University Defence Research Collaboration (UDRC) Signal Processing in a Networked Battlespace

UNIVERSITY OF SUURREYCUSSEDCUSSEDCentre for Vision, Speech & Signal Processing	Incongruence Detection for Statistical Anomaly Detection Josef Kittler, Cemre Zor and Wenwu Wang Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, GU2 7XH {j.kittler, c.zor, w.wang}@surrey.ac.uk	
	•	-
 Aims to aid the detection of anomaly in sensor data processed by a complex decision making system. Focuses on: Comparing the outputs of two classifiers with a view to detecting statistical anomaly in sensor data The nature/nuance of anomaly 	Assumption: Different subsystems voice independent opinions about the strengths of various hypothesis • Incongruence is to be detected for each of the outputs of different subsystems $ \int_{p}^{P} \frac{P(\omega_{i} x)}{1 + \frac{1}{2} + \frac$	 Experiments Surprise distribution with error sensitivity analysis for different scenarios, using 2 and 3 class problems, is evaluated. BS, Δ^{dm}_{max} and Δ_{avg} measures are utilized. Scenarios include expert decision similarity, agreement and disagreements. Each scenario contains cases where there is / is not clipping in error distribution. Each case covers conditions

- the classifier outputs
- Analysing measures of classifier incongruence, Histogram Consistency and Similarity Tests, Bayesian Surprise
- Development of alternative methods which focus on the dominant hypotheses flagged by two experts: Delta-Max (Δ_{max}) and Delta-Avg (Δ_{avg})

Incongruence Detection Background

- Required ingredients
 - Incongruence measure
 - Estimate incongruence measure distribution
 - Statistical hypothesis testing threshold
- Existing incongruence measures
 - Histogram Consistency/Similarity Tests
 - Testing if two histograms are drawn from the same distribution, using shape

$\frac{2}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] \right]$

where $\mu = \arg \max_{w} P(w|x)$ and $\tilde{\mu} = \arg \max_{w} \tilde{P}(w|x)$.

- Symmetric, eliminates the clutter injected by the non-dominant classes, does not diverge to infinity but confined to the interval (0,1).
- One undesirable property: When the classifiers vote for the same class, second term is identical to first term.
 - This scenario doubles the surprise measure, and masks the scenario when the favoured hypotheses of the two experts differ.

Solution: An update on
$$\Delta_{max}$$
: Δ_{max}^{dm}

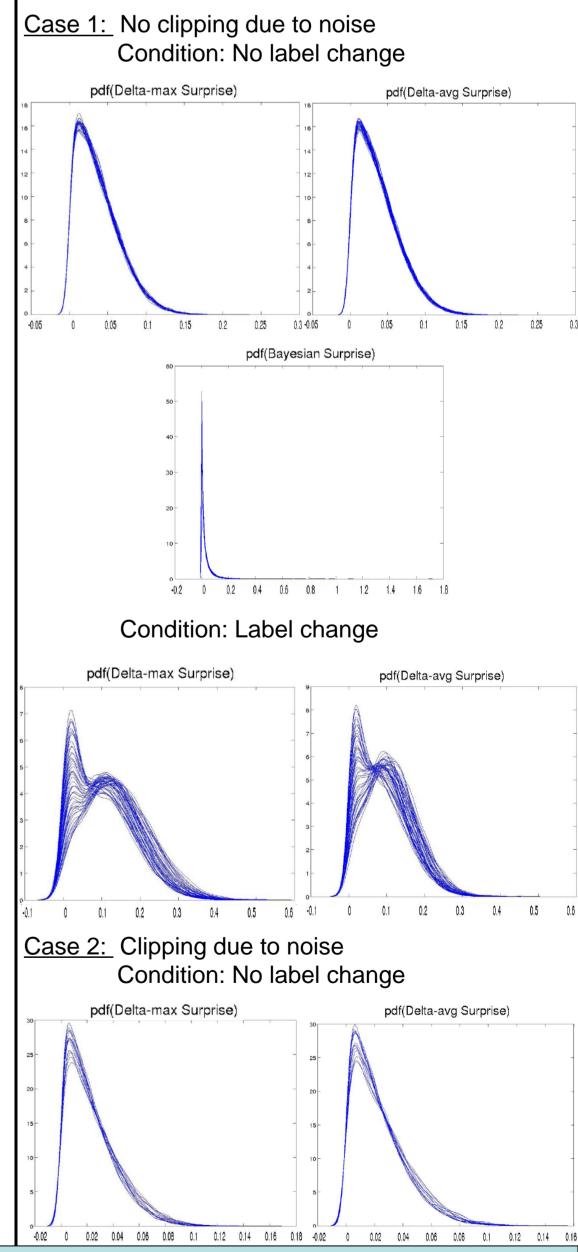
$$\Delta_{max}^{dm} = \frac{1}{2} \max\{ \left[\left| \tilde{P}(\mu|x) - P(\mu|x) \right| + \delta(\mu, \tilde{\mu}) \left| \tilde{P}(\tilde{\mu}|x) - \tilde{P}(\mu|x) \right| \right], \\ \left[\left| P(\tilde{\mu}|x) - \tilde{P}(\tilde{\mu}|x) \right| + \delta(\mu, \tilde{\mu}) \left| P(\mu|x) - P(\tilde{\mu}|x) \right| \right] \}$$

