order to
facilitate understanding of the transformations the signal goes
through, and to benefit from the notion of phase and circularity
and more degrees-of-freedom in the estimation.

However, by using the real-valued bivariate EKF, the com-
putational complexity of ACEKF is reduced, whereby the
number of additions and multiplications required are approx-
imately halved and quartered, respectively.

IV. ACUKF

The unscented Kalman filter (UKF) [23] has been proposed
to address the problems arising from the first-order approxima-
tion of nonlinearities within EKFs. It approximates the com-
plex statistical posterior distribution rather than approximating

the nonlinearity [24]. The UKF uses a deterministic sampling
technique to pick a set of sample points (known as sigma
points) around the mean. These points are then propagated
through the nonlinear state space models, from which the mean
and covariance of the estimate are recovered. This results in
a filter that is able to more accurately capture the true state
mean and covariance.

To illustrate the complex unscented transform (UT) and the
augmented complex UT, consider the mapping

y = f[x] = f[x̄ + δx] x ∈ C
p×1, y ∈ C

q×1 (59)

where f[·] is a nonlinear function (holomorphicity is
assumed for clarity), y = [y1, . . . , yq ]T is the output,
x = [x1, . . . , x p]T is the input with mean x̄ = E{x},
covariance Rx = E{(x − x̄)(x − x̄)H }, and pseudocovariance
Px = E{(x − x̄)(x − x̄)T } = 0, while δx = x − x̄. The TSE
of y about x̄ is given by

y = f[x̄] + ∇δxf + 1

2!∇
2
δxf + 1

3!∇
3
δxf + · · · (60)

where the i th-order term in the TSE for f[·] about x̄ is [24]

1

i !∇
i
δxf = 1

i !

( p∑
k=1

δxk
∂

∂xk

)i

f[x]∣∣x=x̄
(61)

with δxk being the kth component of δx. The term above is
an i th order polynomial in δx, whose coefficients are given
by the derivatives of f[·]. The mean of y can be expressed as

ȳ = E{f[x̄ + δx]}
= f[x̄] + E

{
∇δxf + 1

2!∇
2
δxf + 1

3!∇
3
δxf + · · ·

}

where the i th term is given by

E
{ 1

i !∇
i
δxf
}

= 1

i ! E

{( p∑
k=1

δxk
∂

∂xk

)i
}

f[x]∣∣x=x̄

= 1

i !
(

m1,1,...,1,1
∂ i f

∂xi
1

+ m1,1,...,1,2
∂ i f

∂xi−1
1 ∂x2

+ · · ·
)
.

The symbols ma1,a2,...,ai−1,ai = E{δxa1δxa2 · · · δxai−1δxai }
denote the i th order central moments of the components x
with ak ∈ [1, 2, . . . , p]. Observe that the i th-order term in the
series for ȳ is a function of the i th-order central moment of x
multiplied by the i th derivative of f[·]. Hence, if the moments
can be correctly evaluated up to the i th order, the mean ȳ
will also be correct up to the i th order. The covariance matrix
Ry = E{(y − ȳ)(y − ȳ)H } now becomes

Ry= ∂f
∂x

Rx

( ∂f
∂x

)H+E

{
1

3!∇δxf
(∇3

δxf
)H+ 1

2!×2!∇
2
δxf
(∇2

δxf
)H

+ 1

3!∇
3
δxf
(∇δxf

)H
}

− E

{
1

2!∇
2
δxf
}

E

{
1

2!∇
2
δxf
}H

+· · ·

and is correct if the i th central moment of x is correct. Within
the complex UT framework, the p−dimensional random
variable x is approximated by a set (2p +1) weighted (sigma)
points {Wi ,Xi }2p+1

i=0 , chosen so that their sample mean and
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covariance are equal to the true mean x̄ and covariance Rx.
The nonlinear function f[·] is then applied to each of these
points to generate transformed points, Yi = f[Xi ], with a
sample mean and covariance

ˆ̄y =
2p∑

i=0

WiYi , R̂y =
2p∑

i=0

Wi
(Yi − ȳ

)(Yi − ȳ
)H

which are correct up to the second-order TSE. For a
second-order noncircular y, the true output pseudocovariance
Py = E{(y − ȳ)(y − ȳ)T } is given by

Py = ∂f
∂x

Px

( ∂f
∂x

)T+E

{
1

3!∇δxf
(∇3

δxf
)T+ 1

2!×2!∇
2
δxf
(∇2

δxf
)T

+ 1

3!∇
3
δxf
(∇δxf

)T
}
−E

{
1

2!∇
2
δxf
}

E

{
1

2!∇
2
δxf
}T

+ · · ·

The conventional complex UT does not cater for the
input pseudocovariance and consequently the output
pseudocovariance, due to the method used for generating the
sigma points, which is calculated as

