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ABSTRACT

Raman spectroscopy is a well-established spectroscopic method for the detection of condensed phase chemicals.
It is based on scattered light from exposure of a target material to a narrowband laser beam. The information
generated enables presumptive identification from measuring correlation with library spectra. Whilst this ap-
proach is successful in identification of chemical information of samples with one component, it is more difficult
to apply to spectral mixtures. The capability of handling spectral mixtures is crucial for defence and security
applications as hazardous materials may be present as mixtures due to the presence of degradation, interferents
or precursors. A novel method for spectral unmixing is proposed here. Most modern decomposition techniques
are based on the sparse decomposition of mixture and the application of extra constraints to preserve the sum
of concentrations. These methods have often been proposed for passive spectroscopy, where spectral baseline
correction is not required. Most successful methods are computationally expensive, e.g. convex optimisation and
Bayesian approaches.

We present a novel low complexity sparsity based method to decompose the spectra using a reference library
of spectra. It can be implemented on a hand-held spectrometer in near to real-time. The algorithm is based on
iteratively subtracting the contribution of selected spectra and updating the contribution of each spectrum. The
core algorithm is called fast non-negative orthogonal matching pursuit, which has been proposed by the authors
in the context of nonnegative sparse representations. The iteration terminates when the maximum number of
expected chemicals has been found or the residual spectrum has a negligible energy, i.e. in the order of the
noise level. A backtracking step removes the least contributing spectrum from the list of detected chemicals and
reports it as an alternative component. This feature is particularly useful in detection of chemicals with small
contributions, which are normally not detected. The proposed algorithm is easily reconfigurable to include new
library entries and optional preferential threat searches in the presence of predetermined threat indicators.

Under Ministry of Defence funding, we have demonstrated the algorithm for fingerprinting and rough quan-
tification of the concentration of chemical mixtures using a set of reference spectral mixtures. In our experiments,
the algorithm successfully managed to detect the chemicals with concentrations below 10 percent. The running
time of the algorithm is in the order of one second, using a single core of a desktop computer.
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1. INTRODUCTION

Optical spectroscopy methods are based on recording the interaction of light with the materials. These interac-
tions through absorption, transmission, reflection or scattering can provide fundamental, and in some instances
characteristic, information from the material under study. Raman spectroscopy, in contrast to other spectro-
scopic techniques, is based on measuring the scattered light from a very narrow band illuminated light, i.e. a
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laser. Raman spectroscopy has been shown to be an accurate technique for fingerprinting the unknown chemical
molecules. A conventional method to subsequently identify the unknown chemicals is to compare the recorded
spectrum with a reference library of chemicals. As this can be processing heavy, an alternative identification
approach may be applied using the correlation of peak positions only. This method is however useful for the
detection of few chemicals in a mixture.

A challenge associated with visible wavelength excitation Raman is that the recorded spectra may contain∗;
a) Raman spectral peaks and, b) noise fluorescence.1 Due to the intensity of the fluorescence effect, underlying
Raman spectral features may be sufficiently convolved with fluorescence to make automated correlation analysis
approaches challenging. As a result this part of the incoming spectra is usually subtracted for automatic spectral
fingerprinting. To practically demonstrate this fact, we have shown a sample set of a typical spectral library
in Figure 1. On the left hand column, we have shown four spectra, which contain fluorescent spectral features.
After removing the background, we get the middle column, with the background of each spectrum shown on the
right hand plot. The difference between the feature rich form of the Raman spectra and broad nature of the
background signals are clear.

The peak matching algorithms are extremely dependent on the baseline corrections, as the raw spectra may
be dominated by the fluorescence. Various algorithms have been presented to compensate the fluoresence.2–7

The baseline correction process establishes a logical relation between the contribution of each spectrum in the
spectral mixture, and the actual concentrations of corresponding chemicals.

When the backgrounds of the spectral library and the mixture are removed, the mixture can be modelled
as a combination of the library elements with an additive noise. While the combination of library elements
can be generally distorted by a nonlinearity artefact, we practically observed that, a linear model can well
describe a series of mixtures, while the most non-linear effects will occur with very polar and very polarisable
mixture components. Such a model, which will be discussed in section 2, has been a basic foundation of spectral
deconvolution methods for the other spectral modalities.8,9 A key assumption in the approach presented here
is that only a few library elements exist in sufficient quantity in unknown mixtures. In this setting, sparse
representations are used to decompose the spectral mixture to elementary spectra, alongside noise†.10 Promising
results are derived by assuming such a model for spectral mixtures and using standard sparse approximation
algorithms. Most sparse approximation algorithms are iterative (semi-) optimisation algorithms, which need
to run for a particular number of iterations or achieve a satisfactory convergence criteria.10 As a result, the
computational cost of most algorithms are high. If the task is to reduce the computational cost, with the aim of
running in a (close to) real-time application on a computationally/memory limited platform, we have to carefully
choose the sparsity algorithm.

