
Efficient Processing of MRFs for Unconstrained-Pose Face Recognition

Shervin Rahimzadeh Arashloo
Department of electrical engineering

Faculty of engineering
Urmia university

West Azarbaijan, Urmia, Iran
Sh.Rahimzadeh@urmia.ac.ir

Josef Kittler
CVSSP, department of electronic engineering
Faculty of engineering and physical sciences

University of Surrey
Guildford, Surrey, UK

J.Kittler@surrey.ac.uk

Abstract

The paper addresses the problem of pose-invariant
recognition of faces via an MRF matching model. Unlike
previous costly matching approaches, the proposed algo-
rithm employs effective techniques to reduce the MRF in-
ference time. To this end, processing is done in a par-
allel fashion on a GPU employing a dual decomposition
framework. The optimisation is further accelerated tak-
ing a multi-resolution approach based on the Renormali-
sation Group Theory (RGT) along with efficient methods
for message passing and the incremental subgradient ap-
proach. For the graph construction, Daisy features are
used as node attributes exhibiting high cross-pose invari-
ance, while high discriminatory capability in the classifica-
tion stage is obtained via multi-scale LBP histograms. The
experimental evaluation of the method is performed via ex-
tensive tests on the databases of XM2VTS, FERET and LFW
in verification, identification and the unseen pair-matching
paradigms. The proposed approach achieves state-of-the-
art performance in pose-invariant recognition of faces and
performs as well or better than the existing methods in the
unconstrained settings of the challenging LFW database us-
ing a single feature for classification.

1. Introduction

Despite the significant progress in face recognition tech-
nology, recognition under unconstrained settings remains a
challenge. The use of face recognition technology is cur-
rently hampered by several factors present in real-life im-
ages such as pose, illumination and expression changes,
occlusion, low resolution etc. Among the numerous solu-
tions proposed to deal with these problems, Markov ran-
dom field modelling has been shown to be a promising ap-
proach, especially for handling large face pose variations
[3, 4, 55, 36].

In this paper we focus on using MRFs for addressing
one of the major problems in recognition of faces [58]
i.e. pose variation. Pose-invariance is achieved via dense
matching of images while illumination invariant represen-
tations adopted minimises the unwanted effects of illumina-
tion changes which is in contrast to some other approaches
which use images of different frequency bands [35]. In or-
der to minimise the adverse effects of the background and
unavailability of frontal gallery images on the recognition
performance in unconstrained settings, we symmetrise the
process of matching two images, i.e. first match the first
image to the second and then exchange the roles of the im-
ages. The procedure is repeated for the horizontally mir-
rored versions of both images and the final similarity score
is taken as the minimum of the distances thus obtained. The
proposed approach is inspired by the methods presented in
[3, 4], which were shown to have appealing characteristics.
Namely, they can cope with moderate translation, in and out
of plane rotation, scaling and perspective effects without the
need for non-frontal images in training. Furthermore, no
strict assumption is made about the pose of the subject prior
to matching.

Unfortunately, the optimisation and inference over a
graphical model still remains both challenging and compu-
tationally demanding [29, 54, 27, 13]. Many algorithms
based on MRFs are not commercially viable because of
their computational complexity. The prohibitive computa-
tion time is also acutely felt in evaluating such algorithms
on large databases. The key contribution of the current work
is to reduce the processing time of inference in MRF im-
age matching. In this respect, we focus on parallel pro-
cessing algorithms and show how an optimisation problem
for image matching can be reformulated to be solved via
the well-known dual decomposition approach [29] which
in turn facilitates porting the problem onto a graphical pro-
cessing unit for efficient implementation. Further speed ups
are achieved by adopting a multi-resolution approach based
on the renormalisation group theory (RGT) [20]. In addi-



tion, distance transform technique [18] is employed for ef-
ficient message passing. Last but not least, an incremen-
tal subgradient method [9] is used so that the more com-
putationally demanding local updates in the decomposition
framework are performed less frequently. While some of
the aforementioned techniques have previously been used
independently, this is the first time they have been integrated
for joint use in a common framework. We show that their
consolidation under a common umbrella results in massive
speed-up gains. Note that this is also the first time these
techniques have been jointly used for face MRF matching.

The current work also supersedes [3, 4] in terms of tex-
ture modelling by employing more descriptive and distinc-
tive features both for dense matching and recognition. Once
the correspondence has been established, a single feature,
i.e. multi-resolution LBP histograms descriptor is used for
classification. This contrasts with many other algorithms
combining a number of different features to achieve an ac-
ceptable level of performance.