X0 = x̄, Xi = x̄ +
(√

(p + λ)Rx

)
i
, i = 1, . . . , p

Xi = x̄ −
(√

(p + λ)Rx

)
i
, i = p + 1, . . . , 2 p (62)

where
(√

(p + λ)Rx

)
i

is the i th column of the matrix square

root6 and λ = α2(2 p + κ) − 2 p is a scaling parameter, while
α determines the spread of the sigma points around the mean
and is usually set to a small positive value (e.g., 10−3), κ is
a secondary scaling parameter which is usually set to 0, and
β is used to incorporate prior knowledge of the distribution
(for Gaussian distributions, β = 2 is optimal). From (62) it
is clear that the conventional sigma points do not incorporate
the input pseudocovariance, and to overcome this issue, we
consider the ‘augmented’ sigma points given by

X a
0 = x̄a, X a

i = x̄a +
(√

(p + λ)Ra
x

)
i
, i = 1, . . . , 2 p

X a
i = x̄a −

(√
(p + λ)Ra

x

)
i
, i = 2 p + 1, . . . , 4 p

which are functions of the input mean, covariance and
pseudocovariance, due to the use of the augmented covariance
matrix, and can fully propagate the second-order statistics of
improper inputs. The weights associated with the augmented
sigma points are then given by

W(m)
0 = λ

2 p + λ
, W(c)

0 = λ

2 p + λ
+ (1 − α2 + β)

W(m)
i = W(c)

i = λ

2(2 p + λ)
, i = 1, . . . , 4 p (63)

where the output mean and covariance are computed using
the m and c superscripted weights, respectively.

To illustrate the benefits of the augmented complex UT
over the standard UT, consider the system defined by yn =
cos[xn] where the input xn is a Gaussian doubly white circular

6If L is the matrix square root of Rx = LLH , then
(√

(p + λ)Rx

)
i

is the

ith column of the matrix
√

(p + λ)L.
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Fig. 1. Performance of the complex UT and augmented complex UT.
(a) Circular input. (b) Noncircular input.

random variable. Fig. 1(a) shows that for a circular input
xn ∼N (x̄, cx , ρx ) = N (0.5, 0.01, 0) (cx is the variance and
ρx the pseudocovariance) the complex UT and the augmented
complex UT had similar performance in capturing the distri-
bution of the output yn . Fig. 1(b) illustrates that for a noncir-
cular input xn ∼N (0.5, 0.01, 0.008), the augmented complex
UT captures the pseudocovariance of the output distribution
closely, while the complex UT maintains a circular posterior
distribution.

The ACUKF corresponding to the nonlinear state space
model defined in (47) is summarized in Algorithm 3. Pre-
liminary ACUKF algorithms have been introduced in [1] and
[25]. The novelty of the ACUKF algorithm presented in this
paper is that it does not assume a specific state or observation
model, which makes it a more general form of the ACUKF
presented in [1].

A. Performance Analysis

In this section, we analyze the mean-square behavior of the
the CEKF and CUKF [23] for analytic state and observation
functions. Consider the complex-valued scalar state space
given by

xn = f [xn−1] + wn (64)

yn = h[xn] + vn (65)

where f [·] and h[·] are holomorphic nonlinear state and
observation models, respectively, xn and yn are the state and
observation, while wn and vn are uncorrelated zero-mean
white complex-valued state (process) and observation (mea-
surement) noises, respectively. The process noise has variance
cw,n = E{wnw

∗
n} and pseudocovariance ρw,n = E{wnwn},

while the measurement noise has a variance cv,n = E{vnv
∗
n }

and pseudocovariance ρv,n = E{vnvn}.
The unscented and EKF use the same general update

expression, given by (72) and (56), to compute the estimate
of the state, that is

x̂n|n = x̂n|n−1 + gn(yn − ŷn|n−1) (66)

where gn is the Kalman gain. This shows that the estimate
comprises of a prediction term, x̂n|n−1, and a weighted inno-
vation term, (yn − ŷn|n−1).

Substituting (64) in to the observation equation (65) gives

yn = h
[

f [xn−1] + wn
]+ vn . (67)
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Let z = f [xn−1] + wn , then the TSE of the function
h[ f [xn−1] + wn] = h[z] about f [xn−1] can be written as

h[ f [xn−1]+wn]=h[ f [xn−1]]+ ∂h

∂z
wn + 1

2
Hzzw

2
n +h.o.t.

