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Abstract—We investigate the effects of phase errors on under-
sampled synthetic aperture radar (SAR) systems. We show that
the standard methods of auto-focus, which are used as a post-
processing step, are typically not suitable. Instead of applying
auto-focus as a post-processor we propose using a stable algo-
rithm, which is based on algorithms from the dictionary learning
literature, that corrects phase errors during the reconstruction
and is found empirically to recover sparse SAR images.

I. INTRODUCTION

There are a number of non-standard synthetic aperture
radar (SAR) systems, where, without further information, the
problem of reconstructing a SAR image from the acquired data
is ill-posed. Two such systems are multifunction and ultra wide
band (UWB) SAR. In a multifunction SAR system, the radar
antenna is used for multiple tasks which causes interruptions
in the uniform acquisition of SAR data along the synthetic
aperture [1]. In the case of UWB SAR, the transmitted signal
spectrum is broad and hence contains sub-bands that are in use
by other communications systems or in which transmission
is not allowed. To avoid interference, notching filters are
commonly introduced into the transmitter and receiver to avoid
using these sub-bands [2]. In both these scenarios we have
incomplete SAR data and hence without further information,
the image reconstruction problem is ill-posed. In order to
make the problem well-posed, an appealing idea is to apply
the tools and theory of compressed sensing (CS) and sparse
approximation.

The theoretical results of CS are based on exact knowl-
edge of the linear acquisition system, however, in practical
situations, such a system cannot be known perfectly. This is
the case in SAR where the received phase histories contain
phase errors due to imperfect system modelling. Traditional
SAR systems overcome these errors by post-processing the
reconstructed image, a method which may not be compatible
with under-sampled SAR.

The paper is organised as follows: in Section II we provide
a model of the SAR acquisition system with phase errors.
We then describe in Section III how classical methods can
fit into the CS framework and their possible short comings.
Inherent ambiguities in the under-sampled phase error problem
are analysed in Section IV. A practical recovery algorithm
for under-sampled SAR with phase errors is proposed in
Section V. We then finish with some experimental results in
Section VI to demonstrate the effectiveness of the proposed
algorithm.

II. SAR PHASE ERROR MODEL

SAR systems which use dechirp-on-receive must estimate
the round trip propagation delay to the scene centre at each
position along the aperture. Errors in this estimate, which can
be due to a non-idealised propagation medium or inaccuracies
in the inertial navigation system, introduce unknown phase
errors into the acquired data [3]. If not corrected, phase
errors can degrade and produce distortions in the reconstructed
image.

Adding a delay error τe at each aperture position produces
the following SAR system model,

ykl = ejφkl

M∑
m=1

N∑
n=1

xmn exp
{
−j(2umnk

c
− τ0) (ω0 + 2α (lTs − τ0))

}
,

(1)
where, Y = {ykl} ∈ CM ′×N ′

are the phase histories,
X = {xmn} ∈ CM×N are the scene reflectivities, {φkl} =
(ω0τek

−ατ2
ek

)+2ατek
(lTs− τ0) ∈ CM ′×N ′

are the phase er-
rors which result from the delay errors, {umnk} ∈ RM×N×M ′

are the distances between each element in the scene and each
aperture position, c is the speed of light in a vacuum, τ0
is the true propagation delay to the scene centre, Ts is the
range sampling period, 2α is the chirp rate and ω0 is the
carrier frequency. If we neglect the effects of the linear phase
term, which is a valid approximation for narrow bandwidth
systems, the discrete SAR observation model with phase errors
becomes:

Y = diag
{

ejφ
}
h (X) , (2)

where h : CM×N → CM ′×N ′
is a linear map that models the

ideal SAR observation model which is the summation in (1)
and

φk = ω0τek
− ατ2

ek
(3)

are the constant phase errors.
Clearly, without further assumptions, the problem of recov-

ering φ and X from Y is ill-posed if M ′ = M and N ′ = N ,
since there are only MN equations and M(N+1) unknowns.



III. CLASSICAL AUTO-FOCUS

Classical auto-focus methods such as the phase gradient
auto-focus (PGA) algorithm [4] make a far-field and small
aperture angle approximation in the standard dechirped SAR
acquisition system, e.g. see [3]. Under these approximations
the system can be modelled as a LHS and RHS matrix
multiplication as in

Y = diag
{

ejφ
}
AXB, (4)

where, amn = exp{−j(2π(m−1)(n−1)/M−(m−1)π−(n−
1)π +Mπ/2)} and bmn = exp{−j(2π(m− 1)(n− 1)/N −
(m− 1)(2πωo/2αT −π)− (n− 1)π+Nπ/2− 2ωoL/c)} are
the elements of the cross-range matrix A ∈ CM×M and the
range matrix B ∈ CN×N respectively, where, L is the scene
radius and T is the chirp period.

