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Source Separation and Component Analysis  

H W Independent? 

Optimize 

Mixing Process Un-mixing Process 

Mixing Model:  x = Hs 

Un-mixing Model:  y = Wx = WHs =PDs 

Unknown  Known  
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Principal Component Analysis (PCA)  

Orthogonal projection of data onto lower-dimension linear 
space: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i. maximizes variance of projected data 
 

ii. minimizes mean squared distance between data 
point and projections 
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Principal Component Analysis (PCA)  

Example: 2-D Gaussian Data 
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Principal Component Analysis (PCA)  

Example: 1st PC in the direction of the largest 
variance 
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Principal Component Analysis (PCA)  

Example: 2nd PC in the direction of the second largest 
variance and each PC is orthogonal to other 
components.  
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Principal Component Analysis (PCA)  

• In PCA the redundancy is measured by 
correlation between data elements 
 

• Using only the correlations as in PCA has the 
advantage that the analysis can be based on 
second-order statistics (SOS) 
 

 
In the PCA, first the data is centered by 
subtracting the mean 

 
x = x − 𝐸{x} 
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Principal Component Analysis (PCA)  

Variance of the first transformed factor 
 

      𝐸 𝑦1
2 = 𝐸 (w1

𝑇x)2 =  𝐸 (w1
𝑇x)(x𝑇w1)  

  

The data  x  is linearly transformed 

subject  to   w1 =1 
 

Mean of  the first transformed factor   
 

                          𝐸 𝑦1 = 𝐸 w1
𝑇x = w1

𝑇𝐸 x =  0 

𝑦1 = 𝑤𝑗1𝑥𝑗

𝑛

𝑗=1

= w1
𝑇x 
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Principal Component Analysis (PCA)  

𝐸 𝑦1
2   =  𝐸 (w1

𝑇x)(x𝑇w1)  =  w1
𝑇𝐸 xx𝑇  w1 

            =  w1
𝑇Rxx w1                                                  (1) 

The above correlation matrix is symmetric  

 a𝑇Rxx b  =  b𝑇Rxx a  

Correlation matrix Rxx is not in our control and depends 
on the data x.  

 
We can control w? 
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Principal Component Analysis (PCA)  

𝐸 𝑦1
2   =  w1 + ∆w

𝑇Rxx w1 + ∆w  

              

              =  w1
𝑇Rxx w1 + 2∆w𝑇Rxx w1 + ∆w𝑇Rxx ∆w 

At maximum variance a small change in w will not affect 
the variance     

(PCA by Variance Maximization) 

  

where ∆w is very small quantity and therefore  
 
𝐸 𝑦1
2   =  w1

𝑇Rxx w1 + 2∆w𝑇Rxx w1                                (2) 

By using (1) and (2) we can write  

∆w𝑇Rxx w1 
      =  0                                                                         (3) 

UDRC Summer School, 23 July 2015  11 



Advanced Signal Processing Group 

Principal Component Analysis (PCA)  

As we know that   
 

   w1+ ∆w   = 1 
 
therefore 
 
           w1+ ∆w

𝑇 w1+∆w  = 1 
 
              w1

𝑇w 1 + 2∆w𝑇w1+ ∆w𝑇∆w  = 1 
 
where ∆w is very small quantity and therefore  
 
        1 + 2∆w𝑇w1 + 0 = 1  
 

                     ∆w𝑇w1 = 0                                               (4) 

 

The above result shows that w1 and ∆w are orthogonal to 

each other.   
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Principal Component Analysis (PCA)  

By careful comparison of (3) and (4) and by considering Rxx 
 
                        ∆w𝑇Rxx w1 

      − ∆w𝑇𝜆1w1 
      =  0  

                   
                       ∆w𝑇 Rxx w1 −  𝜆1w1           =  0  
 
    since        ∆w𝑇 ≠ 0 
                                 
                  ∴           Rxx w1 −  𝜆1w1           =  0 
 
                 →            Rxx w𝑖 = 𝜆𝑖w𝑖          𝑖 =1, 2, … , 𝑛           (5) 
 
    where  
     
               𝜆1, 𝜆2, ………… , 𝜆𝑛      are eigenvalues of Rxx 
     
    and 
              w1,w2, ………… ,w𝑛   are eigenvectors of Rxx  
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Principal Component Analysis (PCA)  

