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Abstract—We consider the DIFAR sonobuoy bearing estima-
tion problem for underwater acoustic sources. The standard
arctangent based approach utilises the orthogonality between
the observation noises for the different channels to form the
bearing estimates, and ignores the correlation structure of the
actual source signal. In this paper, we propose a new state
space technique, which exploits the correlations structure in the
source signal to achieve enhanced performance, particularly in
low signal-to-noise (SNR) conditions, compared to the standard
arctangent estimator. The analysis is supported by simulations
using some realistic classes of signals.

Index Terms—Bearing estimation, DIFAR sonobuoy, aug-
mented complex Kalman filter, random-walk modeling, complex
circularity, widely linear estimation

I. I NTRODUCTION

Bearing or direction-of-arrival (DOA) estimation is a prob-
lem encountered in a wide range of applications, including
navigation, surveillance and communication systems. In under-
water environments, the DIFAR sonobuoy, consisting of two
crossed dipoles and an omni-directional hydrophone, is a typi-
cal arrangement used to provide three observations of a source
signal (target), which together allow for the bearing (angle) of
a source (target) to be estimated. In the ocean, however, there
are many sources of background noise, such as environmental
noise from wind, rain and waves, and biological noise from
whales and other marine mammals. These all contribute to
the total power spectrum (both broadband and narrowband) of
the observed signals. Moreover, the propagation of acoustic
signals in the ocean is generally not uniform or isotropic,
which also contributes to the difficulty of the bearing problem
in underwater environments [1] [2] [3].

The standard solutions for sonobuoy target detection and
bearing estimation are based on spectral analysis of the
observed signals using the discrete Fourier transform (DFT)
[1] [4] [5] or using spectral modeling approaches, such
as autoregressive moving average (ARMA). However, these
techniques usually suffer from limited frequency resolution,
which becomes especially pronounced for low signal to noise
ratios (SNRs), leading to poor performance. Moreover, due
to their block-processing nature, these techniques are not
suited to rapidly moving targets, where the target bearing is
nonstationary during the collection of the data block used
for the DFT. Among the popular solutions for underwater
sonobuoy bearing estimation is the DFT based ‘arctangent’

estimator [4] which utilises time-averaged products of the
observation data blocks to form the bearing estimate.

In this paper, embarking upon the recently introduced
augmented complex statistics and widely linear modeling,
we propose an online sonobuoy target bearing estimation
solution, based on widely linear (augmented) complex state
space model [6]. The second order statistics of both the state
and observation noises are estimated from the observation
data, and their estimates are also updated online. It is shown
that the state space model is inherently nonlinear, and we use
the recently introduced augmented complex extended Kalman
filter to address the problem [7] [8]. Simulations illustrate
the robustness of the proposed technique, yielding enhanced
performance compared to the standard arctangent estimator,
especially in unfavourable signal-to-noise (SNR) conditions.

II. BACKGROUND

A. Augmented Complex Statistics and Widely Linear Modeling

To introduce an optimal second order estimator for the
generality of complex signals, consider first the real valued
mean square estimator (MSE) of a random vectory in terms
of a real observationx, that is,ŷ = E{y|x}. For zero-mean,
jointly normaly andx, the optimal estimator is strictly linear,
that is [9] [10]

ŷ = Ax (1)

where A = RyxR
−1
x is a coefficient matrix, andRyx =

E{yxT }. Standard, ‘strictly linear’ estimation inC assumes
the same model but with complex valuedy,x, andA. Since
both the realyr and imaginaryyi parts of the vectory are
real valued, we have

ŷr = E{yr|xr,xi} ŷi = E{yi|xr,xi} (2)

Substituting inxr = (x+x∗)/2 andxi = (x−x∗)/2 yields
[11]

ŷr = E{yr|x,x
∗} ŷi = E{yi|x,x

∗} (3)

where (·)∗ is the complex-conjugate operator. Hence, we
obtain thewidely linear complex estimator1

ŷ = E{y|x,x∗} = Hx+Gx∗ = Wxa (4)

1The ‘widely linear’ model is associated with the signal generating system,
whereas “augmented statistics” describe statistical properties of measured
signals. Both the terms ‘widely linear’ and ‘augmented’ are used to name
the resulting algorithms - in our work we mostly use the term ‘augmented’.



Fig. 1. A geometric view of the three sonobouy sensors (top view).