A class of low-complexity sparse approximation algorithms are greedy algorithms and the most commonly
used is the Matching Pursuit (MP) algorithm.11 The algorithm is based on gradually adding the most currently
correlated library element to the set of selected elements, until the residual energy vanishes. There is a modified
version of MP, which updates the coefficients related to the contribution of each library element at each iteration,
called the Orthogonal Matching Pursuit (OMP) algorithm.12 Recall that one expects to find positive contribu-
tions in a spectral decomposition problem. We can add the non-negativity constraint to the greedy selection
process.13 A Fast Non-Negative OMP (FNNOMP) has been presented by the authors in reference,14 which can
be efficiently used in the spectral decomposition, which will be presented later.

After sparse spectral decomposition, some post-processing steps are necessary to guarantee that the finger-
printing and quantification have been appropriately done. We will discuss about such process in Section 3.

Some real and synthetic mixtures have been used in the simulation Section 4 to demonstrate the capabilities
of the proposed low-complexity algorithm for fingerprinting and quantification.

∗If the sample is fluorescent at the illuminated wavelength, an alternate excitation wavelength may be used.
†Any model mismatch errors can be counted as noise term.
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Figure 1. The spectral libraries; a) original spectra (left column), b) baseline corrected spectra (middle column) and c)
baseline functions, which are found using a baseline correction algorithm (right column).

2. MATHEMATICAL FORMULATION

The advanced technologies in modern hand-held spectrometers, allow us to have low-noise accurate spectral
measurements. We will model a typical spectral generation model in the next section, which has been used in
the rest of paper. The model is simple and accurate for the purpose of fingerprinting and coarse quantification.

2.1 Signal Model

A set of reference spectra is assumed known, and characterised by library, M. Such spectra can generate a
matrix of spectral library M, by putting the pure spectra mj ’s in the columns of M. We can characterise the
contribution of each chemical by a “positive” coefficient αj . Let the recorded spectral mixture be y ∈ Rd, where
yi is the measurement at ith wavenumber. The generation of y can be modelled as follows,

y = g (M,α) + b + ω, (1)

where function g can generally be a non-linear mixing model, α = [αj ]j=1:N , b is baseline signal and ω includes
the measurement noise and any unknown spectra. The unknown spectra are the signature of chemicals which
are not included in the library. If the size of library is small the chance of an unknown spectra in ω is usually
higher. We do not investigate this scenario here, while the proposed approach can be modified to handle such
a scenario.10 The mixing model g includes a large class of nonlinear functions to describe the actual spectral
mixing process, visible light hyperspectral unmixing analysis provides examples of this.15,16 The nature of Raman
spectral nonlinearities is different to those in other spectral modalities, and it is mainly caused by interaction
between different chemicals in the mixture. Such a nonlinearity can change the locations of the spectral peaks.
however, for the purposes of this study non-linear Raman mixtures will not be considered. The model will then
be simplified as the following linear model,

y = Mα+ b + ω. (2)
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Figure 2. Spectral decomposition; mixture (top) baseline corrected mixture and reconstructed signals (second top), library
elements # 1 and # 7 (bottom two). The ground truth for the concentrations of library components # 1 and # 7 are
respectively 5% and 95%.

The linear approximation can be very useful as various signal processing techniques exist which operate on such
a mixing model. We must, however, be careful with (2), specifically with regards to i) the relative magnitude of
baseline signal b and ii) non-ideal mixing model Mα. The magnitude of baseline b can be larger than the other
two terms, i.e. Mα and w. An approach to mixture decomposition, includes a baseline removal pre-processing
to compensate the effect of large b. In section 2.2, we briefly review some available baseline correction methods
for Raman spectroscopy. A small non-linearity artifact can be handled as an extra additive error to the linear
model, which can be absorbed into w. This is only acceptable setting if the linear model is overally a good
describing generating model. This is the case observed in our set of experiments‡.