               Rxx w𝑖  =  𝜆𝑖w𝑖 ,    𝑖 =1, 2, … , 𝑛 
 
                𝜆1= 𝜆𝑚𝑎𝑥 > 𝜆2 > ……… > 𝜆𝑛  
     
    and 
                    E  =  w1, w2, ……… ,w𝑛   
 
       ∴         RxxE = E Λ                                                    (6) 
    
    where  
                    Λ = dig 𝜆1, 𝜆2, ……… , 𝜆𝑛   
 
     We know that E is orthogonal matrix 
 
                     E𝑇E  = Ι  
 
     and we can update (7) 
 
                     E𝑇RxxE = E

𝑇E Λ = ΙΛ= Λ                                    (7) 
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Principal Component Analysis (PCA)  

    In expanded form (7) is 
 

                             w𝑖
𝑇Rxx w𝑗  = 

𝜆𝑖 𝑖 = 𝑗
0 𝑖 ≠ 𝑗

 

 
    Rxx is symmetric and positive definite matrix and can be 
   represented as [Hyvarinen et  al.] 
 
                                     Rxx   =   𝜆𝑖

𝑛
𝑖=1  w𝑖

𝑇  w𝑗     
  
    We know  

                                   w𝑖
𝑇w𝑗   = 

1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗

 

     
    Finally, (1) will become 
  
                        𝐸 𝑦𝑖

2   =  w𝑖
𝑇Rxx w𝑖 = 𝜆𝑖,            𝑖 =1, 2, … , 𝑛      8  

 
     

Can we define the principal components now?  
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Principal Component Analysis (PCA)  

In a multivariate Gaussian probability density, the 
principal components are in the directions of 
eigenvectors w𝑖 and the respective variances are 
the eigenvalues 𝜆𝑖. 
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There are 𝑛 possible solutions for w and   
 
                              𝑦𝑖=    w𝑖

𝑇x   =  x𝑇w𝑖               𝑖 =1, 2, … , 𝑛 
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Principal Component Analysis (PCA)  

Data whitening is another form of PCA 
 
The objective of whitening is to transform the observed 
vector z = Vx,  which is uncorrelated and with variance 
equal to identity matrix  
 

 𝐸 zz𝑇   = Ι 
 
 
 
The unmixing matrix, W, can be decomposed into two 
components: 

W = UV 
 
Where U is rotation matrix and V is the whitening matrix 
and  

 
V = Λ−1/2 E𝑇      

 
 
  

Whitening  
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Principal Component Analysis (PCA)  

z = Vx 
 
          𝐸 zz𝑇   = V𝐸 xx𝑇 V𝑇 =  Λ−1/2 E𝑇𝐸 xx𝑇 E Λ−1/2 
 
                         =  Λ−1/2 E𝑇RxxE Λ

−1/2 = Ι 
 
 
The covariance is unit matrix, therefore z is whitened    
 
Whinintng matrix, V, is not unique. It can be pre-multiply 
by an orthogonal matrix to obtain another version of V 
 
 
Limitations:  
 
PCA only deals with second order statistics and 
provides only decorrelation. Uncorrelated components 
are not independent   

Whitening  
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Principal Component Analysis (PCA)  

Limitations  
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Two components with uniform distributions and their mixture   

The joint distribution of ICs 𝑠1(horizontal axis) and 𝑠2 
(vertical axis) with uniform distributions. 

The joint distribution of  observed mixtures 

𝑥1(horizontal axis) and 𝑥2 (vertical axis). 
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Principal Component Analysis (PCA)  

Limitations  
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Two components with uniform distributions and after PCA 

PCA does not find original coordinates 

 Factor rotation problem 

The joint distribution of ICs 𝑠1(horizontal axis) and 𝑠2 
(vertical axis) with uniform distributions. 

