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Abstract—This paper focuses on the DOA (direction of arrival)
tracking problem with uniform linear arrays. In the litera-
ture, there are two common approaches: one is to first use
MUSIC based algorithms to estimate the signal subspace and
then calculate the arrival angles from it; the other is to use
Kalman filtering (KF) techniques to track the angles directly.
This paper emphasizes on the fast movement case and hence
follows the second approach. The key feature of this work is to
simultaneously update the arrival angles and the source signals
in the KF step by treating the source signals as a function of
the arrival angles. Hence the term Simultaneous Angle-Souce
Update (SASU). On the theoretical front, we show the deep
connections between SASU and the two common approaches in
the literature. On the more practical side, a Newton method
is developed to solve the optimization problem in the KF step.
Simulations demonstrate that SASU is more robust and accurate
than the benchmark algorithms, especially when uncertain and
fast moving sources are concerned.
Index Terms—DOA tracking, Kalman filtering, Newton

method.

III. INTRODUCTION
Direction of Arrival (DOA) tracking using sensor arrays has

been a main topic in array signal processing due to its wide
applications in radar, sonar, navigation, communication, and
remote sensing. Various DOA tracking algorithms have been
developed in the literature in the past decades.
There are two popular approaches to track arrival angles.

The first approach is characterized by a two-step procedure
that estimates first the signal subspace and then the arrival
angles. This approach is partly motivated by the huge success
of MUSIC [1], ESPRIT [2], and other similar methods that
separate the signal and noise subspaces. Since arrival angles
somewhat determine the signal subspace, DOA estimation
can be achieved by using the estimated signal subspace. The
advantage of this approach is the minimum requirement in
prior information, for example, the number of source signals
and the noise variance can be estimated concurrently. How-
ever, multiple measurements from different time instants are
grouped together for subspace estimation. When the arrival
angles are not static, the estimated subspaces may exhibit
severe smearing. Particularly designed for tracking non-static
subspaces, the projection approximation subspace tracking
(PAST) algorithm [3] and various similar methods [4], [5]
have been proposed. Nevertheless, the smearing phenomenon
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exists especially when the angular speeds of the sources are
large compared to the sampling rate. Furthermore, in certain
circumstances, suboptimal mechanisms for angle estimation
(from the subspace) and data association have to be performed
for real applications. These extra steps introduce unnecessary
computational complexity and performance loss.
The other approach is marked by applying tracking algo-

rithms, for example, Kalman filtering (KF), directly to arrival
angles [6], [7], [8], [9], [10], [11], [12]. This approach often
requires more prior information, including proper statistical
modeling, knowledge about the number of sources, and reason-
able initial estimates of arrival angles (which could be obtained
from MUSIC-based algorithms). On the other hand, this ap-
proach efficiently uses statistical information about the arrival
angles and angular speeds, and is therefore more suitable for
tracking fast-moving sources. Since the measurement vector
is a nonlinear function of the arrival angles, nonlinear Kalman
filters, for example extended Kalman filters (EKF) [9], [10],
unscented Kalman filters (UKF) and particle Kalman filters
(PKF), have been proposed. The idea of EKF is to use the
first order Taylor expansion to linearize the nonlinear system
[9], [10]. In contrast, UKF and PKF work with the nonlinear
system directly but generate multiple point estimates which are
combined to give the final estimate [12]. All these techniques
are often employed in practice.
This paper emphasizes on the fast movement case1 and

hence follows the Kalman approach. The key feature of this
work is to simultaneously update the arrival angles and the
source signals in the KF step by treating the source signals
as a function of the arrival angles: when the arrival angles
are updated, the source signals are automatically updated
as well. Hence the term Simultaneous Angle-Souce Update
(SASU). With this treatment, the cost function in the KF
step involves only the arrival angles. A Newton method is
designed to efficiently minimize the cost function. Simulations
demonstrate that SASU is more robust and accurate than the
benchmark algorithms, especially when fast movements and
uncertain sources (i.e. the variances of the source signals are
large) are concerned. Another unique feature is the explicit
inclusion of the source signals in the Kalman state. The effects
of this statistical modeling are two folded. Firstly, it connects
the standard formulations for signal subspace tracking [3]

1The technique developed here can be applied to slow moving or static
sources as well.



and EKF [9], [10] together into one framework. Secondly, it
actually motivates the SASU algorithm design.
The remainder of this paper is organized as follows. Section

IV introduces the system model and the standard Kalman
formulation. The proposed SASU method is detailed in Section
V, where the relation between SASU and other commonly
used methods is briefly discussed. Numerical comparisons
are presented in Section VI to demonstrate the performance
improvement of SASU.