The combination of all the modifications proposed in the
current work results in a significant improvement over the
best performing graph-based pose-invariant methods of face
recognition [4, 3] and other unconstrained face recognition
methods, not only in terms of efficiency and computational
cost but recognition performance confirmed by various ex-
tensive tests performed on different databases.

The rest of the paper is organized as follows. In Sec-
tion 2, we review the literature on unconstrained face recog-
nition with an emphasis on pose-invariant methods. Sec-
tion 3 introduces MRFs, leading to the formulation of im-
age matching in their context and the discussion of the role
of the dual decomposition framework in the process of in-
ference. Efficient message computation, multi-resolution
analysis using RGT, the incremental subgradient method
and GPU processing are discussed in Section 4. In Section
5, our classifier employing multi-resolution LBPs is intro-
duced. The evaluation of the method in terms of processing
time and a comparison to the state-of-the-art face recogni-
tion methods on three databases are discussed in section 6.
In Section 7, conclusions are drawn.

2. Related work
The various approaches to unconstrained pose-invariant

recognition of faces can coarsely be categorized into four
major groups based on general concepts of classification.
These are multi-view systems, generative methods, discrim-
inative approaches and graph-based algorithms.

The first attempts of generalizing across different poses
are represented by the multi-view systems which are direct
extensions of the methods operating on the frontal images,
storing multiple templates for different poses for each in-
dividual. The works in [37, 45] are examples of the meth-
ods falling in this category. The second group of methods

takes a different approach, i.e. it attempts to reconstruct
a novel image in a desired pose. The reconstructed image
is then either directly or indirectly used for classification.
As examples of the methods in this category, one may list
[40, 21, 16, 49, 19]. The next group is constituted by dis-
criminative approaches, which do not require input faces to
be remapped into a reference pose. In fact, features used
are projected into a pose-invariant space in which recogni-
tion is performed based on similarity in this space. Similar
to the generative methods, for training, images correspond-
ing to different poses or lighting conditions are employed
to construct the model [26, 25]. One common drawback
of the three mentioned classes of algorithms is that they
need multiple images either to construct the model or to
be stored as templates. In addition, the generative meth-
ods cannot recover atypical features that do not exist in the
training set while the multi-view systems may require pose
estimation and accurate alignment for example using optical
flow. Part-based methods constitute the last category in our
classification of pose-invariant methods for face recognition
[12]. A successful subset of part-based approaches is the
Graph-based methods. In this framework [3, 4, 55, 53, 1],
different parts of an object are allowed to be considered in-
dependently of other non-neighboring parts which is useful
for dealing with geometrical distortions and also handling
occlusions and cluttered background. Furthermore, graph-
based methods require a minimum number of training im-
ages and good performance can be achieved even by using
one gallery image per class. The approach proposed here
uses a graph-based representation for dense and efficient
pixel-wise matching of faces. Once correspondences are es-
tablished between images, multi-resolution texture features
are used for classification taking into account the accurate
pixel-wise alignment of face images.

3. Image matching
Two distinct stages exist almost in all object recognition

systems: finding correspondences between different parts of
objects and then evaluating a similarity criterion for classifi-
cation. For face recognition this concept has been motivated
by the fact that unlike controlled frontal pose conditions, in
which only two fiducial points (usually eye coordinates) are
sufficient for alignment, for unconstrained faces rotated in-
depth, a larger number of point correspondences are needed
for effective alignment. Nevertheless, frontal-pose recog-
nition of faces may also benefit from availability of such
correspondence information.

3.1. Markov Random Fields for image matching

An MRF is composed of a set of nodes V and a set of
edges/hyper-edges E . The nodes correspond to individual
primitives of the object while the edges/hyper-edges encode
the conditional dependencies between the nodes. The goal



Figure 1. The structures of MRFs used with a sample inter-layer
edge connecting the two layers.

is to assign each node a label from a predefined admissible
label set X = {1, 2, . . . , L} subject to contextual constraints
such that the energy of the assignment is minimum. When
the graphical structure only contains cliques of up to size
two, the energy associated with the model is

E(x; θ) =
∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt) (1)

where x is a labelling and θ parameterizes the energy. In the
matching model adopted from [44, 3], nodes correspond to
individual blocks of the image while the labels are 2D dis-
placement vectors such that when added to the coordinates
of a block in the template image result in the coordinates of
the corresponding block in the target image. The employed
model consists of two layers for displacement modelling,
one for horizontal and the other for vertical direction. The
structure of the MRFs used is depicted in Fig. 1.