If the baseline of the measurement is removed, the spectral mixture model can be simplified as,

y = Mα+ w, (3)

where we assume that the model-mismatch and baseline removal algorithm residual are small and absorbed in w.
In a more involved case, the number of library elements may be more than the number of observation, i.e. N > d.
The inverse problem in such a scenario is underdetermined. To resolve the issue and find the solution, we need
extra priori information about α, which is sparsity here. The sparsity of the coefficient vector means that in a
normal chemical mixture only a few component exist. However, directly solving (3) with the sparsity assumption
for the α may require checking all possible combinations of spectra to find the actual mixture. Even in the

‡This excludes the cases in which some chemical concentrations are very small. In such a setting, a more complicated
model or an adaptive decomposition strategy is necessary
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overdetermined setting N < d, as there are normally significant similarities between the spectra in the library,
it is important to regularise the inverse problem. Such a similarity makes the decomposition more challenging,
which will be discussed in section 2.3.

With a simple example, we now show that the linear model (3) is satisfactory for Raman spectral decomposi-
tion. We have shown a mixture spectrum of components number 1 and 7, with the concentrations 5% and 95%,
respectively in Figure 2. This is a challenging unmixing scenario due to both the low Raman scattering efficacy
and low concentration of component number 1. We show these spectra in the bottom two windows of Figure 2.

Many spectral decomposition techniques are based on solving a regularised inverse problem. The aim of
regularisation is to make the overall decomposition robust to the model mismatch, imperfect baseline removal
and measurement noise. The regularisation is usually enforced by penalising a metric of the coefficient vector α
or enforcing a low-dimensional structure like sparsity. The authors proposed a sparsity based Raman spectral
decomposition in10 and explained how it can help finding spectral decompositions in a small scale setting.
Such an algorithm is computationally expensive, which prohibits its application in a computationally limited
embedded system. We introduce a new technique of decomposing the spectra in section 3, to address this problem
specifically.

In the described models, we assume that a library of pure spectra is given. The library for this study was
collected using a hand-held Raman spectrometer to analyse pure chemicals (> 95% purity) and then baseline
corrected. The library spectra collected were representative sample measurements, no attempts were made to
assure a constant signal to noise ratio for all entries.

2.2 Baseline Correction

The baseline artefact is morphologically different to the Raman spectral features. The former is smooth and the
latter is feature rich. This fact can be used to separate the background signal b from the rest of measurement.
The most canonical approach is an “optimisation” based decoupling. In this setting, we need to minimise a
metric ψ(·) §, as follows,

b = argminb̃∈B

d∑
j=1

ψ(yi − b̃i), (4)

where B is the set of smooth functions. The most frequent choice for ψ is the quadratic function ψ(x) = x2

and B to be low-order polynomials. This setting has a closed form solution to find b, which is the application
of pseudoinverse of P, the matrix of sampled low-order polynomial functions. One issue with such a simple
baseline correction is that there is no guarantee to have positive spectra after baseline correction. Another is
that all material spectra will be correlated to some extent to the low order polynomial bases. To also have the
positivity constraint on the residual yi − b̃i, some iterative optimisation techniques have been proposed. A non-
quadratic metric has also been used in the optimisation program (4), to non-uniformly penalise the large/small
and positive/negative values.4 For example, a typical metric can be as follows,

ψ(x) =

{
x2 if x < s
s2 otherwise

where s is the threshold value and it is usually small, e.g. s = 0.01.

Another approach for baseline correction is to regularise a “weighted” quadratic function with the roughness
penalty function of the baseline as follows,5,6

b = argminb̃

d∑
j=1

wi(yi − b̃i)2 + λV

d∑
j=2

(b̃i − b̃i−1)2, (5)

where wi’s are some non-negative weights and λV is the regularisation parameter. wi’s are selected to exclude
the quadratic penalty in the peak locations, by having zero weights. However, the manual selection of the weights

§A “metric” is a function which characterises the distance between two points in a signal space. There may be some
cases in which the “metric” ψ(·) is not a mathematically correct distance, but it has most properties of a distance.
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is difficult and prone to error. An adaptive technique for changing the weights has been presented elsewhere by
Zhang et al.7

Another class of baseline correction techniques is based on Bayesian model of the Raman spectra and the
background.2,3 Here the feature rich part of the spectrum is modelled with a sum of Gaussian function and the
background with a smooth function like cubic B-spline. As a direct evaluation of the mixture distribution is not
possible, a stochastic numerical Bayesian method a Markov Chain Monte-Carlo method, has been proposed to
estimate the joint distribution.3 Such methods are computationally expensive and therefore not suitable for our
purpose.

