

Efficient System Level Simulations using MATLAB and Simulink

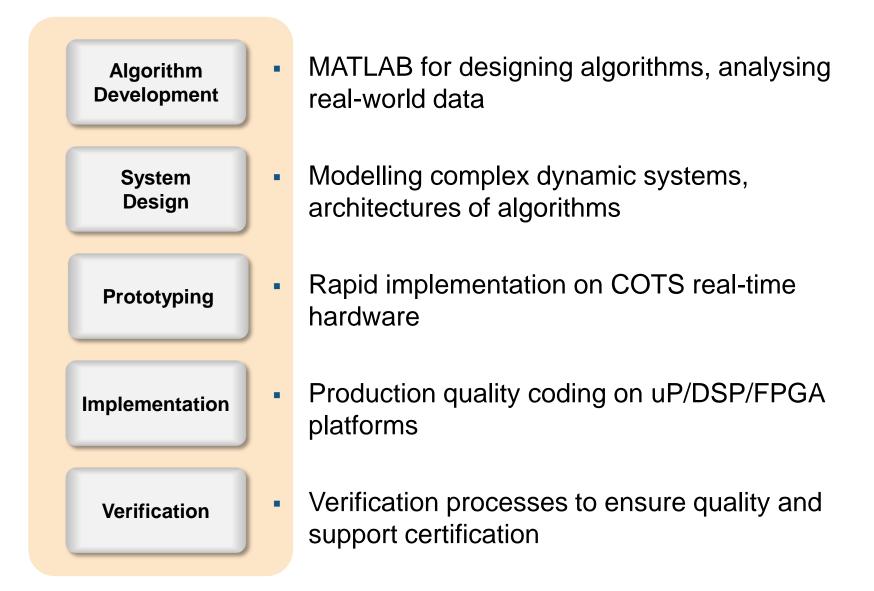
Marc Willerton, Application Engineer Email: marc.willerton@mathworks.co.uk

MathWorks at a glance

- ~3000 Employees worldwide with headquarters near Boston, USA
- Continued investment in new technologies
- A global company supporting global customers

MathWorks UK

- ~160 Employees across 2 offices in Cambridge and Glasgow (80% Engineering)
- Cambridge office founded in 1984
 - MathWorks subsidiary in 1997
- Glasgow office founded in 2004
 - MathWorks subsidiary in 2013
- Continued investment in high-calibre engineering capability



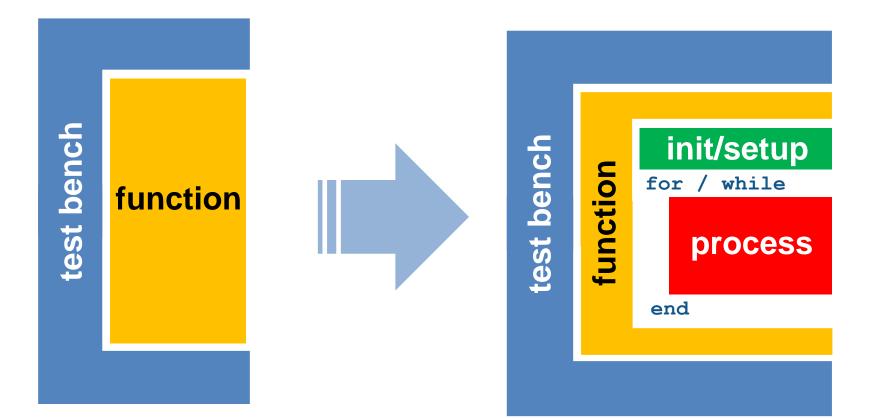
MathWorks and Academia

- Research focussed seminars
- Developer talks, demonstrations and advisories
- Software Carpentry Workshops
- Sponsorship of Doctoral Training Centres
- Letters of support
- Sponsorship of PhD Students and Internships

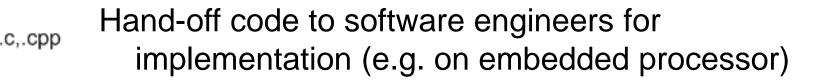
MATLAB and Simulink in the UK Defence Industry

How do we take our algorithms further?

- UDRC developing research in Signal Processing
 - Performance analysis
 - Produce research papers
 - Provide input to UK Defence industry for future systems
- What else our technology can do to support this work
 - Faster simulations?
 - Interfacing with real-world data?
 - Rapid prototype/demonstrator development?
 - Better transfer of technology into industrial designs?


How do we take our algorithms further?

- Architect / review / optimize MATLAB code
- Accelerate using C/C++ code generation
- Run on parallel architectures (GPU / multi-core)


Refactoring MATLAB Code

- For example, separate initialization and setup from recurring execution
- Use profiler to analyse the performance improvement

Translating algorithms to C – Typical use cases

Integrate algorithms w/ existing C environment

.exe Deploy algorithms on Windows/Linux desktop PC

Accelerate algorithms

How Parallel Computing Toolbox may help

- Speeding up computations by distributing jobs to multiple MATLAB workers (e.g. using parfor)
- Distributing the memory burden through distributed arrays

	Sp	eed Up Cor	nputations
Task 1	Task 2	Task 3	Task 4

	Work with Large Data
112641122742132843142944153045163146173247173348193449203550213651223752	

About Graphics Processing Units (GPUs)

- Originally for graphics acceleration, now also used for scientific calculations
- Massively parallel array of integer and floating point processors
 - Typically hundreds of processors per card
 - GPU cores complement CPU cores
- GPU support introduced R2010b

Requires NVIDIA GPUs with Compute Capability 1.3 or greater, including NVIDIA Tesla 10-series and 20-series products.

Moving further towards deployment...

- Desktop Prototyping using Hardware Peripherals
- Deployment to Low Cost Prototyping Platforms
- Fixed Point Conversion
- Deploying to processors, FPGAs and SOCs
- Hardware-In-Loop (HIL) Verification

Questions?