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| Abstract I

Multi-sensor exploitation is a key capability for developing and enhancing situation
awareness. Networks of sensors, however, pose signal and information processing
challenges such as maintaining a scalable, robust operation and a flexible structure in
a changing environment while complying with their resource limitations.

The main theme of this workpackage is distributed processing which overcome
these difficulties by removing the need for a single designated processing centre and
taking resource constraints such as the availability of communication links, limited
communication bandwidth and energy into account in designing strategies.

Objectives

The main objective of E_ZWP2 is to address challenges in detecting and tracking objects
with networked sensor platforms of various modalities:

2.1 Distributed Fusion & Registration: Develop scalable and reliable methods
for sensor fusion and registration that can be realised by a networked system.

2.2 Distributed Detection: Investigate distributed detection in networks of sen-
sors that are comparably less homogenous in their capabilities.

Our collaborative self-localisation scheme:

— In order to facilitate distributed fusion within self-localisation, we

1. Approximate the centralised parameter posterior p(O\Z}:k, BN Z{Vk)
with a pairwise Markov Random Field (MRF) p which is Markov with re-
spect to G = (V, €) and enables cooperative estimation through (Loopy)
Belief Propagation [5]: p(0) £ ITicv p(0:) H(i,j)e&‘ WZ3 s Z{:k 10;,05).

2. Assert a set of conditional independence assumptions through which
the local likelihoods (equivalently, the edge potentials of p) become com-
putable using the (multi-object) filtering distributions exchanged by the
neighbouring nodes for distributed fusion.

— The filtering distributions used in these likelihoods are provided by multi-object
filtering algorithms (e.g.,[6]) which are capable of handling noisy measurements
from multiple targets with given probability of detection and false alarms.

Technical Challenges

(a) (b) ()
Figure 1 (a) A distributed fusion network composed of five nodes communicating
over the graph G and tracking two objects. (b) An acoustic sensor network tracking
two sources. (c) Networked buoys equipped with sonars.

#26: Sparse, low BW, heterogeneous networks.

#15: (Detection, classification and localisation in) spatially dense sensors with par-
tially correlated acoustic signals.

Sono-buoy challenge: Passive sonar network for tracking underwater targets ( Il-
lustrations by Mike Ralph, DSTL).

| Research Themes I

Theoretical frameworks useful in addressing such challenges:

— Approximate statistical inference on probabilistic models including point pro-
cess and graphical models facilitating distributed operation.

— Distributed maximum likelihood & optimisation methods.

— Accelerated consensus algorithms, diffusion learning.
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Figure 2 Snapshots from a typical run of the proposed scheme with the scenario in
Fig. 1(a) demonstrating self-localisation of range-bearing sensors with
non-cooperative targets (a)—(c). Convergence properties of the Non-parametric BP [7]
with our likelihoods can be seen in the bar plot of the maximumum localisation error
in the network for 200 Monte Carlo runs (d-top). (d-bottom) The highest ensemble
error normalised with the minimum distance between two sensors in the

network (430m).

Recent Progress

Problem: Estimation of sensor registration
parameters, e.g., sensor locations and ori-
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Criticism of the existing approaches:
— The parameter likelihood l(Z%:k, . Z{ka) based on target measurements [1]

requires the sensor measurement histories be collected at a designated fu-
sion centre.

— Centralised processing [2] or joint filtering [3], however, is not feasible due to
the limitations in communication and computational resources.

— In our distributed fusion paradigm, nodes perform local filtering and commu-
nicate the filtering distributions with their immediate neighbours (Fig. 1(a))
to improve upon the myopic accuracy [4].

| Conlusions and Future Work I

— E_WP2 investigates distributed fusion, registration and detection strategies in
networked sensing.

— We have recently proposed a cooperative self-localisation scheme for distributed
fusion networks which exploits measurement from non-cooperative targets [8].

— Future work includes extensive experimentation for comparison of the perfor-
mance of the proposed scheme with that of the centralised and naive likelihoods.

— Additional registration unkowns and models of information sources such as
GPS will be introduced into this framework.

— Statistical inference in dynamical graphical models with robust Monte Carlo
computational methods will be investigated.
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