2.3 Coherence of the Library

A crucial factor in the success of the sparse approximation methods is called the coherence µ. It measures the
maximal similarity between two distinctive elements. If mj represents the jth column of the library matrix
M, the coherence is the maximum correlation between normalised mj and mk, where j 6= k. µ can also be
formulated as follows:

µ = max
j, k

|mT
j mk|

‖mj‖2.‖mk‖2
,

where T indicates the transpose of the vector and ‖ · ‖2 indicates the Euclidean norm. A library with a large µ
has some elements, which are very similar. In the sparse approximation terminology, the discovery of the correct
sparsity support, i.e. the footprint of the chemicals, becomes more challenging. As the spectral library only
lives in one out of 2d possible orthants, the correlated between spectra can be fundamentally larger. This means
that µ is often higher than generally positioned or other signed libraries. To demonstrate this fact, we used the
nine baseline corrected Raman spectra, which some of them are shown in Figure 1. We calculated the coherence
matrix, which has the correlation between

mj

‖mj‖2 and mk

‖mk‖2 on the (j, k)-th location. The coherence matrix is

shown in Figure 3. This figure shows that some elements are highly correlated, such that the correlation for some
off-diagonal elements is larger than 0.9. This is an evidence of the difficulty of Raman spectral decomposition.
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Figure 3. The coherence matrix of an example of a small Raman spectral library.

3. PROPOSED ALGORITHM

The task is to reliably solve the inverse problem of (3). For reasons explained in the introduction, such a set of
linear equations is underdetermined and/or noise sensitive and requires some form of regularisation. The most
frequent regularisation is the Euclidean norm ‖α‖ to bound the energy of the decomposition coefficients. More
precisely, we have to solve the following optimisation program,

α = argminθ ‖y −Mθ‖22 + λ‖θ‖22,

where λ is a positive (Lagrange) multiplier. Solving this optimisation program is straightforward and can be
done by application of pre-computed inverse of MTM + λI, where I is the identity matrix, i.e. α = (MTM +
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λI)−1MTy. However, as there are no sparsity and non-negativity constraints on α, the solution normally has
contributions from many library elements with possibly negative values. This is not representative of the spectral
contributions. If we apply the non-negativity constraint, the problem does not have a closed form solution, and
it is normally solved using iterative algorithms. An alternative regularisation is a sparsity inducing penalty
function to consider the fact that we only expect to see a few chemicals, e.g. k � N out of N chemicals, present
in any one experiment, which will be discussed in the next section.

3.1 Sparsity Based Fingerprinting and Quantification

Some regularisation functions induce sparsity. The reason is that the minima of regularised cost functions with
such penalty functions, are sparse or only a few elements have significant magnitudes, i.e. “compressible”. The

most popular class of sparsity functions is the p-“norm”’s ‖θ‖p := (
∑N
j=1 |θj |p)

1
p , 0 < p ≤ 1, in which we use

‖·‖pp as the sparsity promoting regularisation. Among them, only ‖·‖1 is convex. If we know the magnitude level
of the error vector w, ‖w‖2 ≤ ε, a convex sparsity approach is to solve the following regularised optimisation
problem,

α = argminθ≥̇0

∑
j

|θj | s. t. ‖y −Mθ‖2 ≤ ε,

where ≥̇ is an elementwise comparison operator. This optimisation can be reformulated as follows,

α = argminθ≥̇0
1

λε
‖y −Mθ‖22 +

∑
j

|θj |, (6)

where λε is a regularisation multiplier and a function of noise level ε, which controls the level of sparsity in
the final representation α. The formulation (6) is often preferred for the available wide range of optimisation
techniques. The optimisation program (6) generates a sparse or compressible coefficient vector α, which is neither
guaranteed to be exactly k-sparse nor has k dominant coefficients.

The next step of the algorithm is to identify the fingerprint of the chemicals, based on the coefficient vector α.
This step is to project it onto the set of k-sparse vectors. This can be done by keeping the largest k components
and shrinking the rest to zero. This is the case when we know the number of mixture components. Otherwise,
we have to decide on the number of components in the mixture, based on the magnitude of the sorted elements
of α.10 We can then have a set J of non-zero elements.

