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Abstract—We consider the DIFAR sonobuoy bearing estima- estimator [4] which utilises time-averaged products of the
tion problem for underwater acoustic sources. The standard observation data blocks to form the bearing estimate.
arctangent based approach utilises the orthogonality between In this paper, embarking upon the recently introduced

the observation noises for the different channels to form the ted | tatisti d widelv i deli
bearing estimates, and ignores the correlation structure of the augmented compiex staustics and widely finear modeling,

actual source signal. In this paper, we propose a new state W& propose an online sonobuoy target bearing estimation
space technique, which exploits the correlations structure in the solution, based on widely linear (augmented) complex state
source signal to achieve enhanced performance, particularly in space model [6]. The second order statistics of both the stat
low signal-to-noise (SNR) conditions, compared to the standard 54 opservation noises are estimated from the observation
arctangent estimator. The analysis is supported by simulations dat d thei timat | dated onli It is 1sh
using some realistic classes of signals. ata, an eir esimates a'?e .a SO update 9” ine. ftisshow
Index Terms—Bearing estimation, DIFAR sonobuoy, aug- thatthe state space model is inherently nonlinear, and we us

mented complex Kalman filter, random-walk modeling, complex the recently introduced augmented complex extended Kalman

circularity, widely linear estimation filter to address the problem [7] [8]. Simulations illus&rat
the robustness of the proposed technique, yielding enbdance
|. INTRODUCTION performance compared to the standard arctangent estimator

especially in unfavourable signal-to-noise (SNR) comodisi.
Bearing or direction-of-arrival (DOA) estimation is a prob
lem encountered in a wide range of applications, including Il. BACKGROUND
navigation, surveillance and communication systems. tteen A. Augmented Complex Statistics and Widely Linear Modeling

water environments, the DIFAR sonobuoy, consisting of two To introduce an optimal second order estimator for the
crossed dipoles and an omni-directional hydrophone, ipia tygenerality of complex signals, consider first the real walue
cal arrangement used to provide three observations of @souiean square estimator (MSE) of a random vegtan terms
signal (target), which together allow for the bearing (@)gif of a real observatiox, that is,y = E{y|x}. For zero-mean,

a source (target) to be estimated. In the ocean, howevee thgintly normaly andx, the optimal estimator is strictly linear,
are many sources of background noise, such as environmeggt is [9] [10]

noise from wind, rain and waves, and biological noise from v = Ax (1)
whales and other marine mammals. These all contribute to
the total power spectrum (both broadband and narrowband)¥iere A = Ry, R, ' is a coefficient matrix, an®Ryx =
the observed signals. Moreover, the propagation of aaoushi{yx"}. Standard, ‘strictly linear’ estimation ift assumes
signals in the ocean is generally not uniform or isotropi¢he same model but with complex valugdx, and A.. Since
which also contributes to the difficulty of the bearing pexl Poth the realy, and imaginaryy; parts of the vectoy are
in underwater environments [1] [2] [3]. real valued, we have

Th_e standard_solutions for sonobuoy target dete(_:tion and Ve = Bly.|x,, %} yi = Bly:|x,, x;} )
bearing estimation are based on spectral analysis of the
observed signals using the discrete Fourier transform JDFubstituting inx, = (x+x*)/2 andx; = (x —x*)/2; yields
[1] [4] [5] or using spectral modeling approaches, sucil]
as autoregressive moving average (ARMA). However, these Vr = E{y.|x,x"}  yi=E{yix,x"} 3)
techniques usually suffer from limited frequency resalofi where (.)* is the complex-conjugate operator. Hence, we

which becomes especially pronounced for low signal to nOi%%tain thewidely linear complex estimatdr
ratios (SNRs), leading to poor performance. Moreover, due y

to their block-processing nature, these techniques are not vy = E{y|x,x"} = Hx + Gx* = Wx* 4)
suited to rapidly moving targets, where the target bearing i

nonstationary during the collection of the data block used The Widely linear model is associated with the signal getieg system,
whereas “augmented statistics” describe statistical ptiggeof measured

for the DFT. Among _the _pOPFJ'ar solutions for underwates.rignals. Both the terms ‘widely linear’ and ‘augmented’ arediso name
sonobuoy bearing estimation is the DFT based ‘arctangemi resulting algorithms - in our work we mostly use the terngtaented’.



transform (DFT) of the observation signals are taken, and
A the frequency domain representation of the equations above
assume the following forms [4]

Source

Yo,w = Sw + Vo,w (7a)

. Yew = Suocos[f]+ Vew (7b)
Cosine .

Dipole Ys,w = Su Sln[ﬁ] + Vs,cu (7C)

where w is the frequency argument. A number of data
shapshots or observationd/{, are collected before taking
the DFT, and the source bearing is inherently assumed
to be constant over this observation period. In the standard
arctangent estimator, the target bearing is estimated as

3 = arctan|3/¢] (8)

Dipole ) Omni where the variables and § are computed using thé/

(shown dashed) observations, that is
- { Z ymym } 9)
Fig. 1. A geometric view of the three sonobouy sensors (top)vie . { Z Y m)Y } (10)
m=1

The matrix W comprises the coefficient matricé% and G, The superscripin is in the rangel < m < M and denotes
andx” = [x",x"]" is the augmented input vector, whér€"  the mth Fourier bin, whileR{-} is the real part of a complex
and []" are the transpose and complex conjugate-transpefifantity. Observe that the variablesnd § may alternatively
operators, respectively. The full second-order infororatis be estimated in the time domain (without taking Fourier
thus contained in the augmented covariance matrix transforms) as shown in [1].