The joint distribution of the whitened mixtures of 

uniformly distributed ICs 
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Principal Component Analysis (PCA)  

Limitations: uncorrelation and independence    

If two zero mean random variables 𝑠1 and 𝑠2 are uncorrelated then 
their covariance is zero: 
                                cov 𝑠1, 𝑠2 = 𝐸 𝑠1𝑠2 = 0 
 
If 𝑠1 and 𝑠2 are independent, then for any two functions, 𝑔1and 𝑔2 we 
have  
                                𝐸 𝑔1 𝑠1 𝑔2(𝑠2) = 𝐸 𝑔1(𝑠1) 𝐸 𝑔2(𝑠2)  
 
If random variables are independent then they are also uncorrelated 
 
If 𝑠1 and 𝑠2 are discrete valued and follow such a distribution that the 
pair are with probability 1/4 equal to any of the following values: (0,1), 
(0,-1), (1,0) and (-1,0).  Then  
 
                                          𝐸  𝑠1

2𝑠2
2) = 0 ≠

1

4
= 𝐸 𝑠1

2 𝐸 𝑠2
2   

 
Therefore, uncorrelated  components are not independent  
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Principal Component Analysis (PCA)  

Limitations: uncorrelation and independence    

However, uncorrelated components of Gaussian distribution 
are independent    
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Distribution after PCA is same as distribution before mixing  
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Independent Component Analysis (ICA)  

Independent component analysis (ICA) is a statistical and 
computational technique for revealing hidden factors that 
underlie sets of random variables, measurements, or signals.  
 
ICA separates the sources at each frequency bin 
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Independent Component Analysis (ICA)  

The fundamental restrictions in ICA are: 
 

i. The sources are assumed to be statistically 

independent of each other. Mathematically, 

independence implies that the joint probability density 

function p(s) of the sources can be factorized 

 

 

 

 

 

ii. All but one of the sources must have non-Gaussian 

distributions 

 

 
 

sourceth -  theofon distributi marginal  theis   where

                                  
1

i)(sp

)(spp(s) 

ii

n

i

ii
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Independent Component Analysis (ICA)  

Why? 

The joint pdf of two Gaussian ICs, 𝑠1and 𝑠2 is: 

 

   𝑝 𝑠1, 𝑠2 =
1

2𝜋
exp −

𝑠1
2+𝑠2
2

2
=
1

2𝜋
exp −

s 2

2
 

If the mixing matrix H is orthogonal, the joint pfd of the mixtures 

𝑥1and 𝑥2 is:  

                    𝑝 𝑥1, 𝑥2 =
1

2𝜋
exp −

H
𝑇
s
2

2
detH

𝑇
                      

H is orthogonal, therefore H
𝑇
s
2
= s 2 and detH

𝑇 = 1 

 

 𝑝 𝑥1, 𝑥2 =
1

2𝜋
exp −

s 2

2
 

 

Orthogonal mixing matrix does not change the pdf and original and 

mixing distributions are identical. Therefore, there is no way to 

infer the mixing matrix from the mixtures  
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Independent Component Analysis (ICA)  

iii. In general, the mixing matrix H is square (𝑛 =  𝑚) and 

invertible  

 

iv. Methods to realize ICA are more sensitive to data 

length than the methods based on SOS 

 

Mainly,  ICA relies on two steps: 

 

A statistical criterion, e.g. nongaussianity measure, 

expressed in terms of a cost/contrast function 𝐽(𝑔(𝑦)) 
 

An optimization technique to carry out the minimization or 

maximization of the cost function 𝐽(𝑔(𝑦)) 
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Independent Component Analysis (ICA)  

1. Minimization of Mutual Information 

     (Minimization of Kullback-Leibler Divergence) 

 

2. Maximization of Likelihood 

 

3. Maximization of Nongaussianity 
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Central limit theorem: subject to certain mild conditions, the 

sum of a set of random variables has a distribution that 

becomes increasingly Gaussian as the number of terms in the 

sum increases 

 

 

 

 

 

 

 

 

 

So roughly, any mixture of components will be more Gaussian 

than the components themselves 

Independent Component Analysis (ICA)  

Nongaussainity and Independence   
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Histogram plots of the mean of N uniformly distributed numbers for various values of N. As N increases, 

the joint distribution tends towards a Gaussian. 
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Independent Component Analysis (ICA)  

Nongaussainity and Independence   

Central limit theorem:  The distribution of Independent  random 

variables tends towards a Gaussian distribution, under certain 

conditions 

 

If 𝑧𝑖 is independent and identically distributed random variable then 

 𝑥𝑛 =  𝑧𝑖
𝑛
𝑖=1   

 

Mean and variance of 𝑥𝑛 grow without bound when 𝑛 → ∞, and 

   𝑦𝑛= (𝑥𝑛−𝜇𝑥𝑛)/𝛿𝑥𝑛
2    

 

It has been shown that the distribution of  𝑦𝑛 converges to a Gaussian 

distribution with zero mean and unit variance when 𝑛 → ∞. This is 

known as the central limit theorem   
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Independent Component Analysis (ICA)  