The severity of admissible local deformations is con-
trolled by the smoothness prior [3, 4] on each layer of the
model. Accordingly, for two neighbouring nodes s and t
with states xs and xt respectively, the prior is set as

θst(xs, xt) = ρ(xs − xt)2 (2)

where ρ is a normalizing constant controlling the tradeoff
between data fidelity and smoothness of the deformation.

Edge-based features are well known for their discrimi-
natory, invariance and repeatability properties. Inspired by
the ideas used in SIFT descriptor [30], many other features
including geometric blur [8], GLOH histogram [32], SURF
[7] and Daisy [50] etc. have been proposed and used for
recognition. We use Daisy feature [50] for the construction
of data term in our model.

There is freedom in choosing the number of radii and
directions of samples to form the Daisy feature vector [47].
In this work, the points are sampled in one concentric circle
and 8 directions in addition to the centre pixel. The feature
vectors obtained at each pixel are normalized to unit length
and compared using Euclidean distance. The data term is
then defined as sum of the Daisy distances inside a block.

3.2. Dual decomposition for MAP inference

Some of the well known algorithms for MRF optimisa-
tion are graph-cuts [13], dual decomposition [29] and TRW-
S [27]. Dual decomposition is chosen in this work for its
perfect adaptability to parallel processing. The general idea
of the dual decomposition for MRF optimisation is as fol-
lows. Given a large problem, one decomposes it into solv-
able smaller and more manageable subproblems and then
extracts a solution to the original problem by combining the
solutions obtained from the subproblems.

4. Solving the subproblems

In this work we choose each subproblem as a tree in an
extreme case, i.e. an edge along with the two end nodes
which makes our original problem decompose into a large
number of subproblems. This choice is driven by the large
number of streaming processors available in today’s GPUs.
Although solving each subproblem may be performed via
an exhaustive search, the complexity of such an algorithm
is quadratically proportional to the number of admissible
states of each node making the inference inefficient. As a
result, one needs to resort to more computationally efficient
methods.

4.1. Efficient message passing

Two kinds of edges exist in the graph: the inter-layer and
the intra-layer edges. Intra-layer edges encode a smooth-
ness prior on the deformation field. One may employ max-
product message passing algorithm for MAP inference over
each edge [52]. However, in a tree consisting of only one
edge along with the two end nodes the method fails to
provide any computational advantage. This is due to the
fact that direct computation of a message is of complexity
O(L2). Fortunately, following the ideas proposed in [18]
a message can be computed in linear time, i.e with a com-
plexity of O(L). We use the max-product algorithm and
the distance transform [18] to infer the MAP state of each
intra-layer edge.

4.2. Incremental subgradient updates

The distance transform method cannot be employed for
inter-layer edges encoding the data term. As a result, one
needs to perform an exhaustive search over these edges in-
curring a computational complexity of O(L2). Fortunately,
in the dual decomposition framework, one may reduce the
frequency of some updates via an incremental approach [9].
The idea is that in cases where a full subgradient update is
costly, one hopes to make progress towards the optimum
by making much cheaper incremental steps. We update
the less computationally demanding updates of intra-layer
edges at every iteration but update the inter-layer edges less



frequently, e.g. once in every n iterations, where n is deter-
mined empirically to produce the best results.

4.3. Multi-resolution analysis using RGT

Processing the model only in the finest scale (pixel level)
is computationally demanding and highly susceptible to
noise and local minima. Multi-resolution analysis has been
proposed to avoid such problems [20, 11, 28]. In this work
we apply a multi-resolution scheme based on renormalisa-
tion group transform (RGT) [20, 11]. Usually one is only
interested in preserving the maxima of the MRF probabil-
ity distribution. In these cases, a potential-based coarsening
technique, supercoupling transform [11], which is known to
map the mode of the original distribution to the mode of the
coarsened distribution is employed. For the transformation
of the solution obtained in one level to a finer level, similar
to [11, 4], we use a block-flat assumption. Using the block
flat assumption it is shown [4] that the parameters of the
energy should be chosen so that

θ′s(x
′
s) =

4∑
i=1

θsi(x
′
s) (3)

and

ρ′ = 2ρ (4)

where θ′ and ρ′ are the parameters of the model in a coarse
scale and θ and ρ are the parameters in the next finer level.
We process the images in 4 scales, the finest being the pixel
level.