Since, A is essentially a Fourier matrix, we can rewrite
the observation model in (4) as Y = AΨXB, where, Ψ is a
circulant matrix which can be viewed as a filter in cross-range.

Classical auto-focus algorithms recover ΨX from Y , which
is straight forward because A and B are invertible. X is then
recovered from the filtered image ΨX , by assuming additional
constraints on Ψ and X .

When Y is under-sampled in cross-range the observation
model will be:

Y ′ = A′ΨXB, (5)

where, A′ ∈ CM ′×M is a M ′ < M row subset of A. With
this model, unlike in the fully-sampled situation, A′is not
invertible. However, CS results can be used analyse the ex-
pected reconstruction quality of ΨX when it is reconstructed
by solving a non-linear reconstruction algorithm.

If the under-sampling in Eq.(5) is random, a sufficient order
for the number of cross-range samples required for stable
reconstruction is O(K log4(M)), for, K = Kψm

KX , where,
Kψm

and KX are the maximum required number of non-
zero elements needed to accurately approximate the rows of
Ψ and the columns of the true image X , respectively. The
reconstruction is stable in the sense that the columns of the
recover image Ψ̃X satisfies:

‖x̃− x‖2 ≤ C1,Kσ + C2,K
‖x− xK‖1√

K
[5], (6)

in words, the solution will be bounded by something that is
proportional to the noise energy σ and the error associated
with the best K-term approximation of x.

If the under-sampling in Eq.(5) is random, a sufficient
order for the number of range samples required for stable
reconstruction is O(K log4(N)), for, K = KΨX , where,
KΨX is the maximum required number of non-zero elements
needed to accurately approximate the rows of ΨX . The
reconstruction is stable in the sense that the rows of the recover
image Ψ̃X satisfy Eq. (6).

It is clear that the number of samples required for a stable
reconstruction scales with Kψm and thus the introduction

of phase errors increases the number of samples required
for stable reconstruction. For this reason, in most cases,
post-processing autofocus methods are unsuitable for under-
sampled SAR.

IV. UNIQUENESS

It is well known that there are inherit ambiguities in
the auto-focus problem which prevent the problem having
a unique solution. The formulation in (4) is known to be
ambiguous to constant and linear phase errors [3].

The uniqueness of the auto-focus problem is dependent on
the observation model h and the signal model of the scene X .
A necessary condition to guarantee uniqueness of the problem
is as follows:

h
(
X̃
)

= diag {d}h (X) ⇐⇒ X̃ = βX, (7)

∀(X̃,X,d) ∈
{
X̃ ∈ X ,X ∈ X ,d ∈ D

}
,

where,

X =
{
X ∈ CM×N : ‖X‖0 ≤ K

}
,

i.e. we know the scene has at most K scatters, and

D =
{
d ∈ CM

′
: |dm| = 1

}
is the set of all possible phase errors.

If 7 is satisfied then the problem is unique up to a scalar
β ∈ {β ∈ C : |β| = 1} multiplication of the true X , i.e. X̃ =
βX , and the solutions are given by the following program:

minimise
X,d∈D

‖X‖0

subject to diag {d}Y = h (X)
(8)

where, ‖.‖0 measures the number of non-zeros matrix ele-
ments.

V. ROBUST CONVEX RELAXATION

With the goal of designing an algorithm that is able to be
solved in polynomial time and which is also robust to noise,
the non-convex function ‖X‖0 in (8) can be replaced with its
closest convex function ‖X‖1 and the equality constraint can
be replaced with an inequality constraint that accommodates
noise, i.e.

minimise
X,d

‖X‖1

subject to ‖diag {d}Y − h(X)‖F ≤ σ
d∗mdm = 1, m = 1, . . . ,M.

(9)

Even though our objective function is now convex, (9) is still
non-convex because the equality constraint is not linear and
therefore does not define a convex feasible set.

A convenient formulation is to exchange to the inequality
constraint and the objective to form:



minimise
X,d

‖diag {d}Y − h(X)‖2F

subject to ‖X‖1 ≤ τ
d∗mdm = 1, m = 1, . . . ,M,

(10)

where, there is a one-to-one map, γ : σ → τ if 0 ≤ σ ≤
‖Y ‖F . The problem is still non-convex, however importantly,
in each set of variables X and d –with the other fixed– we
have a unique solution. This observation allows us to use a
block relaxation type method which has been found to be
effective in dictionary learning [6].