where $1 - \delta(\mu, \tilde{\mu}) = \begin{cases} 1 & if \ \mu = \tilde{\mu} \\ 0 & if \ \mu \neq \tilde{\mu} \end{cases}$

•

 Δ_{max}^{dm} is magnified if the two classifiers support distinct dominant hypothesis.

 Δ_{avg} Measure


 $\begin{array}{ll} \Delta \textit{avg} &= \frac{1}{2} \{ |P(\mu|x) - \tilde{P}(\mu|x)| + \delta(\mu, \tilde{\mu}) |\tilde{P}(\tilde{\mu}|x) - \tilde{P}(\mu|x)| \\ &+ |\tilde{P}(\tilde{\mu}|x) - P(\tilde{\mu}|x)| + \delta(\mu, \tilde{\mu}) |P(\mu|x) - P(\tilde{\mu}|x)| \} \end{array}$

Similar properties with those of Δ_{max} .

Error Sensitivity Analysis

- A posteriori probabilities estimated by the two classifiers are subject to estimation errors ($P(w|x) + \eta_w(x)$).
- Assumption: Errors are normally distributed with zero mean and σ stdev.
 However, the following conditions must also be satisfied:

- where noise causes/avoids label change in expert decisions.
- 100 observations for different experts outputs are given for an example 2class scenario. Noise is distributed with stdev=1/15 and mean=0. Expert decision similarity, when surprise value of interest is 0, is analysed.

- analysis and statistics
- E.g. Chi-square, Cramer-von-Mises, Kolmogorov Smirnov Tests
- No single "best" test for all application
- Bayesian Surprise (BS)
 - The Kulback-Leibler divergence between two expert distributions

$$\Delta_{BS} = \sum_{j=1}^{r} \tilde{P}(\omega_j | x) \log \frac{\tilde{P}(\omega_j | x)}{P(\omega_j | x)}$$

• Cons: Divergence to infinity and non-symmetrical behaviours

 $\sum_{i}^{m} \eta_{\omega}(\mathbf{x}) = 0 \quad \text{and} \quad 0 \le \eta_{\omega}(\mathbf{x}) + P(\omega|\mathbf{x}) \le 1$

• We adopt a new error distribution, p', which is a clipped normal distribution. $\begin{array}{rcl}
P \leq & 0.5 \\
p'(\eta) = \left\{ \begin{array}{l}
0 & \eta < -P \\
p(\eta) + p(2P - \eta) & \eta \geq -P \end{array} \right. \\
P > & 0.5 \\
p'(\eta) = \left\{ \begin{array}{l}
0 & \eta > 1 - P \\
p(\eta) + p(2 - 2P - \eta) & \eta \leq 1 - P \end{array} \right. \end{array}$

CONCLUSIONS

- Δ_{avg} gives more compact surprise distribution results than Δ_{max}^{dm} , when error is present.
- Label change during noise addition causes shifts in the surprise distribution for Δ_{max}^{dm} and Δ_{avg} . Shifts are more severe while using Δ_{max}^{dm} .
- BS is not effected by label change, however it has a range that cannot easily be thresholded for surprise detection, due to its divergence.
- Threshold value of 0.5 can be utilized for majority of the cases.

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) and Dstl.