IV. SYSTEM MODEL AND STATE EQUATION

We consider the DOA tracking problem with a uniform
linear array (ULA) of m antennas assuming far-field and
narrow-band source signals. For any given source signal s ∈ C

at an arrival angle θ ∈ [−π/2, π/2], the measurement vector
y ∈ Cm can be written as [13]

y = a (θ) s+w,

where the array direction vector a (θ) is given by

a (θ) =
[

1, e−j2π(d/λ) sin θ, · · · , e−j2π(d/λ)(m−1) sin θ
]T

,
(1)

d is the distance between adjacent antennas in the ULA, λ
is the wavelength, the superscript T denotes a transpose, and
w ∈ Cm is the complex Gaussian noise vector. Suppose that
there are n sources present, then the measurement vector is
given by

y = A (θ)s+w, (2)

where s = [s1, · · · , sn]
T and θ = [θ1, · · · , θn]

T represent the
source signals and the arrival angles respectively, and

A (θ) = [a (θ1) , · · · ,a (θn)] ∈ C
m×n (3)

is the array direction matrix. It is worth to note that the model
and the method developed in this paper can be extended to
general one-dimensional or two-dimensional antenna arrays
by specifying the array direction vector a (θ) according to the
particular structure of the antenna arrays.
For the DOA tracking problem, both arrival angles and

source signals are dynamic. At the time instant t, one has
y (t) = A (θ (t)) s (t) + w (t), which gives the observation
equation in the Kalman filter. There are multiple choices for
the state equation in the Kalman filter, depending on the
targeted applications. One popular choice is to include not
only the arrival angles but also the angular speeds into the state
equation. More specifically, let θ̇i (t) be the angular speed for
the ith source signal, and θ̇ (t) =

[

θ̇1 (t) , · · · , θ̇n (t)
]T
. The

state equation can be written as
[

θ (t)
θ̇ (t)

]

=

[

In TsIn
0 In

]

︸ ︷︷ ︸

F

[

θ (t− 1)
θ̇ (t− 1)

]

+ uθ (t) , (4)

where In is the n×n identity matrix, Ts is the inverse of the
sampling frequency,2 and uθ ∈ R2n is the innovation vector,

2That is, the time difference between the discrete time instants t − 1 and
t is Ts.

which is assumed to have zero-mean and covariance matrix
[13], [12]

Σθ = σ2
θ

[
T 3
s

3 In
T 2
s

2 In
T 2
s

2 In TsIn

]

. (5)

For notational convenience, we use θ̄ (t) to denote the vector
[

θT (t) , θ̇T (t)
]T
. The array direction matrix can be written

as a function of θ̄, i.e., A
(

θ̄
)

, as well.
Remark 1. Note that the system model here can be eas-
ily extended to the cases θ̄ (t) := θ (t) and θ̄ (t) =[

θ (t) , θ̇ (t) , θ̈ (t)
]

where θ̈ (t) is the angular acceleration
vector at the time instant t.
It is clear that the measurement vector y (t) is not a

linear function of the state vector θ̄ (t). One way to apply
Kalman filtering is a linearization via Taylor expansion. More
specifically, suppose that the estimate ˆ̄θ (t− 1) at time instant
t − 1 is available. From the state equation (4), a prediction
ˆ̄θ (t|t− 1) can be obtained via ˆ̄θ (t|t− 1) = F ˆ̄θ (t− 1).
An estimate of the source signal is given by ŝ (t|t− 1) =

A†
(
ˆ̄θ (t|t− 1)

)

y (t) where the superscript † denotes the
pseudo-inverse. Define

G =
∂

∂θ̄

(

A
(

θ̄
)

s
)
∣
∣
∣
∣
ˆ̄θ(t|t−1),ŝ(t|t−1)

.

Then the observation equation can be approximated by the
linear form

y (t) = A
(
ˆ̄θ (t|t− 1)

)

ŝ (t)+G·
(

θ̄ (t)− ˆ̄θ (t− 1)
)

+w (t) .

From it, one can directly apply the Kalman update equation
to estimate θ̄ (t).