A. Majorisation Minimisation Method

Consider (10) when d is fixed, i.e.

minimise
X

f(X,d),

subject to ‖X‖1 ≤ τ
(11)

where,
f(X,d) = ‖diag {d}Y − h(X)‖2F . (12)

A method used for solving (11) is a technique known as “ma-
jorisation minimisation”. This technique replaces the objective
function with a surrogate function which is much easier to
solve. We can define our surrogate function as,

g(X,X‡,d) = ‖diag {d}Y − h(X)‖2F −∥∥∥h(X −X‡)∥∥∥2

F
+

L
∥∥∥X −X‡∥∥∥2

F
.

(13)

Replacing the objective function with the surrogate func-
tion, (11) becomes

minimise
X,X‡

g
(
X,X‡,d

)
subject to ‖X‖1 ≤ τ,

(14)

which is a minimisation based onX and a surrogate parameter
vectorX‡. In this program, ifX is fixed, the minimum of (14)
occurs at X‡ = X and if X‡ is fixed the minimum occurs at

minimise
X

‖X −C‖F
subject to ‖X‖1 ≤ τ

(15)

where, C = X‡ + 1
Lh

H(diag {d}Y − h(X‡)). Which is the
projection of C onto an `1 ball with a radius of τ . There are
efficient methods to exactly compute this projection [7].

By minimising (14) based on either X‡ and X in an alter-
nating fashion,X‡ andX will converge to the solution of (11)
so long as L ≥ ‖h‖2 [8], where, ‖h‖ = sup {‖h(X)‖F :
X ∈ CM×N with ‖X‖F = 1} is the operator norm of h.
In practice a feasible L can determined using a backtracking
line-searching.

B. Phase Minimisation

Consider (10) when X is fixed, which (ignoring constant
terms) is given by:

minimise
d

tr
{
−2 Re

{
diag

{
dH
}
h(X)Y H

}}
subject to d∗mdm = 1, m = 1, . . . ,M.

(16)

The unique solution of which is,

d = ej∠diag{h(X)Y H}. (17)

C. Block Relaxation Auto-focus

If we alternate between solving (11) and (16) in an alter-
nating fashion this can be seen as a block relaxation of (10)
the pseudo code of which is as follows:

Algorithm 1 A(X,d)
Output: X,d

repeat
X‡ ←X
X ← C(X,d)
d‡ ← d
d← ej∠diag{h(X)Y H}

until
∥∥∥X −X‡∥∥∥

F
< threshold ∧

∥∥∥d− d‡∥∥∥
F
< threshold

Where, C solves (11). The approaches used in [9] and [10]
are of this form. This type of method is known to be stable
assuming we can solve C, i.e. we exactly solve (11) at each
iteration. In practical systems where only an approximate
solution at each iteration can be obtained, no stability analysis
exists.

Another way to create a block relaxation is to consider the
problem with three blocks of parameters, i.e.

minimise
X,X‡,d

g
(
X,X‡,d

)
subject to ‖X‖1 ≤ τ

d∗mdm = 1, m = 1, . . . ,M,

(18)

As long as (18) is minimised by varying X followed by X‡

the solution for each sub-problem is easily commutable and
the complete algorithm is known to be stable and guaranteed
to converge to a accumulation point or a connected set of accu-
mulation points [6]. The pseudo code for this algorithm, when
phase minimisation occurs at each iteration, is as follows:

Where, Pτ (C) projects C onto an `1 ball with a radius of
τ . It is interesting to note that this algorithm can be seen as a
generalisation of Algorithm 1.

VI. EXPERIMENTAL RESULTS

In these experiments we investigate the reconstruction per-
formance of Algorithm 2 using under-sampled phase histories
that contain phase errors.



Algorithm 2 B(X,d)

Initialise: L ≥ ‖h‖2F
Output: X,d

repeat
X‡ ←X
C ←X‡ + 1

Lh
H
(

diag {d}Y − h
(
X‡
))

X ← Pτ (C)
d‡ ← d
d← ej∠diag {h(X)Y H}

until
∥∥∥X −X‡∥∥∥

F
< threshold ∧

∥∥∥d− d‡∥∥∥
F
< threshold

A. Synthetic Point-targets

In the first experiment we consider random under-sampling
of the synthetic aperture. In order to compare classical tech-
niques with Algorithm 2, we consider the model used in
classical auto-focus method techniques, (4). The scene con-
sists of a small number of constant amplitude point targets
randomly placed in the scene with additive Gaussian clutter.
Quadratic phase errors of the form, φm = γ((m − 1)/M)2,
were added to simulate platform velocity measurement errors.
The parameters for the synthetic model are in Table. I.