The matrixW comprises the coefficient matricesH andG,
andxa = [xT ,xH ]T is the augmented input vector, where[·]T

and [·]H are the transpose and complex conjugate-transpose
operators, respectively. The full second-order information is
thus contained in the augmented covariance matrix

Ra
x = E{xaxaH} =

[

Rx Px

P∗

x R∗

x

]

(5)

and as such, estimation based onRa
x incorporates both the

covarianceRx = E{xxH} and pseudocovariancePx =
E{xxT }, and provides the complete second order charac-
terisation of complex signals [12] [6]. Complex signals with
vanishing pseudocovariances, that isPx = 0, are termed sec-
ond order circular (proper), and are characterised by rotation
invariant probability distributions, otherwise, the signals are
noncircular (improper), and requires widely linear estimation
for optimal performance.

III. N EW STATE SPACE FORMULATION

Figure 1 illustrates the arrangement of the sonobuoy sensors
for a source at bearingβ, the crossed-dipole sensor observes
the following three waveforms [4]

yo,k = sk + vo,k (6a)

yc,k = sk cos[β] + vc,k (6b)

ys,k = sk sin[β] + vs,k (6c)

where the subscriptso, c and s denote the omni, cosine and
sine channels respectively, whilesk is the signal emitted by
the source (target) at time instantk, and vo,k, vc,k and vs,k
are the uncorrelated, zero-mean, observation noises. . In the
standard arctangent bearing estimator, the discrete Fourier

transform (DFT) of the observation signals are taken, and
the frequency domain representation of the equations above
assume the following forms [4]

Yo,ω = Sω + Vo,ω (7a)

Yc,ω = Sω cos[β] + Vc,ω (7b)

Ys,ω = Sω sin[β] + Vs,ω (7c)

where ω is the frequency argument. A number of data
snapshots or observations (M ), are collected before taking
the DFT, and the source bearingβ is inherently assumed
to be constant over this observation period. In the standard
arctangent estimator, the target bearing is estimated as

β̂ = arctan[ŝ/ĉ] (8)

where the variableŝc and ŝ are computed using theM
observations, that is

ĉ = ℜ
{ M∑

m=1

Y (m)
c,ω Y (m),∗

o,ω

}

(9)

ŝ = ℜ
{ M∑

m=1

Y (m)
s,ω Y (m),∗

o,ω

}

(10)

The superscriptm is in the range1 ≤ m ≤ M and denotes
themth Fourier bin, whileℜ{·} is the real part of a complex
quantity. Observe that the variablesĉ and ŝ may alternatively
be estimated in the time domain (without taking Fourier
transforms) as shown in [1].

The arctangent estimator is essentially based on the time
(or frequency) averaged products (correlations) of the omni
directional sensoryo,k with the outputs from the sine and
cosine sensors,ys,k and yc,k. It does not attempt to cater
for the dynamics of the source signalsk, and deals with the
individual observations (or frequency bins) independently of
each other.

However, it is possible to model or exploit possible transi-
tional (correlation) properties in the source signalsk, which
can be inferred from theM available observations, and up-
dated online. For this purpose, we here propose utilising a
random-walk (first order Markov) modeling of the signalsk,
that is

sk = sk−1 + wk (11)

wherewk is the driving noise, together with an augmented
complex state space formulation to address the bearing esti-
mation problem, which takes on the following form

xk = xk−1 +wk (12)

yk = h[xk] + vk (13)

where xk is the state vector to be estimated,yk the noisy
observation,h[·] the nonlinear observation function, whilewk

andvk are respectively the state and observation noises with
covariance matricesQk andRk [13]. The state equation (12)



can be explicitly expressed as
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where zk = cos[β] + j sin[β] = ejβ , and ek is the state
noise used to model nonstationary bearingsβ. Similarly, the
observation equation in (13) takes the form
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whereuk = yc,k + jys,k is the complex representation of the
sine and cosine observations channels from (6a), andnk =
vc,k + jvs,k is the corresponding noise.

The augmented (widely linear) state space model in (12)
and (13) is nonlinear, and can be used in conjunction with a
number of algorithms to estimate the source bearing, including
the augmented complex extended and unscented Kalman filters
as well as the augmented complex particle filter, [6].