V. SIMULTANEOUS ANGLE-SOURCE UPDATE

A. The optimization framework

While a system with observation and state equations (2) and
(4) is commonly considered in the literature, it is reasonable
to add source signals

s (t) = s (t− 1) + us (t) , (6)

where us (t) is a complex Gaussian innovation vector, into the
state equation. The motivation of this model is to consider the
uncertainty of the source signals due to scattering, shielding,
and reflection changes, where the level of uncertainty is
described by the covariance matrix of us (t) . Note that s (t)
and us (t) are complex vectors. It is convenient to rewrite the
dynamic system in terms of real vectors. Define

s̄ (t) =

[

Re (s (t))
Im (s (t))

]

, ūs (t) =

[

Re (us (t))
Im (us (t))

]

,

ȳ (t) =

[

Re (y (t))
Im (y (t))

]

, w̄ (t) =

[

Re (w (t))
Im (w (t))

]

, and

Ā
(

θ̄ (t)
)

=

[

Re
(

A
(

θ̄ (t)
))

−Im
(

A
(

θ̄ (t)
))

Im
(

A
(

θ̄ (t)
))

Re
(

A
(

θ̄ (t)
))

]

.



Then one has

s̄ (t) = s̄ (t− 1) + ūs (t) ,

θ̄ (t) = F θ̄ (t− 1) + uθ (t) , and

ȳ (t) = Ā
(

θ̄ (t)
)

s̄ (t) + w̄ (t) . (7)

We assume that ūs (t) ∼ N (0,Σs) where Σs = σ2
sI2n,

uθ (t) ∼ N (0,Σθ) where Σθ is given in (5), and w̄ (t) ∼
N (0,Σw) where Σw = σ2

wI2m.

Given the dynamic system in (7), let us discuss the Kalman
update step. That is, given ȳ (t), the predictions ˆ̄s (t|t− 1) =
ˆ̄s (t− 1), and ˆ̄θ (t|t− 1) = F ˆ̄θ (t− 1), one needs to estimate
ˆ̄s (t) and ˆ̄θ (t). Motivated by the well known fact that the
standard Kalman estimate coincides with the maximum a
posteriori (MAP) estimate, we choose the cost function as the
posteriori probability, i.e.,

(

ˆ̄s (t) , ˆ̄θ (t)
)

= arg max
s̄,θ̄

Pr
(

s̄, θ̄|ȳ (t) , ˆ̄s (t|t− 1) , ˆ̄θ (t|t− 1)
)

.

To simplify the notations, let s̄0 = ˆ̄s (t|t− 1) and θ̄0 =
ˆ̄θ (t|t− 1). For any vector x and a positive definite covariance
matrix Σ, define ‖x‖2

Σ−1 = xTΣ−1x. Then by the Gaussian
assumption, one has

− log Pr
(

s̄, θ̄|ȳ (t) , ˆ̄s (t|t− 1) , ˆ̄θ (t|t− 1)
)

= c+
1

2

∥
∥ȳ (t)− Ā

(

θ̄
)

s̄
∥
∥
2

Σ
−1
w

+
1

2

∥
∥θ̄ − θ̄0

∥
∥
2

Σ
−1
θ(t)

+
1

2

∥
∥s̄− s̄0

∥
∥
2

Σ
−1
s(t)

, (8)

where c is a constant independent of θ̄ and s̄, and Σθ(t)

and Σs(t) are the covariance matrices for θ (t) and s (t)
respectively. The details on updating Σθ(t) and Σs(t) will be
discussed in Section V-C. Maximizing the posteriori probabil-
ity is equivalent to minimizing (8).

This is a joint optimization problem with respect to s̄ and θ̄.
The key of SASU is to treat the source signals s̄ as a function
of the arrival angles θ̄. This is based on the observation that
for a given θ̄, the optimal s̄ to minimize (8) is unique: take
the partial derivative of (8) with respect to s̄ and set it to zero;
it can be verified that the optimal s̄ is given by

s̄
(

θ̄
)

= s̄0 +
(

ĀT
Σ

−1
w Ā+Σ

−1
s

)−1
ĀT

Σ
−1
w

(

ȳ (t)− Ās̄0
)

,
(9)

where we use the notation s̄
(

θ̄
)

to emphasize that the optimal
s̄ is determined by θ̄. As a result, the cost function (8) can be
written as

f
(

θ̄
)

=
∥
∥ȳ (t)− Ā

(

θ̄
)

s̄
(

θ̄
)∥
∥
2

Σ
−1
w

+
∥
∥θ̄ − θ̄0

∥
∥
2

Σ
−1
θ(t)

+
∥
∥s̄

(

θ̄
)

− s̄0
∥
∥
2

Σ
−1
s(t)

. (10)

It is worth to note that the optimization is with respect to the
arrival angles θ̄ only and that the source signals s̄ will be
automatically updated when θ̄ is updated.