4.4. Graphical Processing Units (GPUs)

Graphical processing hardware provides a massive num-
ber of processors which can operate in parallel together
to speed up computationally intensive tasks [46, 14]. The
most widely used GPUs are offered by the NVIDIA corpo-
ration and are released with the CUDA architecture. The
CUDA architecture provides a hierarchy of threads grouped
into block of threads and grid of blocks. Each thread op-
erates in parallel on all computing resources in the GPU.
As noted earlier, the dual decomposition method consists of
two main stages: solving the sub-problems and updating the
Lagrange multipliers controlling their interaction. Hence,
if one solves the subproblems in parallel, large speed up
gains can be achieved. In the CUDA architecture, a kernel
is a group of instructions operated in parallel on indepen-
dent data, i.e. each subproblem separately. In our imple-
mentation of the dual decomposition method, there are two
kinds of kernels: one kernel is developed to solve for the
inter-layer edges via an exhaustive search in an incremental
fashion while the other solves for the intra-layer edges us-
ing efficient message passing technique. Once all the sub-
problems are solved, the next step is to update the Lagrange
multipliers. These two stages are iterated in a loop.

5. Classification

In [4, 3], the energy of the match consisting of the data
fidelity plus the geometric distortion is normalised and used
as a similarity criterion for hypothesis selection. In this
work we employ effective texture descriptors but do not use
the shape information explicitly. This is due to the fact that
a simple planar transformation (e.g. projective transforma-
tion) is inadequate to model the nonlinear complex structure
of faces in poses deviating largely from frontal. Motivated
by the work in [15, 49] we use multi-resolution LBPs for
texture representation. The proposed method is different in
having the ability to handle extreme poses in a discrimina-
tive way rather than generative. Once features are extracted
from the images, a nearest neighbour classifier is used for
decision making.

Our texture representation is based on the local binary
pattern (LBP) [34]. The original LBP operator assigns a
label to every pixel of an image by comparing its 3 × 3-
neighbourhood with the value of the pixel under consider-
ation and treating the results as a binary number. As long
as the intensity order of the pixels in a neighbourhood is
preserved, LBPs are known to be unaffected by monotonic
gray scale changes.

One extension to this operator proposes to use neigh-
bourhoods of different sizes in order to deal with textures at
different resolutions. The second extension to the original
operator is the notion of uniform patterns. Before apply-
ing the LBP operators, we normalize the face images using
an effective photometric normalisation scheme [48]. For
face description, the template images are partitioned into
n × n non-overlapping rectangular regions and their cor-
responding regions in the target image are identified taking
into account the registration information. Uniform LBP his-
tograms are then extracted in 10 different resolutions from
each region and their corresponding patches in the target
images and concatenated to form a larger vector. A PCA
transformation is applied to reduce the dimensionality of the
feature vectors at each region. The resulting feature vectors
are then compared and a match score is produced for each
pair of regions using the cosine similarity metric. Taking a
classifier fusion approach, the final similarity score of two
faces is then defined as

Sim(I, I ′) =
∑
j

djd
′
j

‖dj‖‖d′j‖
(5)

where Sim(I, I ′) stands for the similarity of the two images
I and I ′. dj is the feature vector of region j in image I after
PCA transformation and d′j denotes the feature vector of its
corresponding region in image I ′.



Table 1. Speed up gains achieved via different techniques com-
pared to the method in [3].

GPU M.R. analysis Eff. mess. Inc. sub. Overall

∼ 24× ∼ 5× ∼ 1.4× ∼ 1.3× ∼ 218×

6. Experimental evaluation

For the evaluation of the proposed face matching method
we first compare the proposed MRF matching method with
those of [2, 3] in terms of computational time. We then
compare the performance of the proposed face recogni-
tion method on different databases with other methods in
verification, identification and the unseen pair matching
paradigms.

6.1. Gains in running time

In order to compare the running times of different meth-
ods, we use the original source codes of [3] leaving the pa-
rameters unchanged. In this experiment, a template image
of size 112× 128 is matched against a target image having
the range of displacements set to 32 pixels in each direction.
The GPU used in all experiments is an NVIDIA Geforce
GTX 460 SE.

