Exploiting Sparsity in Signal Acquisition, Separation and Processing

Mike Davies UDRC Edinburgh Consortium

Joint work with Shaun Kelly, Chaoron Du, Gabriel Rilling and Fabien Millioz

Why Sparsity?

"TOM" image

Wavelet Domain

Sparsity indicates that the underlying dimension of data $\ll N$

Sparse Representations in Inverse Problems

Sparsity & ill-posed Inverse problems

Linear Inverse Problems generally take the form:

Ax = y

with $x \in \mathbb{C}^N$, $y \in \mathbb{C}^m$. If m < N then the problem is ill-posed. i.e. there are an infinity of solutions.

Kruskal Rank

If x is K-sparse problem is still well posed if for all index sets $|T| \le 2K$ the submatrices $A_T \in \mathbb{C}^{m \times 2K}$ are full rank... krank $(A) \ge 2K$

Recovering Sparse Representations

In order to recover a sparse representation the mapping must be invertible on the sparse set (an embedding)

For the solution to be stable we need a little bit more: restricted isometry property (RIP) ... a low distortion embedding

Practical Reconstruction algorithms

Sparse recovery - combinatorial search:

 $x^* = \min_{y} ||x||_0$ such that $||y - Ax||_2 \le \epsilon$

But this problem is combinatorial and NP-hard. However there are practical solutions with guaranteed performance under RIP

Convex relaxation – solve I_1 optimization e.g.

 $x^* = \min_{y} ||x||_1$ such that $||y - Ax||_2 \le \epsilon$

or greedy solutions – combine least squares minimization with hard subset selection, e.g. (orthogonal) Matching Pursuit, Iterative Hard Thresholding, etc.

Sparsity & ill-posed Inverse problems

Sparse signal models help in a number of signal processing tasks such as...

Observation Signal

Reconstruction

Image Data Recovery Image De-blurring

Sparsity in Synthetic Aperture Radar

parsity model?

Unlike other Fourier based CS applications, e.g. MRI...

SAR image statistics

SAR images composed of two main components:

1. Speckle dominated images due to multiple random reflectors in a single range cell - not compressible.

Coherent reflectors whose intensity can be ~10³ larger than incoherent reflections - compressible in pixel domain.

range cel

CS SAR reconstruction from limited data

Compressed sensing can only extract the coherent points in the image:

Compressive tar

Tank

Target's coherent points are pre

fully sampled reference with tank

back projection @25% Nyquist

CS reconstruction @25% Nyquist (coherent only)

SAR image auto focus

An added complication is estimating the propagation delay for each radar return. This introduces a phase error. Traditional auto focus techniques (e.g. Phase Gradient Autofocus) indirectly use sparsity.

Here we can be explicit:

$$\{\theta, x^*\} = \min_{\{\phi, x\}} \|x\|_1 + \gamma \|y - \operatorname{diag}(e^{i\phi})Ax\|_2^2 \le \lambda$$

w/o auto focus

with auto focus

Sparsity for Signal Detection & Separation

Signal Separation in Electronic Surveillance

 $\sum_{k=1}^{\infty} x[n+m]\phi[m] e^{j2\pi \frac{c}{2}m^2} e^{-j2\pi m \frac{k}{K}}$

Aim: detect and separate out target waveforms in Electronic surveillance

- σ Need processing to be fast

C[n,k,c] =

 Ø Want to exploit sparsity in TF domain (redundant chirplet transform)

Sparsity & Time-frequency masking

An efficient popular method for source separation in the TF domain is to use TF masking

Stereo audio separation by TF masking

Example of source separation based on TF masking. Sources groups based on direction of arrival.

Iterative masking

Adapt masking to redundant transforms... but still only use a single chirplet transform

EPSRC

- 1. Calculate Maximum Chirplet Transform
- 2. Define noise threshold (Neyman-Pearson detection)
- 3. While coefficients above threshold:
 - 1. Select maximum coefficient
 - 2. Subtract the upper-bound spectral window

end

4. Group coefficients into chirps

Recovered TF Representation

Recovered components: better coherent gain than STFT

1.2

1

1.4

1.6

1.8

Time

2

2.2

2.4

2.6

2.8

x 10⁵

Future perspectives

Further applications in SAR & ES

- 𝕫 RFI supression in SAR (SKs talk)

Questions?

ner Potential performance applications

Sparsity is being investigated in a wide range of applications of interest to defence, including:

- ℵ Multispectral/Lidar imaging
- **& Blind Sensor Calibration**
- ℵ Machine Learning (robust classification/estimation)
- Novel Computation (randomized linear algebra...fast matrix multiplication/SVD/etc.)

Compressive target classification

Tank

fully sampled reference with tank ATR PERFORMANCE OF DIFFERENT SCENARIOS (Pr_{cc})

missing data pattern	data amount	CS-framework	back-projection
	full data	96.5%	95.5%
random	25% data	93%	85.5%
	10% data	83%	69%
gap	25% data 10% data	82% 57%	64% 40.5%

