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Part I: Foundations of CS 

• Introduction to sparse representations & 

compression 

 

• Compressed sensing – motivation and concept 

 

• Information preserving sensing matrices 

 

• Practical sparse reconstruction 

 

• Summary & engineering challenges 
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Sparse representations and compression 



IDCOM, University of Edinburgh 

Fourier Representations 

The Frequency viewpoint (Fourier, 1822): 

Signals can be built from the sum of harmonic functions (sine waves)  

Joseph Fourier 

signal 

Fourier 
coefficients 

Harmonic 
functions 

Atomic representation: 

𝑥 𝑡 =  𝑐𝑘𝑒
𝜔0𝑘𝑡 = 𝐹𝒄

𝑘
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a Gabor ‘atom’ 

Time-Frequency representations 

Time and Frequency (Gabor) 
F
re

q
u
e
n
cy

 (
H

z)
 

Time (s) 

Atomic (dictionary) representation: 

 𝑥 𝑡 =   𝑐𝑛,𝑘 × 𝑔 𝑡 − 𝑛𝜏 𝑒𝑗𝜔𝑘𝑛 = Φ𝒄 𝑘𝑛  

“Theory of Communication,” J. IEE (London) , 1946 

“… a new method of analysing signals is presented in which time and 

frequency play symmetrical parts…” 
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Space-Scale representations  

the wavelet viewpoint: 

Images can be built of sums of wavelets. These are multi-

resolution edge-like (image) functions.  

“Daubechies, Ten Lectures on Wavelets,” SIAM 1992  
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 and many other representations 

… more recently: 

 

  chirplets, 

 

         curvelets, 

  

         edgelets, 

  

        wedgelets, … 

  

             dictionary learning... 
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Compressed to 3 bits per pixel Compressed to 2 bits per pixel Compressed to 2 bits per pixel Compressed to 1 bits per pixel Compressed to 0.5 bits per pixel Compressed to 0.1 bits per pixel 

Coding signals of interest 

What is the difference between quantizing a signal/image in the transform 

domain rather than the signal domain? 

Quantization in 

wavelet domain 

Tom’s nonzero 

wavelet coefficients 
Quantization in 

pixel domain 

Good representations are efficient – e.g. sparse! 
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Sparsity & Compression 

A vector x is k-sparse, if only k of its elements are non-zero. 

 

Such vectors have only k-degrees of freedom (k-dimensional) and there 

are “N choose k”, 
𝑁
𝑘

, possible combinations of nonzero coefficients. 

 

 

 𝒚   ≈   Φ ⋅   𝒙  

𝒚 ≈ Φ𝒙  

N 

Coding cost:  

𝑘 floats + log2
𝑁
𝑘

 bits 

= 𝒪 𝑘 log2 𝑁 𝑘  bits 

 

 

Coding cost:  

 

𝑁 floats 

= 𝒪 𝑁  bits 
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Compressed sensing: motivation and concepts 
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Classical Sampling Theory 

 

 

The Whittaker–Kotelnikov–Shannon 

Sampling Theorem states: 

 “Exact reconstruction of a continuous-time 

signal from discrete samples is possible if 

the signal is bandlimited and the sampling 

frequency is greater than twice the highest 

frequency.”  

Sampling below this rate introduces aliasing 

 

Subspace of 

bandlimited 

signals 

Sampling 

Operator 

S i g n a l s p a c e 

Reconstruction 

Operator (linear) 

Observation space 



IDCOM, University of Edinburgh 

Generalized Sampling 

Different ways to measure… 
Equivalent to inner product with various functions 

 

 

 

 

 

 

 

pointwise sampling, tomography, coded aperture,… 

 ,   
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Generalized Sampling 

Different ways to measure… 
Equivalent to inner product with various functions 

 

 

 

 

 

 

 

pointwise sampling, tomography, coded aperture,… 

 ,   
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Generalized Sampling 

Different ways to measure… 
Equivalent to inner product with various functions 

 

 

 

 

 

 

 

pointwise sampling, tomography, coded aperture,… 

 ,   
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New Challenges 

Challenge #1: Insufficient Measurements 

Complete measurements can be costly, time 

consuming and sometimes just impossible! 
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New Challenges 

Challenge #2: Too much data 
e.g.  

DARPA ARGUS-IS  

1.8 Gpixel image sensor 

15cm resolution, 12 frames a second 

Giving a video rate output: 

444 Gbits/s 

… but the comms link data rate is: 

274 Mbits/s 

Currently visible spectrum. What about 

hyperspectral?… 
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The new hope: Compressed Sensing 

When compressing a signal we typically take lots of samples (sampling 

theorem), move to a transform domain, and then throw most of the 

coefficients away! Can we just sample what we need? 