Nongaussainity and Independence   

In BSS, if 𝑠𝑗, 𝑗 = 1, … , 𝑛  are unknown source signals and mixed 

with coefficients ℎ𝑖𝑗, 𝑖 = 1, … ,𝑚  then                        

                               𝑥𝑖 =  ℎ𝑖𝑗𝑠𝑗
𝑛
𝑗=1   

 

The distribution of the mixture 𝑥𝑖 is usually near to Gaussian when 

the number of sources 𝑠𝑗 is fairly small 

 

We know that  

                              𝑦𝑖 =  𝑤𝑗𝑖𝑥𝑗 = w𝑖
𝑇x 𝑚

𝑗=1   

 

How could the central limit theorem be used to determine w𝑖 so 

that it would equal to one of the rows of the inverse of mixing 

matrix H (y ≈ H
−1

x) ?    
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Independent Component Analysis (ICA)  

Nongaussainity and Independence   

In practice, we couldn’t determine such a w𝑖 exactly, because the 

problem is blind i.e. H is unknown  

 

We can find an estimator that gives good approximation of w𝑖. 

 

By varying the coefficients in w𝑖, and monitoring the change in 

distribution of 𝑦𝑖 = w𝑖
𝑇x  

 

Hence, maximizing the non- Gaussainity of  w𝑖
𝑇x  provides one of 

the Independent Components 

 

How we can maximize the nongaussainity ? 
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Independent Component Analysis (ICA)  

Nongaussainity by Kurtosis   

For ICA estimation based on nongaussainity,  we require a 

qualitative measures of nongaussainity of a random variable 

 

Kurtosis is the name given to the forth-order cumulants of a 

random variable e.g.𝑦, the kurtosis is defined as: 

                               
 kurt 𝑦 = 𝐸 𝑦4 − 3 𝐸 𝑦2 2 

 

If the data is whitened, e.g. zero mean and unit variance, then 

kurt 𝑦 = 𝐸 𝑦4 − 3  is normalized version of the fourth moment 

𝐸 𝑦4   
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Independent Component Analysis (ICA)  

Nongaussainity by Kurtosis   

For Gaussian variable 𝑦, the fourth moment is equal to 

3 𝐸 𝑦2 2. Therefore, kurtosis is zero for Gaussian random 

variables 

 

 

 

 

 

 

 

 

 

 

Typically nongaussianity is measured by the absolute value of 

kurtosis 
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Nongaussian Distributions  

Independent Component Analysis (ICA)  

UDRC Summer School, 23 July 2015  34 

Random variable that have a positive kurtosis are called supergaussian. 

A typical example is Laplacian distribution  

 

Random variable that have a negative kurtosis are called subgaussian. 

A typical example is the uniform distribution  

 

Laplacian and Gaussian distributions.   Uniform and Gaussian distributions.   
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Independent Component Analysis (ICA)  

Kurtosis is not a robust measure of nongaussainity 

 

Kurtosis can be very sensitive to outliers. For example, in 1000 

samples of a random variable of zero mean and unit variance, if 

one value is equal to 10, then  

       

                           kurt 𝑦 =
104

1000
− 3 = 7 

 

A single value can make kurtosis large and the value of kurtosis 

may depends only on few observations in the tail of the 

distribution  

 

We have a better measure of nongaussainity than kurtosis? 

 

Limitations of Kurtosis  
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Nongaussainity by Negentropy    

Independent Component Analysis (ICA)  

A fundamental result of information theory is that a Gaussian 

variable has the largest entropy among all variables of equal 

variance. 

 

A robust but computationally complicated measure of 

nongaussainity is negentropy  
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Nongaussainity by Negentropy    

Independent Component Analysis (ICA)  

A measure that is zero for Gaussian variables and always 

nonnegative can be obtained from differential entropy, and 

called negentropy   

 

UDRC Summer School, 23 July 2015  37 



Advanced Signal Processing Group 

Nongaussainity by Negentropy    

Independent Component Analysis (ICA)  

A classical method of approximating negentropy based on 

higher-order cumulants  for zero mean random variable  𝑦 is:  

                             

𝐽 𝑦 ≈
1

12
𝐸 𝑦3 2 +

1

48
kurt 𝑦 2    

 

For symmetric distributions, the first term on right hand side of 

the above equation is zero.  