R. P The arctangent estimator is essentially based on the time
RS = B{x*x*} = P: R: (5) (or frequency) averaged products (correlations) of the iomn
x x directional sensory, ; with the outputs from the sine and

and as such, estimation based Bij incorporates both the cosine sensorsy, , and y. . It does not attempt to cater
covarianceR, = FE{xxf} and pseudocovariancP, = for the dynamics of the source signal, and deals with the
E{xx"}, and provides the complete second order chardgdividual observations (or frequency bins) independenfi
terisation of complex signals [12] [6]. Complex signals twit €ach other.

vanishing pseudocovariances, thaPig = 0, are termed sec- However, it is possible to model or exploit possible transi-
ond order circular (proper), and are characterised byiowtat tional (correlation) properties in the source sigagl which
invariant probability distributions, otherwise, the sig; are can be inferred from thé/ available observations, and up-
noncircular (improper), and requires widely linear estiota dated online. For this purpose, we here propose utilising a

for optimal performance. random-walk (first order Markov) modeling of the sigrl,
that is
[1l. NEw STATE SPACE FORMULATION
Figure 1 illustrates the arrangement of the sonobuoy ssnsor Sk = Sg—1 T Wk (11)
for a source at bearing, the crossed-dipole sensor observes
the following three waveforms [4] where wy, is the driving noise, together with an augmented
complex state space formulation to address the bearing esti
Yok = Sk+Vok (6a) mation problem, which takes on the following form
Yoo = Skcos|f] 4 v (6b) B 15
Ve = spsin[8]+ ven (6¢) X = Xg—1+ Wg (12)
yr = h[xi]+ v (13)

where the subscripts, ¢ and s denote the omni, cosine and

sine channels respectively, whikg is the signal emitted by where x;, is the state vector to be estimateg, the noisy

the source (target) at time instaht and v, , v., andv,, observationh[-] the nonlinear observation function, whive;,

are the uncorrelated, zero-mean, observation noises. heln &and v, are respectively the state and observation noises with
standard arctangent bearing estimator, the discrete dfoudovariance matrice€);, and Ry [13]. The state equation (12)



can be explicitly expressed as

70 :
= Arctan
Sk Sk—1 Wi, 60 = = =New approach (ACEKF)||
zk| = |21 | + | ek (14) _§’
2 2 er 2%
k k—1 k S
> S—— 0 40!
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_ =
where 2, = cos[f] + jsin[8] = €%, and e, is the state 2 30}
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observation equation in (13) takes the form é
- 10,
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Yk h{x] Vi Fig. 2. Performance comparison between the proposed augmestgaex
10 0 state space approach and the arctan estimator for the case thleetarget
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therefore, from (18) and (19), we obtain
whereu, =y + jys,1 IS the complex representation of the . N
sine and cosine observations channels from (6a), and- Elwpwi} = _E{r’f’f‘l} . (20)
Ver + jus.i IS the corresponding noise. B{vov’,} = E{rari} — E{wewi} 1)
The augmented (widely linear) state space model in (12) ' 2
and (13) is nonlinear, and can be used in Conjunction withHence, the state and observation noise statistics of the sta
number of algorithms to estimate the source bearing, ifciud Space model described by (14) and (15), can be estimated
the augmented complex extended and unscented Kalman fil@pél tracked online based on the observation data.
as well as the augmented complex patrticle filter, [6].

Remark #1: The state space formulation of the problem
A. Noise Statistics enables tracking of the source (target) bearing in readtim

In state space estimation we need to specify the secdhat is, the bearing estimate can be updated with every new
order statistics of the state and observation noises. Teetitg ©observation.

given the observation noise variance of the omni channat, th ) ) ) )
is, E{v,xv;,}, the variances of the other two observation Remark #2: The random-walk model in conjunction with

noises,vc,, and v, , are given by the preprocessing of the observation data (when compliiag t
noise variances), allows for some of the correlation stmect
E{ve v’ .} = E{vg vt .} = lE{vo W05} (16) of the source signal to be incorporated into the state space
) c, s s, 5 o, .
gl model, even when the true source signal does not follow a

where is the noise gain of either dipole, whereby= 1/2 or  fandom-walk model.
v = 1/3 for 2D-isotropic or 3D-isotropic noise respectively IV. SIMULATIONS

[1], while the variance of the complex observation noise is - . .
E{nen}} = E{vorv® ,} + E{vs pv’ ) } To illustrate the potennal of our augmen.ted comple_x state
% orvek 5 skl space based solution for sonobuoy bearing estimation, we

Therefore, the noise statistics to be computed 8C8nsidered examples where the source sigpas modeled as

E{vo g} and E{wywi}, and can be estimated online as sinusoid (as in [4]) and as a first order autoregressiveegsoc

follows. We start by forming a new vana_ble defined as the ql he augmented complex extended Kalman filter (ACEKF) is
ference between two consecutive omni channel observations . . .
that is uSed to _|mplement the approach described abovg and is com-
pared with the standard arctangent (arctan) bearing astima
e = Yok — Yo k1 (17) In all the simulations, both the arctan and ACEKF algorithms

. _ utilise M = 1024 observations to estimate the bearing.
then assuming that both noise processes,and v, j, are

white, it is can be shown that A. Sgnal Model: Snusoid
i . N Consider the case where the signal is a sinusoid, that is
E{rpri} = 2E{vo,kvoyk} + FP{wpwy} (18)
s = cos2m fTk] + ny (22)

and that the correlation betweep andr,_; becomes .
with a frequency off = 50Hz, sampled at a rate of, =

E{rpri_1} = —E{wiwi} (19) # = 10kHz.
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Fig. 3. Performance comparison between the proposed augmemtgulex state space approach and the arctan estimator forgieewhere source signal
is an autoregressive process with (a) a Gaussian; (b) aranifioiving noise.
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