(68)

with the Jacobian (∂h/∂z) and Hessian Hzz = (∂/∂z)(∂h/∂z)
evaluated at z = f [xn−1]. Now subtract the true state, xn ,
from the estimate given in (66) to find the state estimation
error

en = xn− x̂n|n
= ( f [xn−1] + wn)− x̂n|n−1−gn(yn − ŷn|n−1). (69)

Algorithm 3 The ACUKF algorithm
Initialize with:

x̂a
0|0 = E{xa

0}
Ma

0|0 = E
{
(xa

0 − E{xa
0})(xa

0 − E{xa
0})H

}

Calculate sigma points for i = 1, . . . , 4 p:

X a
0,n−1 = x̂a

n−1|n−1

X a
i,n−1 = x̂a

n−1|n−1 ±
(√

(p + λ)Ma
n−1|n−1

)
i

(70)

Compute predictions:
X a

i,n|n−1 = fa[X a
i,n−1]

x̂a
n|n−1 =

4p∑
i=0

W(m)
i X a

i,n|n−1

Ma
n|n−1 = Qa

n+
4p∑

i=0

W(c)
i

(
X a

i,n|n−1−x̂a
n|n−1

)(
X a

i,n|n−1−x̂a
n|n−1

)H

Ya
i,n|n−1 = ha[Xi,n|n−1], i = 1, . . . , 4 p

ŷa
n|n−1 =

4p∑
i=0

W(m)
i Ya

i,n|n−1 (71)

Measurement update:

Ra
ỹa,n|n−1 = Ra

n +
4p∑

i=0

W(c)
i

(
Ya

i,n|n−1 − ŷa
n|n−1

)

×
(
Ya

i,n|n−1 − ŷa
n|n−1

)H

Ra
xaya,n|n−1 =

4p∑
i=0

W(c)
i

(
X a

i,n|n−1 − x̂a
n|n−1

)

×
(
Ya

i,n|n−1 − ŷa
n|n−1

)H

Ga
n = Ra

xaya,n|n−1

(
Ra

ỹa,n|n−1

)−1

x̂a
n|n = x̂a

n|n−1 + Ga
n(y

a
n − ŷa

n|n−1)

Ma
n|n = Ma

n|n−1 − Ga
nRa

ỹa,n|n−1Ga H
n (72)

Substituting (67) and (68) into (69) yields

en = ( f [xn−1] + wn) − x̂n|n−1 − gn

(
h[ f [xn−1]]

+∂h

∂z
wn + 1

2
Hzzw

2
n + h.o.t. + vn − ŷn|n−1

)
.

(73)

Based on (73), the MSE, that is E{ene∗
n}, consists of a large

number of terms, however, since we are only interested in the
effect of circularity on the MSE, we shall only analyze terms
related to the state and measurement noise pseudocovariances,
these terms are

E{ene∗
n} = −E

{
1

2
gnHzzw

2
n

(
f [xn−1] − x̂n|n−1

)∗}

−E

{
1

2

(
f [xn−1] − x̂n|n−1

)
g∗

nH∗
zz(w

∗
n)2

}

+E

{
1

2
gnHzzw

2
n

(
gn
(
h[ f [xn−1] − ŷn|n−1)

)∗}

+E

{
1

2

(
gn
(
h[ f [xn−1] − ŷn|n−1)

)
g∗

nH∗
zz(w

∗
n)2

}

+ (other terms & h.o.t.)

= −�
{

E
{

gnHzz

(
f [xn−1] − x̂n|n−1

)∗}
ρw,n

}

+ �
{
E
{
|gn|2 Hzz

(
h[ f [xn−1]− ŷn|n−1)

∗} ρ∗
w,n

}
+ (other terms & h.o.t.) (74)

where �{·} is the real part of a complex quantity.
Remark 7: From (74) observe that the MSEs for the

CUKF and CEKF depend on the pseudocovariance of the state
noise, a function of ρw,n and ρ∗

w,n , and do not depend on
the pseudocovariances of the observation noise. Hence, if the
observation equation is nonlinear, their mean square behaviors
are affected by the circularity of the state noise, regardless of
whether the state equation is linear or nonlinear.

Remark 8: For linear state space models, the Hessian term
Hzz in (74) vanishes, as the second derivatives of h are zero,
and so too do the four terms in the MSE expression (74) since
they are all dependent on the pseudocovariance. Therefore, the
mean square characteristics of the conventional linear complex
Kalman filter (CCKF) does not depend on the circularity of
the state or observation noises, but only on the total power
(covariance).

