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Abstract

In this paper the application, performance and results of a fully discrete micro-Doppler
feature classification processing chain utilising Krawtchouk moment invariants are pre-
sented. The approach demonstrates to be capable of running on low power hardware such
as the Raspberry Pi 2. The effectiveness of the proposed approach is verified through the
use of real K-band data in real-time.

1. Introduction

Future automotive autonomous systems require contextual information about the scene
at hand to allow complex decision making in the context of self-driving cars. Secondary
motion in reference to the bulk motion described by the Doppler effect are known as
micro-Doppler (m-D) modulations (Chen (2011)), which can be captured by using time-
frequency radar signatures containing unique information about moving non-rigid targets
such as pedestrians in the line-of-sight (LOS). In contrast to information captured by
camera systems, radar signatures are insensitive to light conditions, weather conditions
and relative distance. They can be therefore a robust identifier for scene and target
classification, which can be used in safety critical applications if they meet performance
requirements.

The main contribution of this paper is the presentation of a novel radar m-D classifi-
cation tool-chain capable of running on low-power hardware using Krawtchouk moments
enabling real-time operation of the classification algorithm by Clemente et al. (2016).
Captured real radar data is sensitive to noise and variant to the initial phase of capture,
rotation, scale and translation. Further, they are highly complex and thus it is com-
putationally expensive to perform any further processing, specifically in the context of
classification. To address these issues, a processing tool chain has been developed utilising
five steps to reduce the data complexity and ultimately yielding a robust feature vec-
tor. With the ability to highly parallelise these steps on compatible hardware, it enables
real-time pedestrian classification with a Raspberry Pi 2 on simultaneously captured real
K-band radar data on a trained classifier containing four classes of pedestrians.

The remainder of this paper is organised as follows. Section 2 introduces the feature
extraction using Krawtchouk moments. Section 3 describes the potential application in
autonomous systems, while Section 4 presents the performance of the system. Section 5
concludes this paper.
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2. Feature Extraction

Safety critical systems require information with as little delay as possible and in near
real-time. It is therefore of interest to use feature vectors with a minimal number of com-
ponents, while maintaining a robust set of information. It is further advantageous if the
feature extraction is computationally efficient and ideally based on as many pre-computed
components as possible. One such processing chain has been proposed (Clemente et al.
(2016)) to extract a robust feature vector with pre-computed Krawtchouk polynomials
resulting in Krawtchouk moment invariants, which are further invariant to rotation, scale
and translation of the image.

Given a discrete sequence of complex radar data x(n) = I(n) + jQ(n), this vector is
normalised and downsampled to reduce the initial amount of data and limit the relevant
frequency range dependent on the expected target signatures, resulting in the signal s̃(n).
The spectrogram is computed using a discrete short-time Fourier transform resulting in

χ(ν, k) = |STFT (x)|2 =
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, k = 0, ...,K − 1 , (2.1)

where ν is the normalized frequency and h is a windowing function of choice to smooth
the edges of the each iterative signal window (Clemente et al. (2015)).

Invariance to the initial phase of motion is achieved by measuring the cadence of
Doppler frequencies in χ(ν, k), resulting in the cadence-velocity diagram (CVD),

∆(ν, ε) =
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where ε is the cadence frequency and the size of this image is defined by the choice of the
Fourier transform resolution, resulting in a N×K size, where N is the vertical dimension
of χ(ν, k) (i.e. the Doppler frequency spectrum). For efficient classification the CVD must
be further compressed while maintaining discrimination between separate feature classes
and similarity within a particular class (Clemente et al. (2015), Bjőrklund (2012)).

To achieve this, geometrical moment invariants, as introduced by Hu (1962), can be
used to transform the CVD into a compact feature vector. An orthogonal form using
Krawtchouk polynomials was presented by Yap et al. (2003) and further applied by
Clemente et al. (2016) to radar imaging in a discrete fashion, by applying pre-computed
weighted Krawtchouk polynomials K̄ of the order (p,q) to ∆(ν, ε) (2.2) resulting in the
Krawtchouk moments of a CVD,

Qpq =

P−1∑
ν=0

Q−1∑
ε=0

K̄p(ε; p1, P − 1)K̄q(ν; p2, Q− 1)∆(ν, ε). (2.3)

The above expression can be readily vectorised to

FKrawtchouk = [Q00, ..., Qpq]. (2.4)

This unique feature vector is further normalised to remove the impact of singular features
over others and hence potential bias in the classification process, resulting in the final
feature vector of dimension (p+ 1)× (q + 1) being

F̃ =
F− µF

σF
, (2.5)
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Figure 1: Processing chain of a Python based efficient mD classification on an embedded
system, where ts is the sample time and tp is the total processing time of the algorithm.

where µF is the mean and σF is the standard deviation of F. This robust feature vector
is invariant to rotation, scale and translation of an image and can be computed discretely
and efficiently for classification purposes (see Clemente et al. (2016) for more detail).