A. Noise Statistics

In state space estimation we need to specify the second
order statistics of the state and observation noises. To that end,
given the observation noise variance of the omni channel, that
is, E{vo,kv

∗

o,k}, the variances of the other two observation
noises,vc,k andvs,k, are given by

E{vc,kv
∗

c,k} = E{vs,kv
∗

s,k} =
1

γ
E{vo,kv

∗

o,k} (16)

whereγ is the noise gain of either dipole, wherebyγ = 1/2 or
γ = 1/3 for 2D-isotropic or 3D-isotropic noise respectively
[1], while the variance of the complex observation noise is
E{nkn

∗

k} = E{vc,kv
∗

c,k}+ E{vs,kv
∗

s,k}.
Therefore, the noise statistics to be computed are

E{vo,kv
∗

o,k} andE{wkw
∗

k}, and can be estimated online as
follows. We start by forming a new variable defined as the dif-
ference between two consecutive omni channel observations,
that is

rk = yo,k − yo,k−1 (17)

then assuming that both noise processes,wk and vo,k, are
white, it is can be shown that

E{rkr
∗

k} = 2E{vo,kv
∗

o,k}+ E{wkw
∗

k} (18)

and that the correlation betweenrk andrk−1 becomes

E{rkr
∗

k−1} = −E{wkw
∗

k} (19)
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Fig. 2. Performance comparison between the proposed augmentedcomplex
state space approach and the arctan estimator for the case where the target
source signal is a sinusoid.

therefore, from (18) and (19), we obtain

E{wkw
∗

k} = −E{rkr
∗

k−1} (20)

E{vo,kv
∗

o,k} =
E{rkr

∗

k} − E{wkw
∗

k}

2
(21)

Hence, the state and observation noise statistics of the state
space model described by (14) and (15), can be estimated
and tracked online based on the observation data.

Remark #1: The state space formulation of the problem
enables tracking of the source (target) bearing in real-time,
that is, the bearing estimate can be updated with every new
observation.

Remark #2: The random-walk model in conjunction with
the preprocessing of the observation data (when computing the
noise variances), allows for some of the correlation structure
of the source signal to be incorporated into the state space
model, even when the true source signal does not follow a
random-walk model.

IV. SIMULATIONS

To illustrate the potential of our augmented complex state
space based solution for sonobuoy bearing estimation, we
considered examples where the source signalsk is modeled as
a sinusoid (as in [4]) and as a first order autoregressive process.
The augmented complex extended Kalman filter (ACEKF) is
used to implement the approach described above and is com-
pared with the standard arctangent (arctan) bearing estimator.
In all the simulations, both the arctan and ACEKF algorithms
utilise M = 1024 observations to estimate the bearing.

A. Signal Model: Sinusoid

Consider the case where the signal is a sinusoid, that is

sk = cos[2πfTk] + nk (22)

with a frequency off = 50Hz, sampled at a rate offs =
1
T
= 10kHz.
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(a) Gaussian driving noise
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(b) Uniform driving noise

Fig. 3. Performance comparison between the proposed augmentedcomplex state space approach and the arctan estimator for the case where source signal
is an autoregressive process with (a) a Gaussian; (b) a uniform driving noise.

Figure 2 shows the superior performances of the proposed
ACEKF based solution compared with the arctan estimator, for
the case where the source signal is a pure sinusoid, illustrated
in Figure 2a. The results show that the proposed technique
was able to outperform the arctan algorithm for low signal
to noise (SNR) levels, while the two algorithms had similar
performances for SNRs greater than0dB.

B. Signal Model: Autoregressive

We next modelled the source signal as a first order autore-
gressive process, that is

sk = 0.9sk−1 + nk

wherenk is either a white Gaussian or uniform driving noise.
The results are shown in Figure 3, where again the new

ACEKF based algorithm achieved a lower bearing estimation
error than the arctan estimator, for both Gaussian and uniform
driving noises. Observe that the performance of the arctan esti-
mator was similar in all the simulations, while the performance
of the proposed approach was superior because fully exploits
the correlation structure of the signals.

V. CONCLUSION

In this paper, we have proposed a new augmented (widely
linear) complex state space solution for the DIFAR sonobuoy
bearing estimation problem, with the aim of catering for
the correlations in target source signals. This was archived
through random-walk modelling of the source signal. It has
been shown that the second order statistics of the state and
observation noises can be estimated and updated online using
the observation data; this together with the augmented state
space model nature of our solution enables online tracking
of target bearings. The superiority of the proposed approach
over the standard arctan bearing estimator has been illustrated
for the cases where the source signals are sinusoidal or
autoregressive processes.
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