V. APPLICATION EXAMPLES

To illustrate the advantages of widely linear complex
KFs over their conventional counterparts, we considered the
following case studies: 1) filtering for a noisy complex-valued
autoregressive process; 2) multistep ahead prediction for
real-world noncircular and nonstationary wind data and
the second-order noncircular Lorenz attractor; and 3) the
nonlinear bearings only tracking.

A. Complex Autoregressive Process

The performances of both the standard and widely linear
KFs were examined using the first-order complex autoregres-
sive process, AR(1), given by [1] and [26]

xn = 0.9xn−1 + un
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Fig. 2. Geometric view of circularity via a real–imaginary scatter plot of the
AR(1) process driven by (a) circular (K = 0) and (b) noncircular (K = 0.9)
white Gaussian distributions.
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Fig. 3. Performance comparison between CCKF and ACKF for the AR(1)
process with varying degrees of state and observation noise noncircularity.
(a) Noncircular state noise. (b) Noncircular observation noise.

where the driving noise was un doubly white Gaussian and
zero-mean with variance and pseudocovariance defined as

E{un−i u
∗
n−l} = cuδi−l

E{un−i un−l} = ρuδi−l

and δ is the discrete Dirac delta function. The estimates
based on the linear filters, namely the CCKF and ACKF,
were observed in the presence of additive complex noncircular
doubly-white noise, vn , that is (see [27] for the KF implemen-
tation of an autoregressive process)

yn = xn + vn

while the observations corresponding to the nonlinear CEKF,
CUKF and their corresponding augmented versions were per-
formed as

yn = arctan[xn] + vn .

The ratio of pseudocovariance to covariance, that is K =
(|ρ|/c), was used as a measure for the degree of noncircularity
of the complex state and measurement noises [28], where a
complex random variable is circular, if K = 0 and maximally
noncircular if K = 1. Fig. 2 shows a real–imaginary scatter
plot for two different realizations of the AR(1) process driven
by Gaussian doubly white complex noise with different levels
of circularity. For a quantitative assessment of the perfor-
mance, the standard prediction gain Rp = 10 log(σ 2

y /σ 2
e ) was

used, where σ 2
y and σ 2

e are the powers of the input signal and
the output error.

Fig. 3 shows the performances of the standard CCKF and its
corresponding widely linear (augmented) version, the ACKF.
Fig. 3(a) illustrates the results for a circular observation noise
and a state noise with various degrees of noncircularity, while

0 0.2 0.4 0.6 0.8 1
33

34

35

36

37

38

39

40

Degree of noncircularity, K

P
re

di
ct

io
n 

G
ai

n 
R

p 
(d

B
) CEKF

ACEKF
UCKF
ACUKF

(a)

0 0.2 0.4 0.6 0.8 1
33

34

35

36

37

38

39

40

Degree of noncircularity, K

P
re

di
ct

io
n 

G
ai

n 
R

p 
(d

B
) CEKF

ACEKF
UCKF
ACUKF

(b)

Fig. 4. Performance comparison between CEKF, CUKF and their correspond-
ing widely linear (augmented) versions for the AR(1) process with varying
degrees of state and observation noise noncircularity. (a) Noncircular state
noise. (b) Noncircular observation noise.

Fig. 3(b) shows the results for a noncircular observation noise
with a circular state noise. For both sets of simulations, when
the noises were circular the ACKF had the same performance
as the CCKF, while for noncircular noises, the ACKF had
superior performance as the degree of noise noncircularity (K )
increased.

Fig. 4 shows the corresponding results for the nonlinear
CEKF, CUKF, and their corresponding augmented versions,
ACEKF and ACUKF. Similar to the ACKF, the general
pattern is that ACEKF and ACUKF outperform the CEKF and
CUKF, respectively, if either of the state or observation noises
are noncircular, while for circular noises they had similar
performances. However, when the state noise was noncircular,
as illustrated in Fig. 4(a), the MSE behavior of CEKF and
CUKF was dependent on the circularity of the state noise.

B. Multistep Ahead Prediction

The performances of the CCKF and ACKF were next
assessed for the multistep ahead prediction of the noncircular
Lorenz signal and real-world noncircular and nonstationary
Wind data. Simulations for the complex least mean square
(CLMS) and its augmented version, the ACLMS, were also
carried out to provide a performance comparison [29].