B. A Newton Method for State Update
The focus of this subsection is on how to efficiently

minimize the cost function (10). From standard optimization
theory, first order methods, such as the gradient descent
method, have a slow convergence rate. A second order method,
i.e., a Newton method, is preferred when applicable. Note that
in order to apply a Newton method, exact or approximated
second order derivatives are often required.
We design a Newton method in which the second order

derivative of f is not exactly computed. The basic idea is
sketched as follows. At a given point, say θ̄k, we approx-
imate the cost function f by a quadratic function q. The
optimal θ̄ that minimizes q admits a closed form, denoted
by θ̄∗. It is clear that θ̄∗ may not be the minimizer of
f . However, q is designed so that θ̄∗ − θ̄k always gives a
descent direction of f . Hence, one can search along the line
θ̄ (α) = θ̄k + α

(

θ̄∗ − θ̄k
)

to find an α ∈ [0, 1] such that
f
(

θ̄ (α)
)

< f
(

θ̄k

)

. Set θ̄k+1 = θ̄ (α). Now one has an
iterative procedure to minimize the cost function f .
The quadratic approximation q is defined as follows. For a

given point θ̄k, define

Gk = ∇
(

Ā
(

θ̄
)

s̄
(

θ̄k
))

, (11)

where the gradient is with respect to θ̄. Note that in the
approximation q, s̄ is fixed to s̄

(

θ̄k
)

. Define δk = θ̄ − θ̄k

and ȳr (t) = ȳ (t) − Ā
(

θ̄k
)

s̄
(

θ̄k
)

. Then at a neighborhood
of θ̄k,

ȳ (t)− Ā
(

θ̄
)

s̄
(

θ̄
)

≈ ȳ (t)− Ā
(

θ̄
)

s̄
(

θ̄k
)

≈ ȳ (t)− Ā
(

θ̄k
)

s̄
(

θ̄k
)

−Gk
(

θ̄ − θ̄k
)

= ȳr (t)−Gkδk,

and the cost function (10) can be approximated by
∥
∥ȳr (t)−Gkδk

∥
∥
2

Σ
−1
w

+
∥
∥θ̄ − θ̄0

∥
∥
2

Σ
−1
θ(t)

+
∥
∥s̄

(

θ̄k
)

− s̄0
∥
∥
2

Σ
−1
s(t)

≈
∥
∥ȳr (t)−Gkδk

∥
∥
2

Σ
−1
w

+
∥
∥δk + θ̄k − θ̄0

∥
∥
2

Σ
−1
θ(t)

︸ ︷︷ ︸

q(δk) or equivalently q(θ̄)

+c,

where c =
∥
∥s̄

(

θ̄k
)

− s̄0
∥
∥
Σ

−1
s(t)

is a constant independent of
θ̄. It is clear that q is a quadratic function of δk . When Σw

and Σθ(t) are invertible, the approximation q admits a unique
minimizer given by

δ∗ =
(

GkT
Σ

−1
w Gk +Σ

−1
θ(t)

)−1

·
(

GkT
Σ

−1
w yr −Σ

−1
θ(t)

(

θ̄k − θ̄0
)
)

. (12)

Besides the closed form for the minimizer, another important
property of q is the following proposition.

Proposition 2. Suppose that the vector δ∗ in (12) is nonzero.
Then there exists a strictly positive constant α > 0 such that
f
(

θ̄k + αδ∗
)

< f
(

θ̄k
)

.

Due to space constraints, the proof is postponed to the
journal version of this paper [14]. The significance of this
property is that δ∗k gives a descent direction of f . Hence,



an iterative procedure to monotonically decrease f can be
designed. The algorithm we use is detailed in Algorithm 1.