 

Therefore, a more sophisticated approximation of negentropy is 

required  
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Nongaussainity by Negentropy    

Independent Component Analysis (ICA)  

The method that uses nonquadratic function 𝐺, and provides a 

simple way of approximating the negentropy is [Hyvarinen et  al]:      

  

                            𝐽 𝑦 ∝ 𝐸 𝐺 𝑦 − 𝐸 𝐺 𝑣 2 

 

     where 𝑣 is a standard random Gaussian variable   

 

By choosing 𝐺 wisely, we can obtain approximation of negentropy 

that is better than the one provided by kurtosis 
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Independent Component Analysis (ICA)  

Nongaussainity by Negentropy    

By choosing a 𝐺 that does not grow too fast, we can obtain more 

robust estimator. 

 

The following choices of 𝐺 have proved that these are very useful  

 

           𝐺1 𝑦 =
1

𝑎1
log cosh 𝑎1𝑦,        𝐺2 𝑠 = exp (−

𝑦2

2
) 

    where 1 < 𝑎1 < 2 is a constant and mostly equal to one 

 

The derivatives of above contrast functions are used in ICA 

algorithms  

                               𝑔1 𝑦 = tanh(𝑎1𝑦),  

                                   𝑔2 𝑦 = 𝑦 exp(−
y2

2
), 

𝑔3 𝑦 = 𝑦
3 
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Independent Component Analysis (ICA)  

Nongaussainity by Negentropy    

Different nonlinearities are required, which depends on the 

distribution of ICs  

Can we optimize the local maxima for nongaussainity of a linear 

combination 𝑦 =  𝑤𝑖𝑥𝑖𝑖  under the constraint that the variance of  𝑦 
is constant?  

UDRC Summer School, 23 July 2015  41 

The robust nonlinearities 𝑔1 (solid line), 𝑔2 (dashed line) and 𝑔3 (dash-doted line).   
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ICA Estimation Principle 1   

Independent Component Analysis (ICA)  

To find the unmixing matrix W, so that the components 𝑦𝑖   and 𝑦𝑗, 

where 𝑖 ≠ 𝑗, are uncorrelated, and the their nonlinear functions 

𝑔(𝑦𝑖) and ℎ(𝑦𝑗), are also uncorrelated.  

 

The above nonlinear decorrelation is the basic ICA method   
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Independent Component Analysis (ICA)  

ICA Learning Rules  

In gradient descent, we minimize a cost function 𝐽(W) from its 

initial point by computing its gradient at that point, and then move 

in the direction of steepest descent  

 

The update rule with the gradient taken at the point W𝑘 is:  

                   W𝑘+1 =W𝑘 −  μ
𝜕𝐽 W
𝜕W

 

 

According to Amari et al., the largest increase in 𝐽(W+𝜕W)  can be 

obtained in the direction of natural gradient   

        
𝜕𝐽(W)

𝜕W𝑛𝑎𝑡
=
𝜕𝐽 W

𝜕W
W
𝑇
W 
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Independent Component Analysis (ICA)  

ICA Learning Rules  

Therefore, the update equation of natural gradient descent is: 

                            W𝑘+1 =W𝑘 −  μ
𝜕𝐽 W
𝜕W

W𝑘
𝑇
W𝑘 

The final update equation of the natural gradient algorithm is: 

   

                             W𝑘+1 =W𝑘 +  μ[I− y𝑇𝑔(y)] W𝑘 
 

     where μ is called the step size or learning rate  

 

For stability and convergence of the algorithm 0 < μ ≪ ∞. If we 

select a very small value of μ then it will take more time to 

reach local minima or maxima 
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Independent Component Analysis (ICA)  

W0   = randn(𝑛, 𝑛) 

Y =
𝑦1
𝑦2

 𝑔(Y) =
𝑔(𝑦1)
𝑔(𝑦2)

 

For 𝑛 = 2 

Initialize the unmixing matrix 

 

 

 

 

 

 

The target is:  

 

       [I−y𝑔 y 𝑇] = 0  
 

⇒ 𝐸 I = 𝐸 y𝑔 y 𝑇 = R𝑦𝑦 

      

 How we can diagonalize R𝑦𝑦? 