Yes! …and more surprisingly we can do this non-adaptively. 

Why can’t we just sample signals at the “Information Rate”? 

E. Candès, J. Romberg, and T. Tao, “Robust Uncertainty principles: Exact 

signal reconstruction from highly incomplete frequency information,” IEEE 

Trans. Information Theory, 2006 

D. Donoho, “Compressed sensing,” IEEE Trans. Information 

Theory, 2006  
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Compressed sensing Overview 

Compressed Sensing assumes a 

compressible set of signals, i.e. 

approximately k-sparse. 

Using approximately  

𝑚 ≥ 𝒪 𝑘 log2

𝑁

𝑘
 

random projections for measurements 

we have little or no information loss.  

Signal reconstruction by a nonlinear 

mapping. 

Many practical algorithms with 

guaranteed performance e.g. 𝐿1 min., 

OMP, CoSaMP, IHT. 

Compressible 

set of interest 

random projection 

(observation) 

nonlinear 

approximation 

(reconstruction) 

Observe 𝒙 ∈ ℝ𝑁 via 𝑚 ≪ 𝑁 measurements, 𝒚 ∈ ℝ𝑚 where 𝒚 = Φ𝒙 
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CS acquisition/reconstruction principle 

original “Tom” 

Sparsifying 
transform 

Wavelet 
image 

1 
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CS acquisition/reconstruction principle 

X = 

2 

Observed data original “Tom” 

Sparsifying 
transform 

Wavelet 
image 

1 
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CS acquisition/reconstruction principle 

X = 

2 

Observed data 

roughly equivalent 

Wavelet 
image 

Sparse 
Approximation 

3 

original “Tom” 

Sparsifying 
transform 

Wavelet 
image 

1 
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CS acquisition/reconstruction principle 

sparse “Tom” 

4 

Invert transform 

X = 

2 

Observed data 

roughly equivalent 

Wavelet 
image 

Sparse 
Approximation 

3 

original “Tom” 

Sparsifying 
transform 

Wavelet 
image 

1 
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Potential applications 

Compressed Sensing provides a new way of thinking about signal 
acquisition.  

Applications areas include: 

•Medical imaging 

•Hyperspectral imaging 

•Astronomical imaging 

•Distributed sensing  

•Radar sensing 

•Geophysical (seismic) exploration 

•High rate A/D conversion  
 (DARPA A2I research program) 

 

Rice University single pixel camera  
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Information preserving sensing matrices 
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Underdetermined (𝑚 < 𝑛) linear systems 

are not invertible: Φ𝑥 = Φ𝑥′ ⇏ 𝑥 = 𝑥′. 

However, they may be invertible restricted 

to the sparse set. 

 

Information preservation 

M x1 M x N N x1 

M x1 2k x1 

Define the null space of Φ as: 𝒩(Φ) = {𝑧:Φ𝑧 = 0}. 

Then 

Φ𝑥 = Φ𝑥′ ⟹ 𝑥 = 𝑥′ 

for any k-sparse vectors, 𝑥 and 𝑥, ′ if and only if  

Φ𝑧 = 0 ⟹ 𝑧 = 0 

for all 2k-sparse vectors, z.  

That is: 

1. the null space of Φ cannot contain 2k-sparse vectors, or 

2. submatrices, ΦΛ, with column index sets Λ = 2𝑘 must be full rank. 

Φ 

ΦΛ 
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Uniqueness of the inverse map 

For almost every Φ:ℝ𝑁 → ℝ𝑚, 𝑘 ≤ 𝑚/2 

 

Φ𝑥1 ≠ Φ𝑥2 ∀ k−sparse 𝑥1 ≠ 𝑥2 

 

i.e. we can retrieve the original k-sparse vector using the following 

𝐿0 minimization scheme:  

 

 𝑥 = argmin
𝑥

 𝑥 0 subject to Φ𝑥 = 𝑦 

 

Where 𝑥 0 is the 𝐿0 (quasi-) norm that counts the number of nonzero 

elements in 𝑥. Unfortunately 𝐿0  solution may not be robust and solving the 

𝐿0 minimization is known to be NP complete (computationally infeasible). 
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Robust Null Space Properties 

In order to achieve robustness we need to consider stronger NSPs 

 

[Cohen et al. 2009] introduced the notion of Instance Optimality and 

showed that the following are equivalent up to a change in constant C 

 

1. There existing a reconstruction mapping, Δ, such that for all 𝑥: 

Δ Φ𝑥 − 𝑥 1 ≤ 𝐶𝜎𝑘 𝑥 1 

 where 𝜎𝑘 𝑥 1 is the 𝐿1 best k-term approximation error of 𝑥 

2. Φ satisfies the following NSP: 

𝑧Λ 1 ≤ 𝐶′𝜎2𝑘 𝑧 1 

 for all 𝑧 ∈ 𝒩(Φ). 