Algorithm 1 An Iterative Procedure to Minimize f

Input: ȳ (t), θ̄0 = ˆ̄θ (t|t− 1), s̄0 = ˆ̄s (t|t− 1), Σw, Σθ̄(t),
Σs̄(t), and error tolerance constants ε1, ε2 ∈ R+.
Output: ˆ̄θ (t|t) and ˆ̄s (t|t).
Iteratively perform the following: k = 0, 1, · · ·

1) Compute δ∗ according to (12).
2) Find θ̄k+1 = θ̄k + αδ∗ by perform the following.

a) If ‖δ∗‖2 < ε1, set ˆ̄θ(t | t) = θ̄k and ˆ̄s(t | t) =
s̄
(

θ̄k
)

, and quit this algorithm.
b) Set α = 1. If f

(

θ̄k + αδ∗
)

≥ f
(

θ̄k
)

, then
decrease α via α = α/2 until f

(

θ̄k + αδ∗
)

<
f
(

θ̄k
)

.
c) Set θ̄k+1 = θ̄k + αδ∗.
d) If

∣
∣f

(

θ̄k+1
)

− f
(

θ̄k
)∣
∣ < ε2f

(

θ̄k
)

, then set ˆ̄θ(t |
t) = θ̄k+1 and ˆ̄s(t | t) = s̄

(

θ̄k+1
)

, and quit this
algorithm. Otherwise, start a new iteration.

Finally, we explicitly compute the gradient Gk defined in
(11). Since Ā

(

θ̄
)

s̄
(

θ̄k
)

∈ R2m and θ̄ ∈ R2n, one has Gk ∈
R2m×2n. From the definition ofA

(

θ̄
)

in (3), it can be verified
that the (i, ()th entry of Gk, denoted by Gk

i,$, 1 ≤ i ≤ 2m,
1 ≤ ( ≤ 2n, is given by

Gk
i,$ =

∂
(

Ā
(

θ̄
)

s̄
(

θ̄k
))

i

∂θ̄$

=


















−2π d
λ (i− 1) cos θ$ sin

(

2π d
λ (i− 1) sin θ$

)

s̄$
(

θ̄
)

if i ≤ m, and ( ≤ n,

−2π d
λ (i− 1) cos θ$ cos

(

2π d
λ (i− 1) sin θ$

)

s̄$
(

θ̄
)

if i > m, and ( ≤ n,

0 if ( > n.

C. Covariance Update

In Kalman filtering, one needs to update both the state
and the covariance matrix of the state. That is, estimate
Σs̄(t) and Σθ̄(t) from Σs̄(t−1) and Σθ̄(t−1). For the purpose
of covariance update, we linearize the system at the point
ˆ̄s (t|t) and ˆ̄θ (t|t) (to simplify the notations, we use ˆ̄s and ˆ̄θ
henceforth). With respect to s̄, the system can be approximated
by ȳ (t) = Ā

(
ˆ̄θ
)

s̄ + w̄. Following from the covariance
update step in the standard Kalman filter and Woodbury matrix
inverse identity, one has

Σ
−1
s̄(t|t−1) = Σ

−1
s −Σ

−1
s

(

Σ
−1
s̄(t−1) +Σ

−1
s

)

Σ
−1
s ,

Σ
−1
s̄(t) = Σ

−1
s̄(t|t−1) + ĀT

(
ˆ̄θ
)

Σ
−1
w Ā

(
ˆ̄θ
)

,

where the matrix Σs is defined at the beginning of Section
V. With respect to θ̄, the system can be approximated by
ȳ (t) = Ā

(
ˆ̄θ
)

ˆ̄s+G
(

θ̄ − ˆ̄θ
)

+ w̄, where G = ∇
(

Ā
(

θ̄
)
ˆ̄s
)

and the differentiation is performed at the point θ̄ = ˆ̄θ. Based

on this linear approximation, one has

Σ
−1
θ̄(t|t−1)

= Σ
−1
θ −Σ

−1
θ F

·
(

Σ
−1
θ̄(t−1)

+ F T
Σ

−1
θ F

)−1
F T

Σ
−1
θ ,

Σ
−1
θ̄(t)

= Σ
−1
θ̄(t|t−1)

+GT
Σ

−1
w G,

where the constant matrix Σθ is defined at the beginning of
Section V. It is worth to note that instead of updating Σs̄(t)

and Σθ̄(t) directly, we choose to update Σ−1
s̄(t) and Σ

−1
θ̄(t)
. Note

that Σ−1
s̄(t) and Σ

−1
θ̄(t)

are used in the objective function f . This
update not only reduces computational complexity but also
improves numerical stability according to our experience in
simulations.