Fig. 5(a) summarizes the prediction performances for the
Lorenz and the Wind data.7 The ACKF was able to capture the
underlying dynamics of the signals better than CCKF, which is
indicated by its superior prediction performance. This can be
attributed to the use of the widely linear ‘augmented’ model,
which is better suited to capturing the second-order statistics of
noncircular signals. Similarly, the prediction performances for
the ACEKF and ACUKF were also superior to the CEKF and
CUKF, but were not shown here in order to avoid repetition.
Fig. 5(b) shows the corresponding simulations for the CLMS
and ACLMS, where the ACLMS is shown to have superior
performance compared to the CLMS, but is worse than that
of the ACKF.

C. Bearings Only Tracking (BOT)

BOT is a problem encountered in many practical applica-
tions, including submarine tracking by passive sonar or aircraft
surveillance by a radar in passive mode. The objective is the

7The Wind signal (xn ), which has a magnitude (speed) (vn ) and direction
(φn ), can be naturally represented as complex signal (xn = νneφn ).
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Fig. 5. Multistep ahead prediction of real-world Wind data and the Lorenz
attractor using CCKF, CLMS, and their corresponding widely linear versions.
(a) CCKF and ACKF. (b) CLMS and ACLMS.

online estimation of the kinematics (position and velocity) of
a moving target using observer line of sight noise-corrupted
bearing (phase) measurements [30]. As the range measure-
ments are not available and the bearings are not linearly related
to the target state, the problem is inherently nonlinear. A
single static sensor is not able to track targets using bearing
measurements only (due to the lack of range measurements),
and in order to estimate the range, the sensor has to maneuver.
However, for two or more stationary sensors the observability
problem is not an issue, as the multiple bearing measurements
can be used to form a range estimate.

To estimate the trajectory of a target at time instant n, that is,
its position (xn, yn) and velocity (ẋn, ẏn), for a system with L
observers located at (xo

i,n, yo
i,n), i = 1, 2, . . . , L, the complex

BOT state space is defined as

xn = Fxn−1 + Kwn, zn = h[xn] + vn (75)

with the variables defined as follows:
1) xn = [

xn + j yn ẋn + j ẏn
]T is the complex target state

vector;
2) F and K are matrices defined as

F =
[

1 T
0 1

]
and K =

[
T 2

2

T

]

where T is the sampling interval;
3) zn is the observation vector and h[xn] is a vector

function defined as

h[xn] = [
β1,n β2,n · · · βL ,n

]T

where βi = tan−1(yn − yo
i,n/xn − xo

i,n) is the target
bearing at sensor i ;
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Fig. 6. Performances of CUKF and ACUKF with second-order noncircular
state noise (K = 0.9).

4) wn = ẍn + j ÿn is the zero-mean state noise (used
to account for the unknown target accelerations) with
variance rw,n and pseudovariance ρw,n , while vk =[
v1,n v2,n · · · vL ,n

]T is the zero mean real-valued obser-
vation noise with covariance Rv,n.

The vector function h[xn] is real valued and it is straight-
forward to show that it does not satisfy the Cauchy–Riemann
conditions, that is, (∂h[xn]/∂x∗

n) �= 0, and is hence nonholo-
morphic.

To illustrate the benefits of ACUKF with over CUKF within
the context of bearings only target motion analysis, consider a
scenario with two static sensors located at (−1200, 1300) and
(1000, 1500). The system described by (75) was simulated
with a sampling interval of T = 0.5, and the MSE of the dif-
ferent algorithms was computed by averaging 100 independent
simulations.

The performances of the CUKF and the ACUKF were
compared using a second-order noncircular Gaussian state
noise (with a degree of noncircularity of K = 0.9) with a
distribution defined as

wk ∼ N (0, 0.025), vk ∼ N (0, 0.005).

The results, shown in Fig. 6, illustrate that the ACUKF had a
lower MSE in estimating both the position and velocity of the
target compared to CUKF.

VI. CONCLUSION

The second-order statistics of zero-mean complex signals
are described by their covariance function and a second
moment function known as the pseudocovariance. With the
aim of fully utilizing both these statistical moments, we have
readdressed the ACKF, and have examined its performance
in relation to the CCKF. The analysis has shown that the
ACKF offers significant performance gains over the CCKF for
noncircular signals, and the same performance as the CCKF
for circular signals. We have also introduced a more general
form of the ACEKF, by using the so-called CR calculus,
which enables the filter to operate with both analytic and
nonanalytic state space models. Analysis of the mean square
characteristics of CCKFs has shown that the mean square
behavior of the CCKF does not account for the noncircularity
of the state and observation noises, however, the mean square
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characteristics of the CEKF and CUKF were effected by state
noise noncircularity, if the observation equation is nonlinear.
The analysis was supported by simulations on both synthetic
and real-world data.
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