3. Applications

The procedure in section 2 was implemented in a modular processing tool-chain in Python
capable of running on a variety of hardware including low-power embedded systems. The
modular nature of the processing chain allows parallel computing to be employed for
both complete processes and further sub-processes itself. The standard processing flow
is shown in Figure 1.

The primary requirement for this processing chain is a radar sensor which provides
phase information in the form of I/Q radar data, which can be interfaced with the
desired processing system.

This enables flexible deployment of m-D analysis and radar analysis in a variety of
applications. The experiments in this paper were conducted using a 24 GHz radar sensor
at a height of 1 metre being a typical automotive placement above the front bumper.
It allows robust analysis of the scene at hand to detect and classify objects in motion.
The focus in the following section was given to pedestrian motion. This requires an
effective Doppler frequency range of ±750 Hz for pedestrians running in front of a vehicle
(Ghaleb et al. (2008)). It is further suggested by Bjőrklund (2012) to capture a full
cycle of pedestrian motion, which was modestly estimated at 3 seconds. Being able to
classify pedestrians and their current type of motion can be an important measure for
autonomous systems and driver assistance as it allows to not only to make an assessment
of the current scene but further allows to predict future movement of pedestrians based
on their direction and their relative velocity making it a potentially useful measure in
future automotive systems.

4. Experimental Results

Data was recorded for the four classes as shown in Table 1. The data was then processed
to CVDs (examples shown in Figure 2 with associated spectrograms) and classified in
Krawtchouck moment data sets. The integrity of the data was verified using a Monte
Carlo approach and a k-Nearest-Neighbour (kNN) classifier with a 70/30 split. Hence,



Efficient m-D pedestrian classification via Krawtchouk moments 4

Class Time recorded Training yield
Individual walking 352.9 s 77
Individual running 319.8 s 73

Group walking 179.4 s 61
Group running 221.9 s 56

All classes 1074 s 267

Table 1: Recorded amount of raw data for the 4 tested classes

Platform k=1 k=3 k=5 k=7

Accuracy all 98.17% 97.75% 96.39% 93.33%
Average time x86 (Intel C2D T7500, 4GB RAM) 0.173 s 0.176 s 0.172 s 0.178 s
Average time BeagleBone Black 2.60 s 2.73 s 2.64 s 2.74 s
Average time Raspberry Pi 2 (1 GHz) 1.72 s 1.78 s 1.75 s 1.80 s

Table 2: Accuracy verification of kNN-classifier and training data for a range of k-
Neighbours

70% of the training data used was randomly selected and 30% was randomly selected
as the testing set. The offline performance was then tested on 3 platforms, as shown
in Table 2. The integrity of the data set was sufficient at above 90%. Further, given a
sampling time ts of 3 seconds the Raspberry Pi 2 as a modern and low-power embedded
systems is capable of running the classification in parallel to the data acquisition and can
therefore provide classification predictions in quasi-real-time. It further indicates that the
sampling time can be further reduced to match the processing time of the hardware to
be used, illustrating the scalability of the proposed tool-chain.

The Raspberry Pi 2 and the radar sensor were successfully tested in a live environment
being powered by a 5000 mAh battery, illustrating the low power requirements of the
system with a projected runtime of the entire system at above an hour, demonstrating
the power efficiency crucial in e.g. electric cars. The live testing showed no slow-down in
comparison to the aforementioned offline performance.

5. Conclusion

In this paper the application, performance and results of a fully discrete micro-Doppler
feature classification processing chain utilising Krawtchouk moment invariants was pre-
sented. The approach demonstrates to be capable of running on low power hardware such
as the Raspberry Pi 2. The effectiveness of the proposed approach was verified through
the use of real K-band data in quasi-real-time.
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Figure 2: Spectrogram (LHS) and CVD (RHS) examples for recorded motion classes:
(a,b) Single pedestrian walking, (c,d) multiple pedestrians walking, (e,f) single pedestrian
running and (g,h) multiple pedestrians running.