D. Relation to Other Works
We briefly comment on the relation between SASU and

two popular methods in the literature. A detailed justification
of the comments is postponed to the journal version of this
paper [14].
The PAST algorithm was proposed by Yang in [3] and

has been widely adopted as a benchmark algorithm to
track the signal subspace. There, a matrix W (t) that spans
the signal subspace was used to present the signal sub-
space. For a given measurement vector y (t), the projec-
tion of y (t) on the signal subspace can be calculated
via W (t)W † (t)y (t). When W (t) comprises orthonor-
mal columns, then W (t)W † (t)y (t) = W (t)WH (t)y (t)
where WH (t) denotes the Hermitian of W (t). To track the
subspace, it was proposed in [3] to minimize the cost function
∥
∥y (t)−W (t)WH (t)y (t)

∥
∥
2

2
.

In the SASU framework, with special choices of parameters,
the cost function is equivalent to that used in the PAST
algorithm. More specifically, recall that Σs = σ2

sI and
Σθ = σ2

θI. Let σ2
s → +∞ and σ2

θ → +∞. It can be proved
that s̄

(

θ̄
)

= Ā†
(

θ̄
)

ȳ (t), and the last two terms in the cost
function (10) approach zero. Assume that the measurement
noise is white, i.e., Σw = σ2

wI. Then the cost function (10) is
equivalent to

∥
∥ȳ (t)− Ā

(

θ̄
)

Ā†
(

θ̄
)

ȳ (t)
∥
∥
2

2
. Essentially, only

the subspace spanned by the array direction matrix matters.
Regarding the standard EKF, the linearization is based on

the Taylor expansion at ˆ̄s (t|t− 1) = Ā†
(

θ̄ (t|t− 1)
)

ȳ (t).
This particular choice of ˆ̄s (t|t− 1) is the special case of the
SASU framework when σ2

s → +∞. The state update rule of
EKF is in fact the first iteration in Algorithm 1.

VI. SIMULATIONS
In this Section, we highlight the smearing phenomenon of

MUSIC-based methods, introduced by large angular speeds,
by numerical evaluation. This justifies the Kalman approach
adopted in this paper. The numerical comparison of several
Kalman-based methods is conducted to demonstrate the perfor-
mance improvement of SASU. Due to the space constraint, the
illustration of the smearing phenomenon is postponed to the
journal version [14]. To compare Kalman-based methods, two
scenarios are considered: a single target and multiple targets.
For both scenarios, we assume a ULA with 10 antennas



and that the distance between adjacent antennas is given by
d = λ/2. The total tracking period is 10 seconds while the
sampling interval is 0.1 second. We choose a low sampling
frequency as we are particularly interested in tracking fast
moving targets (with respect to the sampling frequency).
In our simulations, we focus on a comparison between

SASU, EKF and UKF. To compare these tracking algorithms,
200 random experiments are performed where the target
movement is deterministic (and priorly designed) but both the
source signals and the measurement noise are random. The
value of σ2

θ used in (5) is estimated from the deterministic
movement of the targets.
We first look at the case of single target tracking. As-

sume that σ2
s = 1 and σ2

w = 0.1. Further assume that
E [s̄ (t)] = 0, which corresponds to the challenging case that
the source signal may not always be present. Define the track-
ing bias and variance by 1

200n

∑n
i=1

∣
∣
∣

∑200
k=1 θ̂i (t)− θi (t)

∣
∣
∣,

and 1
200n

∑n
i=1

∑200
k=1

(

θ̂i (t)− θi (t)
)2

respectively, where
the number 200 indicates the amount of random experiments
performed. Figure 1 compares the tracking performance in
terms of tracking trajectory, bias and variance. It is clear that
EKF and UKF do not accurately track the true trajectory while
SASU tracks the DOA almost perfectly.
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Figure 1. Tracking performance comparison: Single target tracking.

For multiple target tracking, we use the same setup as
that for single target tracking except E [s̄ (t)] = 1. We are
interested in this case as we would like to see the performance
difference when all methods under test can roughly track the
DOAs. The results are presented in Figure 2. Again, SASU
clearly outperforms the other methods.
To test the robustness of SASU, we also numerically

compare the performance when σ2
w is fixed and σ2

s varies,
and when σ2

s is fixed and σ2
w varies. The detailed results are

postponed for the journal version of this paper [14] due to
space constraints. The results verify that SASU is much more
robust than EKF and UKF especially when the uncertainty of
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Figure 2. Tracking performance comparison: Three targets tracking.

the source signals is large.
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