For the relative quantification of components, as it is also discussed in,17 we normalise α to ᾱ such that∑
j∈J ᾱj = 1. The concentration percentage of each component j indexed in J can be simply calculated as

100 ∗ ᾱj .
The main challenge with sparsity based algorithms for embedded platforms is the computational load and the

memory usage. Sparsity based optimisation programs, including (6), do not have a closed form solution and all
available optimisation algorithms are iterative. The computational cost thus scale quadratically with the size of
problem. Another issue with iterative convex optimisation algorithms is that it is not clear how many iterations
are necessary for the algorithm to converge, which can compromise real-time implementations. In the following
section, we propose a new low-complexity greedy sparse Raman spectral decomposition algorithm.

3.2 Low Complexity Greedy Sparse Spectral Decomposition

A non-negative sparse solution for (3) can be found using a non-negative MP-type method. Let αk be the
coefficient vector at stage k, which is initialised as a zero vector. The idea is to efficiently reduce the residual
error rk := y−Mαk, by adding a new spectrum to the set of indexed spectra by s = supp(αk), where supp(·) is
the support (the indices of non-zero elements) operator. The algorithm then finds the library spectrum that is
most positively correlated to to the residual rk at the kth iteration. To update the coefficient vector, NNOMP
solves a least-square problem with a non-negative constraint, using the selected spectra at each iteration. A
pseudocode of the Non-Negative OMP (NNOMP) is presented in Algorithm 1. In this algorithm, k indicates the
iteration number, max(·) in line 3 is the maximum operator with ζ as the maximum value and ι as the index of
element with the maximum value, and s or |s indicates the selected sub-vector or sub-matrix, i.e. here selected
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1: initialisation: s = ∅, k = 0, α0 = 0 and r0 = y
2: while k < K & max(MT rk) > 0 do
3: (ζ, ι)← max(MT rk)
4: s← s ∪ ι
5: αs ← argminθ≥̇0 ‖y −Msθ‖2
6: rk+1 ← y −Msαs

7: k ← k + 1
8: end while
9: α|s ← αs

Algorithm 1: Canonical Non-Negative Orthogonal Matching Pursuit

columns, by the index set s. The termination condition for such an iterative algorithm can be the sparsity of
the representation, which is the number of mixture components, or the maximum energy which can be absorbed
using a new library element, related to the system noise. In this case, if max(MT rk) is small, the new component
is unlikely to contribute to the mixture and we thus stop the algorithm.

Such an implementation for NNOMP algorithm can be counted as the “canonical” version, i.e. slow imple-
mentation. The computational complexity is mainly in the calculation of Non-Negative Least Square (NNLS)
step 5, which does not have a closed form or computationally light-weight solution. As a result, the authors devel-
oped an alternative fast version.14 The fast NNOMP is based on the QR factorisation of the library sub-selected
matrix Ms, i.e. a matrix generated only using the indexed columns by s. To guarantee the non-negativity of
the coefficient vector, we sometimes need to ignore the most positively correlated library spectrum and select
another good candidate. The details of the FNNOMP has been presented in.14

The fast sparsity Raman spectral decomposition algorithm uses the FNNOMP implementation with the
termination condition for the sparsity method as the residual energy rk, with a backtracking step, if the last
selected spectrum has a small contribution. In this case we indicate this spectrum as an alternative component,
which can be useful for identifying small traces of the chemicals. The algorithm is fast and is free of any iterative
sub-task, e.g. NNLS optimisation. Loading and storing the Raman spectral library is the most memory intensive
part of the proposed algorithm.

Note that the proposed algorithm is working with the formulation of (3), which needs a baseline correction
as the preprocessing step. As the baseline correction of the library spectra can be done off-line, the main
computational burden of the whole process is the baseline correction of the input spectrum.

4. SIMULATION RESULTS

The simulation results will be presented in two sections, based on synthetic and real mixtures. A sub-set of a
nine-element library is presented in Figure 1. The library element 9 is related to the instrument internal noise
spectra initially included in the library so as to challenge the algorithm with a signature likely to be common
to all spectra, this was subsequently removed from the mixture generation process. The synthetic simulations
enable us to investigate the performance of algorithm with respect to the effect of different factors, e.g. the
minimum concentration level of a chemical and different background artefacts.