Table 1 reports the effects of different techniques used in
the proposed method. From the table it can be observed that
the parallel computation on the GPU accelerates the match-
ing process ∼ 24× compared to the baseline method of [3].
This is achieved by exploiting the computational resources
of the GPU which make it possible to process a large num-
ber of subproblems in parallel. Next, it is observed that the
multi-resolution analysis accounts for ∼ 500% efficiency.
As noted earlier, the efficient message computation algo-
rithm can be instrumental in reducing computational com-
plexity of the algorithm. From the table, it is observed that
the employed technique accelerates the method ∼ 1.4×.
For the incremental subgradient approach, we update inter-
layer edges every two iterations. The incremental approach
accounts for a ∼ 25% reduction in running time making
the algorithm ∼ 1.3× faster. The final column of the table,
reports the overall effects of the proposed techniques. It is
observed that the proposed matching method is more than
200 times faster than the method of [3]. For the proposed
method it takes almost 1.4 seconds to match a template im-
age of size 112 × 128 to the target image compared to the
method of [3] which it takes more than 5 minutes for the
same task.

6.2. Verification Test on the XM2VTS database

In the XM2VTS rotation data set [31] the evaluation pro-
tocol is based on 295 subjects consisting of 200 clients, 25
evaluation imposters and 70 test imposters. Two error mea-
sures defined for a verification system are false acceptance

Table 2. Comparison of the performance of the proposed method
to the state-of-the-art methods on the XM2VTS database.

Method 3D correc.[49] face matching[3] current work

EER 7.12 4.85 4.27

and false rejection given below:

FA = EI/I ∗ 100%, FR = EC/C ∗ 100% (6)

where I is the number of imposter claims, EI the num-
ber of imposter acceptances, C the number of client claims
and EC the number of client rejections. The performance
of a verification system is often stated in Equal Error Rate
(EER) in which the FA and FR are equal and the threshold
for acceptance or rejection of a claimant is set using the true
identities of test subjects. Table 2 reports the equal error
rates obtained on the XM2VTS dataset using the proposed
approach compared to some other methods. These include
the method in [49], where the authors use a 3D morphable
model for geometrically normalizing the rotated images and
then use LBP histograms in the 2D geometrically normal-
ized images. In [3] the authors use a single resolution LBP
histogram together with the shape information. From the
table, it is observed that the proposed method outperforms
both of these methods, despite the fact that we do not make
use of shape information explicitly.

6.3. Identification test on the FERET database

Next, we evaluate our method on the rotation shots of the
FERET database [38] i.e. the b series in an identification
scenario. This part of the database consists of 200 subjects
captured under 9 different yaw angles ranging from nearly
−60◦ to +60◦. We use the ba image of each subject (almost
frontal) as the gallery image and all the rest as test images.
Table 3 reports the correct identification rates obtained on
this data. The results of some other methods are also in-
cluded for comparison. From the table, it can be concluded
that our method outperforms all other approaches almost in
all poses on this subset of the FERET database.

6.4. Unseen pair matching on the LFW database

Next we evaluate the performance of the proposed ap-
proach on the LFW dataset [23] which contains 13,233 im-
ages of 5,749 subjects collected from the news articles on
the web and as a result includes real world variations in fa-
cial images such as pose, illumination, expression, occlu-
sion, low resolution etc.. The task is to determine whether a
pair of images belongs to the same person or not. We eval-
uate the proposed approach on the ”View 2” of the dataset
consisting of 3,000 matched and 3,000 mismatched pairs di-
vided into 10 sets. There are three evaluation protocols on
this database: the image unrestricted setting, the image re-
stricted setting and the unsupervised setting. The most dif-



Table 3. Comparison of the performance of the proposed approach to the state-of-the-art methods on the FERET database.
Pose bi bh bg bf be bd bc bb

Horizontal deviation angle −60◦ −40◦ −25◦ −15◦ +15◦ +25◦ +40◦ +60◦

PAN [19] 52.0 78.5 91.5 98.5 97.0 93.0 81.5 44.0

3D Morph. Model [10] 90.7 95.4 96.4 97.4 99.5 96.9 95.4 94.8
Prob. Stack Flow [5] ∼ 43 ∼ 65 ∼ 89 ∼ 95 ∼ 93 ∼ 82 ∼ 57 ∼ 34

3D Pose Norm. [6] na 90.5 98 98.5 97.5 97.0 91.5 na

current work 92.0 98.5 99.5 100.0 99.5 99.0 99.5 91.0

ficult one is the unsupervised setting where no training data
is available. The two other settings allow the use of train-
ing data for the image pairs as ”same” or ”not same”. The
image unrestricted setting in addition provides the identity
of the subjects in each pair. We evaluate the proposed ap-
proach on the two most difficult settings of the unsupervised
and the image restricted setting.