ICA Learning Rule 
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Independent Component Analysis (ICA)  

If       

ΔW=W𝑘+1 −W𝑘 

           

      and  

                  𝑅𝑦𝑦 =
𝑦1𝑔(𝑦1) 𝑦1𝑔(𝑦2)
𝑦2𝑔(𝑦1) 𝑦1𝑔(𝑦2)

,  

  

Then  

 

ΔW=μ
𝑐1 − 𝑦1𝑔(𝑦1) 𝑦1𝑔(𝑦2)
𝑦2𝑔(𝑦1) 𝑐2 − 𝑦1𝑔(𝑦2)

W⟹ 0 

 

 

Update W so that 𝑦1 and 𝑦2 become mutually independent  

ICA Learning Rule 
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ICA Estimation Principle 2   

Independent Component Analysis (ICA)  

To find the local maxima of nongaussainity of a linear 

combination 𝑦 =  𝑤𝑖𝑥𝑖𝑖  under  the condition that the variance of 

𝑦 is constant. Each local maxima will provide one independent 

component 

 

ICA by maximization of nongaussainity is one of the most widely 

used techniques   

 

UDRC Summer School, 23 July 2015  47 



Advanced Signal Processing Group 

Independent Component Analysis (ICA)  

ICA Learning Rule 

We can derive a simple gradient algorithm to maximize 

negentropy    

 

First we whiten the data z = Vx, where V is the whitening 

matrix  

 

We already know that the function to measure negentropy is: 

                 

                       𝐽 𝑦 ∝ 𝐸 𝐺 𝑦 − 𝐸 𝐺 𝑣 2 

 

We know that 𝑦 = w𝑇z  and take the derivative of 𝐽 𝑦  with 

respect to w  

           
𝜕𝐽(𝑦)

𝜕w
∝              

                2 𝐸 𝐺 w𝑇z − 𝐸 𝐺 𝑣
𝜕

𝜕𝑤
𝐸 𝐺 w𝑇z − 𝐸 𝐺 𝑣      
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Independent Component Analysis (ICA)  

ICA Learning Rule 

𝜕𝐽(𝑦)

𝜕w
∝ 2 𝐸 𝐺 w𝑇z − 𝐸 𝐺 𝑣

𝜕

𝜕𝑤
𝐸 𝐺 w𝑇z − 𝐸 𝐺 𝑣  

 

             ∝ 2 𝐸 𝐺 w𝑇z − 𝐸 𝐺 𝑣 𝐸{𝑔 w𝑇z  
𝜕

𝜕𝑤
w𝑇z } 

 

  ∝ 2 𝐸 𝐺 w𝑇z − 𝐸 𝐺 𝑣 𝐸{z𝑔 w𝑇z } 
 

  If     𝛾 = 2 𝐸 𝐺 w𝑇z − 𝐸 𝐺 𝑣   then  

 
𝜕𝐽(𝑦)

𝜕w
∝  𝛾 𝐸{z𝑔 w𝑇z } 

   

Hence, the update equations of a gradient algorithm are: 

 

                         Δw ∝  𝛾 𝐸{z𝑔 w𝑇z }   and w⟵ w
w      
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Independent Component Analysis (ICA)  

Implementation Summary    

i. Center the data  x = x− 𝐸{x} 
 

ii. Whiten the data  z = Vx 

 

iii. Select a nonlinearity 𝑔  
 

iv. Randomly initialize w, with w = 1, and  𝛾 
 

v. Update Δw ∝  𝛾 𝐸{z𝑔 w𝑇z } 
 

vi.  Normalize w⟵ w
w  

 

vii. Update, if required,Δ𝛾 ∝ 𝐸 𝐺 w𝑇z − 𝐸 𝐺 𝑣 − 𝛾 
 

Repeat from step-v, if not converged.  
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Independent Component Analysis (ICA)  

Fast Fixed-point Algorithm (FastICA) 

FastICA  is based on a fixed point iteration scheme  to find a 

maximum of the nongaussianity of IC 𝑦  
 

 The above gradient method suggests the following fixed point 

iteration  

 

                         w =  𝐸 z𝑔 w𝑇z  

     

     the coefficient 𝛾 is eliminated by the normalization  

     step  

 

We can modify the iteration by multiplying w with some constant 

α and add on both sides of the above equation  

 

                         (1+α)w =  𝐸 z𝑔 w𝑇z + α w 
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Independent Component Analysis (ICA)  

Fast Fixed-point Algorithm (FastICA) 

               (1+α)w =  𝐸 z𝑔 w𝑇z + α w 

Due to the subsequent normalization of w to unit norm, the above 

equation gives a fixed point iteration. And α plays an important role 

in fast convergence  

 

The optima of 𝐸 𝐺 w𝑇z  under the constraint 𝐸 𝐺 w𝑇z 2 =
w 2 = 1 are obtained at points when the gradient of the 

Lagrangian is zero [Hyvarinen et al.] 