γ 0.05 0.10 0.15 0.20 0.25

Ex. Rec. % 85.77 87.53 88.16 88.68 89.45
Table 1. The percentages of correct fingerprinting, with respect to the possible minimum concentration values γ.

4.1 Synthetic Mixtures

We can generate a synthetic mixture by adding library components. The linear mixture generation can be done
using background compensated spectra and adding a typical background signal. We excluded the 9th library
element and linearly combined K = 2 spectra with non-negative weights, which are chosen to be larger than a
threshold θ and the sum to be equal to 1. We randomly selected 2 out of N = 8 library elements, combined
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Figure 4. Spectral decomposition: synthetic mixture (top), baseline corrected mixture and reconstructed signals (second
top) library candidates # 1 and # 2 (bottom two). The ground truth concentrations for the components # 1 and # 2
are respectively 34.37% and 65.63%.

the selected spectra with randomly generated concentrations and a randomly selected baseline based on the
example library data set as discussed in Figures 1 and 2. Such baseline signals were generated by subtracting the
baseline corrected signals from the original library elements. A typical mixture is shown in the top window of
Figure 4. The second window shows two curves, related to the baseline corrected spectra and the reconstructed
spectra using the spectral decomposition method. The two bottom windows show the selected spectra for this
decomposition, which are correctly identified.

By randomly generating a large number of such synthetic mixtures, we measure the rate of successful finger-
printing. We here demonstrate the success rate of the algorithm for the mixtures of K = 2 components whilst
changing the minimum possible concentrations. The success rate, averaged over 10000 trials, is shown in Table
1, where γ < 1 is the minimum possible concentration. As γ becomes larger, the unmixing is more successful.
The reason is that the energy of the spectral mixture is more equally distributed between different components,
which facilitates the correct detection of chemicals.

4.2 Physical Mixtures

We now present results on physical mixtures, with some analysis was performed blind, in the absence of ground
truth information. The dataset has multiple mixtures, which we only know the ground truth about two mixtures,
labelled “i” and “iv”. Mixture “i” and its decomposition output is shown in Figure 2. The output figures of
other mixtures are presented in Table 2. The alternative components are presented in parenthesis. We have
also shown the decomposition outputs of a standard sparsity based decomposition method,10 for the comparison.
The fingerprints and concentrations are similar, while there exist some mixtures with slightly different results.
Mixtures “i” and “iv” are both the mixtures of chemicals #1 and #7, with the respective concentrations of
5%/95% and 20%/80%.

The aim here is to reduce the complexity of decomposition algorithm. We measured the running time of
Matlab implementations of proposed and reference algorithms, using a single core of a desktop. The averaged
running time of the decomposition of 11 different mixtures were respectively 11.05 and 1.09 seconds, which shows
an acceleration factor of 11.
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Mixtures Predicted Fingerprints Predicted Concentrations (in %)

Standard Fast Standard Fast

i 1,7,(9) 1,7,(9) [12 88] [12 88]

ii 1,7,(9) 1,7,(9) [17 83] [17 83]

iii 1,7,(3) 1,7,(9) [20 80] [20 80]

iv 1,7,(9) 1,7,(9) [44 56] [44 56]
Table 2. Spectral recovery of physical mixtures. Here, the indices in parentheses represent alternative components. 9 is
instrument noise and 3 is an analogue of 1.

5. CONCLUSION

Raman spectral decomposition can be used for chemical fingerprinting and relative quantification. The generative
model of the spectra can be complicated, but sparse approximation techniques help to decompose the spectra,
with a high level of accuracy. We presented a fast non-negative sparse approximation method for computationally
limited hand-held Raman spectrometers. The proposed algorithm is based on an iterative selection of the new
spectral components, from a reference library. The decomposition, after some post-processing, can be used for
fingerprinting and rough quantification.

Our experiments demonstrated that the baseline correction of the input spectra is the dominant computa-
tional component. Some investigation on the efficient methods for the real-time applications of Raman spectral
decompositions, is left for the future work.

The fast Raman spectral decomposition algorithm has been tested with other library sizes, which we only
demonstrated the application to small libraries here. The fingerprinting with large libraries can be challenging, as
more reference spectra means higher correlations between the spectra. The challenge in the application of small
libraries, is the need to detect and remove any “unknown” components, which has been briefly investigated.10

The full investigation of the effect of library size, has been left for the future work.
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