TABLE I
SAR SYSTEM PARAMETERS FOR SYNTHETIC EXPERIMENTS

parameter value
carrier frequency (ωo) 2π × 10× 109 rad/s
chirp bandwidth (2αT ) 2π × 150× 106 rad/s

scene radius (L) 50 m
number of targets 20

target to clutter ratio 50 dB

In order to assess the image reconstruction performance of
the two methods we define an image quality metric. Since the
auto-focus problem is ambiguous to scalar multiplication by
β ∈ {β ∈ C : |β| = 1} and cyclic permutation, we define a
metric that is immune to these ambiguities. We will refer to
this metric as relative SNR and define it as:

max
β,n

10 log10


∥∥∥X̃∥∥∥2

F∥∥∥X̃ − βP nX
∥∥∥2

F


 ,

where, n ∈ Z and

P =


0 0 . . . 0 1
1 0 . . . 0 0

0
. . . . . .

...
...

...
. . . . . . 0 0

0 . . . 0 1 0

 .

Fig. 2 shows the reconstruction performance of oracle clas-
sical auto-focus and Algorithm 2 with three different quadratic
phase errors. We refer to it as oracle classical auto-focus
because we use a `1-norm spectral projected gradient (SPG)
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Fig. 1. Phase error induced filters: the rows of Ψ, with different γ. (a)
γ = 0.1 (b) γ = 1 (b) γ = 10

method [8] to recover the filtered image and then correct it
to recover the image using oracle knowledge of the phase
errors. To provide an empirical upper-bound, we also show the
reconstruction performance that can be achieved with oracle
knowledge of the phase errors and also the locations of the
targets, we refer to this as the oracle reconstruction. The
magnitude of the corresponding filters for each of the phase
errors, the rows of Ψ, are shown in Fig. 1. As predicted in
Section III, as the value of Kψm increases, corresponding
to an increase in γ, the performance of classical auto-focus
techniques decreases, while the performance of Algorithm 2
is consistent.

B. GOTCHA Data Set

In the second experiment we consider random under-
sampling of the publicly available Gotcha data set [11] in
the range direction which simulates transmitter and receiver
notch filtering. To realistically model phase errors we add
errors to the supplied aperture position data such that errors
in the distance to the scene centre measurements, which are
used in observational model, are normally distributed with a
variance of 6.8 × 10−6 meters. In this experiment, the more
general –non Fourier– model (4) is used, where we compute
the observation model and its adjoint using the fast (re/back)-
projection algorithms from [10]. A classical auto-focus method
was not used in this experiment because even with only two
degrees of the Gotcha data set, the observation model is not
well-approximated by (4). Fig. 3(a) shows the reconstructed
image using a `1-norm SPG method. Fig. 3(b) shows the
reconstructed image using Algorithm 2. The reduction in side
lobes in Fig. 3(b) clearly demonstrates that Algorithm 2 is
effectively reconstructing the bright targets and correcting the
phase errors in a realistic under-sampled SAR problem.

VII. CONCLUSION

We have investigated the effects of phase errors on a under-
sampled SAR system. We have demonstrated that traditional
SAR auto-focus methods, that are a post-processing procedure,
are in most cases unsuitable when there is under-sampling.
We have also proposed and demonstrated empirically a stable
algorithm that can correct phase errors and recover a sparse
SAR image from an under-sampled phase history.

ACKNOWLEDGMENT

This work was supported in part by: EPSRC grants
[EP/F039697/1, EP/H012370/1], the MOD University Defence



0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

15

20

25

sampling ratio (%)

re
la

ti
v
e
 S

N
R

 (
d
B

)

(a)

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

15

20

25

sampling ratio (%)
re

la
ti
v
e
 S

N
R

 (
d
B

)

(b)

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

15

20

25

sampling ratio (%)

re
la

ti
v
e
 S

N
R

 (
d
B

)

(c)

Fig. 2. Reconstruction performance versus under-sampling ratio: ‘◦’, oracle reconstruction, ‘�’ Algorithm 2 and ‘×’ oracle classical auto-focus (a) γ = 0.1
(b) γ = 1 (b) γ = 10
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Fig. 3. Reconstructions from 2◦ of the Gotcha data set with under-sampling in range and phase errors. (a) reconstructed image using an `1-norm SPG
method (b) reconstructed image using Algorithm 2
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