 

                         
𝜕𝐽(y)

𝜕w
= 𝐸 z𝑔 w𝑇z + 𝛽 w 

 

We can take derivative of the above equation to find the local 

maxima 

𝜕2𝐽(y)

𝜕w2
= 𝐸 zz𝑇𝑔′ w𝑇z + 𝛽 I 
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Independent Component Analysis (ICA)  

Fast Fixed-point Algorithm (FastICA) 

Data is whitened therefore 

 

𝜕2𝐽(y)

𝜕w2
= 𝐸 𝑔′ w𝑇z I+ 𝛽 I 

 

According to Newton’s method  

 

w ← w−
𝜕2𝐽(y)

𝜕w2

−1
𝜕𝐽(y)

𝜕w
 

  

Therefore Newton iteration is: 

    

       w ← w − 𝐸 𝑔′ w𝑇z + 𝛽 −1 (𝐸 z𝑔 w𝑇z + 𝛽 w) 
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         w ← w − 𝐸 𝑔′ w𝑇z + 𝛽 −1 (𝐸 z𝑔 w𝑇z + 𝛽 w) 

 

Multiply both sides of above equation with 𝐸 𝑔′ w𝑇z + 𝛽 and by 

simplifying, we obtain basic fixed-point iteration in FastICA  

 

                             w ← 𝐸 z𝑔 w𝑇z − 𝐸 𝑔′ w𝑇z   

         and 

 

w⟵ w
w  

 

 

Independent Component Analysis (ICA)  

Fast Fixed-point Algorithm (FastICA) 
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Independent Component Analysis (ICA)  

Fast Fixed-point Algorithm (FastICA) 

UDRC Summer School, 23 July 2015  55 

Results with FastICA using negentropy. Doted and solid 

lines show w after first and second iterations respectively 

(not at actual scale).    

The convergence of FastICA using negentropy, for 

supergusasain ICs (not at actual scale) 
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Independent Component Analysis (ICA)  

Implementation Summary of FastICA Algorithm  

i. Center the data  x = x− 𝐸{x} 
 

ii. Whiten the data  z = Vx 

 

iii. Select a nonlinearity 𝑔  
 

iv. Randomly initialize w, with constraint  w = 1 
 

v. Update w ← 𝐸 z𝑔 w𝑇z − 𝐸 𝑔′ w𝑇z  

 

vi.  Normalize w⟵ w
w  

 

Repeat from step-v till converge  
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Independent Component Analysis (ICA)  

Illustration of PCA vs. ICA   

Two components with uniform distributions: 
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Independent Component Analysis (ICA)  
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Permutation and scaling ambiguities  

Limitations of ICA  
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Independent Component Analysis (ICA)  

Limitations of ICA  
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Independent Vector Analysis (IVA)  

IVA models the statistical independence between sources. And  

maintains the dependency between frequency bins of each source  
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Independent Vector Analysis (IVA)  

IVA vs ICA   
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Independent Vector Analysis (IVA)  
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Independent Vector Analysis (IVA)  

The cost function is derived as 
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Independent Vector Analysis (IVA)  

Partial derivative of the cost function is employed to find 

gradient 

 

 

 

 

 

 

The natural gradient update becomes  
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Independent Vector Analysis (IVA)  

Multivariate score function 

 

 

 

A source prior applied in the original IVA 

 

 

 

For zero mean and unit variance data, the non-linear 

score function becomes  

 

 

 

 

and plays important role in maintaining the dependencies 

between the frequency bins of each source. 
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Conclusions  

• PCA can provide uncorrelated data and is limited to 

second order statistics.  

• ICA is nongaussian alternative to PCA.  

• ICA finds a linear decomposition by maximizing 

nongaussianity of the components. 

• Application of ICA for convolutive source separation is 

constraint by the scaling and permutation ambiguities. 

• IVA can mitigate the permutation problem during the 

learning process. 

• Robustness of IVA is proportional to the strength of 

source priors. 

• Above methods are applicable to determined and over-

determined cases.      
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