 

Informally, null space vectors must be relatively flat.  
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Deterministic Sensing Matrices 

Showing the NSP for a given Φ involves combinational computational 

complexity. The coherence of a matrix provides easily computable 

guarantees. 

Coherence 

𝜇 Φ = max
1≤𝑖<𝑗≤𝑁

Φ𝑖 , Φ𝑗

Φ𝑖 Φ𝑗

 

Using the coherence it is possible to show that Φ is invertible on the 

sparse set if: 

𝑘 <
1

2
1 +

1

𝜇(Φ)
 

 

However, this only guarantees that 𝑘~𝒪( 𝑚). 
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Restricted Isometry Property 

Low Distortion Embeddings 

A useful tool in compressed sensing is the restricted isometry constant 

(RIC), the smallest constant 𝛿𝑘 for which: 

 

(1 − 𝛿𝑘) 𝑥 2 ≤ Φ𝑥 2 ≤ 1 + 𝛿𝑘 𝑥 2 
 

holds for all k-sparse vectors 𝑥.  
 

A matrix Φ with 𝛿2𝑘 < 1 provides an embedding (one-to-one mapping) for 

the k-sparse set. 𝛿2𝑘 also quantifies the robustness of the embedding (low 

distortion). 

Random observations – a key insight in compressed sensing is that 

random matrices have small RICs with high probability whenever: 
 

𝑚~𝒪 𝑘𝛿2𝑘
−2 log2 𝑁 𝑘  
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Practical sparse reconstruction 
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Sparse Recovery via 𝑳𝟏 Minimization 

A key advance in Sparse Representations was the use of the 𝐿1 

minimization as a proxy for 𝐿0 reconstruction: 

 

 𝑥 = argmin
𝑥

 𝑥 1 subject to Φ𝑥 = 𝑦 

 

where the 𝐿1 norm is defined as: 𝒙 1 =  𝑥𝑖𝑖   

 

Intuition: 
1. Minimum 𝐿1 solutions -     - are sparse 

2. 𝐿1 ball is the “closest” convex set to the bounded 𝐿0 ball 

Φ𝑥 = 𝑦 
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𝑳𝟏 Performance Guarantees 

For deterministic matrices 𝐿1 minimization guarantees derived from 

coherence [Donoho & Elad 2003] : m~𝒪 𝑘2 . 

 

For general matrices [Candes 2008] showed: 

 

Theorem: If Φ has RIP 𝛿2𝑘 ≤ 2 − 1  ⟹ 𝐿1NSP ⟹ Instance Optimality: 

 

Δ Φ𝑥 − 𝑥 1 ≤ 𝐶𝜎𝑘 𝑥 1 

 

Hence i.i.d. random matrices are near optimal: m~𝒪 𝑘 log 𝑁 𝑘   

 

Since then it has been shown [Donoho & Tanner 2009] that 𝐿1 − 𝐿0 

equivalence for sparse vectors if: m ≥ 2𝑘 log 𝑁 𝑘 . 
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Other Practical Recovery Algorithms 

The other main class of practical (polynomial complexity) recovery 

algorithm with performance guarantees is “Greedy methods”. 

 

Aim to solve mixed continuous/discrete 𝐿0 minimization problem using: 

• Least squares minimization and 

• Hard decisions on coefficient selection 

 

There are various flavours with different near optimal guarantees:  

• Orthogonal Matching Pursuit (OMP) [Tropp & Gilbert 2007] 

• Compressive Sampling Matching Pursuit (CoSAMP) [Needell & Tropp 2008] 

• Iterative Hard Thresholding (IHT) [Blumesath & Davies 2009/10] 

 

Performance guarantees come directly from RIP type considerations. 
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Summary & Engineering Challenges 

Sparse Representations provide a powerful nonlinear model for 

real world signals.  

Sparse signals can be sampled and faithfully reconstructed using 

many fewer samples than predicted by traditional sampling theory.  

 

Engineering Challenges in CS 
 

• What is the right signal model? 
Sometimes obvious, sometimes not. When can we exploit additional 

structure? 

• How can/should we sample? 
Physical constraints; SNR issues; can we randomly sample; 

exploiting structure; how many measurements? 

• What are our application goals? 
Reconstruction? Detection? Estimation? 
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