6.4.1 Unsupervised setting

We first examine the effectiveness of the proposed method-
ology in the unsupervised setting of the LFW database
where we do not use any training data. In order to compare
the results with other methods under this setting, we use
LFW-a version of the LFW database[57]. We crop face im-
ages closely to minimise the effects of background samples.
In this experiment, the multi-resolution LBP histograms are
computed from each region of the first image and compared
against the corresponding region in the second image using
χ2 distance measure. As a result, our method is tested in a
training free scenario. In order to minimise the effects of the
background and unavailability of frontal gallery images on
the recognition performance, we first match the first image
to the second and then exchange the roles of first and second
image and match them again. The procedure is repeated for
the horizontally mirrored versions of both images. The fi-
nal similarity measure is considered as the minimum of the
distances thus obtained between a pair of images. Table 4
reports the results under this setting. The previous best re-
sults under this setting are 73.40% and 86.20% using LHS
[43] and LQP [24] features respectively. We achieve a mean
accuracy of 80.08% indicating a large 7.85% improvement
over the previous second best result.

6.4.2 Image restricted setting

Next, we evaluate the proposed method in the image re-
stricted setting where the training data is provided as
”same” or ”not same” for each pair without providing sub-
ject identities. In this setting again the χ2 distance measure
is used as the dissimilarity measure. For this experiment,
we use a second version of LFW images called funneled
obtained using the aligning algorithm of [22]. We com-

Table 4. Comparison of the performance of the proposed approach
to the state-of-the-art methods on the LFW database in the unsu-
pervised setting.

Method µ± SE

SD-MATCHES, 125× 125, aligned [17] 0.6410 ± 0.0062

H-SX-40, 81× 150, aligned [17] 0.6945 ± 0.0048

GJD-BC-100, 122× 225, aligned [17] 0.6847 ± 0.0065

LARK unsupervised, aligend [42] 0.7223 ± 0.0049

LHS, aligned [43] 0.7340 ± 0.0040

I-LQP, aligned [24] 0.8620 ± 0.0046

MRF-MLBP(current work), aligned 0.8008 ± 0.0013

Table 5. Comparison of the performance of the proposed approach
to the state-of-the-art methods on the LFW database in the image
restricted setting (strict LFW, no outside training data used).

Method µ± SE

Eigenfaces, original [51] 0.6002 ± 0.0079

Nowak, original [33] 0.7245 ± 0.0040

Nowak, funneled [33] 0.7393 ± 0.0049

Hybrid descriptor-based, funneled [56] 0.7847 ± 0.0051

3× 3 Multi-region Histograms(1024) [41] 0.7295 ± 0.0055

Pixels/MKL, funneled [39] 0.6822 ± 0.0041

V1-like/MKL, funneled [39] 0.7935 ± 0.0055

MRF-MLBP(current work), funneled 0.7908 ± 0.0014

pare our results with the methods which use strictly LFW
training data without making use of outside training data.
Similar to the unsupervised setting, we use mirrored im-
ages as well as exchanging the roles of the two images in
a pair and use the minimum distance obtained as the dis-
similarity measure. Table 5 reports the performance of var-
ious approaches. Under this setting, we achieve an accu-
racy of 79.08 ± .0014% which ranks our method second
best among other single feature-based methods. The best
performing method is the one in [39] with an accuracy of
79.35± .0055% only 0.27% better than what we achieve on
average.



7. Conclusion
The unconstrained-pose face recognition problem was

addressed using the framework of MRF dense image match-
ing. We solved the challenging optimisation problem of
MAP inference over the underlying MRFs formulated in
[3, 4] by exploiting the processing power of GPUs. A
number of different techniques including multi-resolution
analysis based on the RGT theory, efficient message pass-
ing using distance transform and the incremental subgra-
dient approach were employed to obtain further efficiency
gains of the proposed approach. The combination of these
techniques was shown to result in a more than two hundred
orders of magnitude speed up as compared to the baseline
methods. In order to increase the efficacy of the approach,
multi-resolution Daisy features were used to achieve invari-
ance against deformations and lighting changes. Finally, for
classification multi-resolution LBP histograms were used to
capture discriminative textural content of the images in dif-
ferent scales.

The experimental evaluation of the method, performed
on different challenging databases in various scenarios, also
demonstrated an impressive face matching accuracy of the
proposed approach.
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